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Abstract: In the production and processing of precision shaft-hole class parts, the wear of cutting tools, 
machine chatter, and insufficient lubrication can lead to changes in their roundness, which in turn 
affects the overall performance of the relevant products. To improve the accuracy of roundness error 
assessments, Bat algorithm (BA) is applied to roundness error assessments. An improved bat algorithm 
(IBA) is proposed to counteract the original lack of variational mechanisms, which can easily lead BA 
to fall into local extremes and induce premature convergence. First, logistic chaos initialisation is 
applied to the initial solution generation to enhance the variation mechanism of the population and 
improve the solution quality; second, a sinusoidal control factor is added to BA to control the nonlinear 
inertia weights during the iterative process, and the balance between the global search and local search 
of the algorithm is dynamically adjusted to improve the optimization-seeking accuracy and stability of 
the algorithm. Finally, the sparrow search algorithm (SSA) is integrated into BA, exploiting the ability 
of explorer bats to perform a large range search, so that the algorithm can jump out of local extremes 
and the convergence speed of the algorithm can be improved. The performance of IBA was tested 
against the classical metaheuristic algorithm on eight benchmark functions, and the results showed that 
IBA significantly outperformed the other algorithms in terms of solution accuracy, convergence speed, 
and stability. Simulation and example verification show that IBA can quickly find the centre of a 
minimum inclusion region when there are many or few sampling points, and the obtained roundness 
error value is more accurate than that of other algorithms, which verifies the feasibility and 
effectiveness of IBA in evaluating roundness errors. 
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1. Introduction 

The roundness error is a fundamental geometric element in determining the quality of a machine 
part. High-precision shaft-hole class parts in various fields, such as in the aerospace, automotive, and 
military industries need to be produced under strict dimensional and shape tolerances in order to 
meet standards. An accurate evaluation of the dimensional and geometric characteristics of shaft-hole 
class parts ensures a high level of performance during use. Roundness is a fundamental geometric 
characteristic of shaft-hole class parts that can vary according to the actual manufacturing 
environment owing to inadequate lubrication, wear of cutting tools, machine chatter, and irregular 
spindle rotation. According to the standards of the American Society of Mechanical Engineers and 
the International Organization for Standardization, the roundness error is the minimum radius 
difference between the inner circle and the outer circle. Commonly used roundness error assessment 
methods are the least squares method (LSM), the minimum circumscribed circle method (MCC), the 
maximum internal circle method (MIC), and the minimum zone circle method (MZC) [1], as shown 
in Figure 1(a)–(d), respectively. The LSM has the advantages of simplicity and a theory that is easy 
to understand, simple programming, and simple algorithms; therefore, it is widely used. But the LSM 
does not meet the minimum bar defined by the international standard piece. MCC is often used to 
evaluate the roundness error of the outer surface, MIC is often used to evaluate the roundness error 
of the inner surface. In the roundness error evaluation, for a certain contour, sometimes three-point or 
two-point contact is satisfied. The inscribed circle or circumcircle of the form is not unique, which 
makes it possible to determine. MCC and MIC are very difficult and extremely unsuitable in 
application. MZC is an optimal evaluation method, and is commonly used internationally for 
evaluating roundness errors. 

Many scholars have published different solutions for the roundness error assessment accuracy 
problem in recent years. Luo [2] proposed the use of information entropy to initialise the population, 
introduced a new search strategy, and proposed an improved cuckoo algorithm to assess roundness 
errors. Cai [3] introduced a roulette selection method based on the traditional cuckoo algorithm, 
optimised the step scaling factor and re-nesting probability in the traditional cuckoo search algorithm 
Lévy flight, and evaluated the roundness error using the improved cuckoo search algorithm. Li [4] 
introduced augmented search and interactive learning mechanisms to enhance the learning efficiency 
of the algorithm and maintain the diversity of the population while keeping the typical process of the 
basic Drosophila optimisation algorithm. Wang [5] designed a variable step size method based on the 
standard Drosophila whisker algorithm to further improve the computational accuracy and 
convergence speed of the algorithm. Srinivasu [6] combined LSM and the novel probabilistic global 
search lausanne (PGSL) technique. LSM was initially used to reduce the search space and within this 
reduced search space, PGSL performs an efficient, refined, and global search. Zhang [1] applied an 
improved genetic algorithm to the roundness error assessment. Liu [7] first proposed the intersecting 
chord method for implementing a minimum area model of the roundness error with coordinate data, 
which achieved satisfactory results in terms of computational accuracy and evaluation efficiency. 
Cao [8] found that in many industrial scenarios, a fine evaluation of local segment roundness 
variations is usually more practical than global evaluation; hence, a roundness error assessment 
method based on local least squares circle statistical analysis is preferable. Yue [9] proposed an 
asymptotic search method to obtain the concentric centre coordinates of the minimum area circle 
model and calculate the circularity error, and Yue [10] proposed a circularity error assessment 
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method based on the minimum zone circle method. Samuel [11] proposed a method for processing 
coordinate measurement data and shape data based on computational geometry techniques. A new 
heuristic algorithm was proposed to solve the inner hull using the computational geometry concept of 
a convex hull. Gadelmawla [12] proposed a simple and effective algorithm to calculate the roundness 
error of a large number of points obtained by CMMs using three internationally defined methods: 
MCC, MIC, and MZC. Ray [13] proposed a method to evaluate the roundness error using geometric 
relations, but this method suffers from a large number of iterations, slow convergence, and the need 
to determine the direction and step size of the next circle centre movement. Because there is no 
consensus on the best method for roundness error assessments, the traditional geometric method, 
which is necessary to determine the direction in which the centre of the circle moves. The 
optimisation algorithm can solve the circularity error quickly, but the accuracy of the optimisation 
algorithm in evaluating the circularity error is not high enough. In order to improve the accuracy of 
the evaluation of the circularity error. In this paper, we apply the traditional BA to the roundness 
error evaluation. Due to the problems of the traditional bat algorithm, we propose to IBA to improve 
the evaluation accuracy of the roundness error. 

y

o

 

y

o

 

(a) Least squares circle (b) Minimum external circle 

y

o

 

y

o

 

(c) Maximum inner joint circle (d) Minimum zone circle 

Figure 1. Common methods of roundness error assessment. (a) Least squares circle; (b) 
Minimum external circle; (c) Maximum inner joint circle; (d) Minimum zone circle. 

In this study, the circularity error assessment accuracy problem is transformed into an 
optimisation problem of the circle centre of the minimum inclusion region, and the BA is applied to 
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the roundness error assessment for this problem. An IBA is proposed because the traditional BA 
lacks a variational mechanism and is prone to fall into local extrema and premature convergence. 
Chaos initialisation is applied to the initial solution generation to enhance the variational mechanism 
of the population and improve the quality of the solution. During the iterative process, sinusoidal 
control factor is added to the BA to control the nonlinear inertia weights, which is used to 
dynamically adjust the balance between the global and local searches of the algorithm and improve 
the algorithm’s search accuracy and stability. SSA is integrated into the BA to utilise the large range 
search capability of the explorer bat and make the algorithm jump out of local extremes and then 
quickly converge to a global optimum. The feasibility and effectiveness of the algorithm were 
verified the accuracy of IBA in roundness error evaluation. 

2. Roundness error evaluation problem proposed 

Roundness error assessment is a nonlinear optimisation problem, and the roundness error is the 
radius difference between two concentric circles that are inclusive of the actual circular contour, in 
other words, is the minimum radius difference, so the roundness error problem can be assessed by 
the BA. The discriminatory criterion of roundness error assessments using MZC is that when the 
measured contour is included by two concentric circles, the minimum radius difference between the 
two concentric circles is the roundness error. The coordinates of the sampling points of the circle 
section are ( , )i i iP x y ( 1,2, , )i n  , n is the number of measurement points, the centre of the circle that 
meets the minimum zone circle is ( , )O a b , and the distance between each sampling point ( , )i i iP x y  to 
the real-time circle centre ( , )m m mO a b  is 𝑅 , as shown in Figure 2. 

 

Figure 2. Schematic diagram of roundness error evaluation. 

2 2( ) ( )m i m i mR x a y b   
        

(1) 

From Eq (1), it is known that the roundness error problem can be transformed into solving the 
concentric circle centre ( , )a b  that satisfies the minimum zone circle with the concentric circle radius 
difference f . T  is the maximum number of iterations, and the objective function of the IBA 
optimisation is 

1 1 1

( , ) min max minm m m m
m T i n i n

f a b R R
     

   
 

        (2) 
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3. Bat algorithm 

The BA is a meta-heuristic search algorithm proposed by Xin-she Yang, a British scholar in 2010 [14], 
which includes a swarm intelligence optimisation algorithm that evolved from the behaviour of bats 
based on echolocation for searching and hunting. With good global search capability and fast 
convergence, the BA simulates a series of behavioural characteristics of bats, such as searching for 
locations and hunting using ultrasound. In the BA, an N  bat individual updates the frequency, 
velocity, and position values during its flight. The entire algorithm consists of two parts: global and 
local updates. During the iterations, each bat can vary its pulse emission rate ri, its loudness Ai, and 
its frequency fi. Frequency variations or tuning can be carried out by. The global update equation is 
as follows: 

min max min( )if f f f rand              (3) 

1 ( )t t t
i i i iv v x x f

              (4) 

1+t t t
i i ix x v            (5) 

where if  , maxf , and minf  denote the frequency, maximum frequency, and minimum frequency of i

bats, respectively; rand denotes a random number within the range of [0, 1], t
iv denotes the velocity 

of the i th bat at time t , x denotes the global optimum, and t
ix denotes the position ( 1,2, , )i N   of 

the i th bat at time t . In the local search phase, if the following specific conditions are satisfied, the 
position update equation is: 

t
new oldx x A             (6) 

where oldx  is the current optimum,   is a random number between [−1, 1], and tA  is the current 
average loudness of all bats ( 1,2, , )t T  . 

As the number of iterations increases and approaches the target value, the loudness gradually 
decreases, while the pulse emissivity gradually increases. The loudness and pulse emissivity are updated 
as follows: 

1t t
i iA A 

            (7) 

 1 0 1 exp( )t
i ir r t              (8) 

where   is a random number between [−1, 1], and   is a random number greater than 0. 
The steps of a traditional BA are as follows: 

1) Initialization of algorithm parameters: the number of bats is n , the frequency search range is 

 min max,f f ; the maximum pulse firing rate is 0r , the pulse rate coefficient is  ; the initial 

loudness is A , the loudness wave coefficient parameter is  , and the maximum number of 

iterations is T . 
2) t

iv  and t
ix  are updated according to Eqs (4) and (5). 

3) Start the local search and update the position according to Eq (6) when irand r . 
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4) When irand A  and ( )new if f x , iA  and ir  are updated according to Eqs (7) and (8). 
5) Determine if ( )newf f x  , and if yes, update the global optimal solution. 
6) If the maximum number of iterations is reached, stop, and output the position of the best 

individual; otherwise, go back to Step (2). 
In addition to the above advantages, traditional BA also has disadvantages, such as a lack of 

variation mechanisms, and the fact that it is not easy to maintain population diversity. An important 
point for an efficient swarm intelligence algorithm is to have an excellent mutation mechanism for 
maintaining population diversity and thus the ability to sustain evolution. From the optimisation 
process of the basic BA, the algorithm lacks an effective variation mechanism [15] and also lacks 
mobility, which in turn affects the algorithm’s global search and local search imbalance [16]. Bat 
individuals are prone to be attracted to local extremes, leading to premature convergence. The basic 
algorithm uses learning from the current optimal individual for velocity updates, thus achieving a 
position update; if the current optimal individual, once attracted by local extremes, does not have an 
effective mechanism for eliminating the binding, the population rapidly loses diversity and thus the 
ability to evolve. This is particularly obvious in high-dimensional complex morphology performance. 
The pulse frequency r and pulse tone intensity A only determine whether the algorithm accepts the 
updated position with a certain probability, but it is not effective in overcoming the attraction of local 
attractors. Due to the above problems, an IBA is proposed. 

4. Improved bat algorithm 

4.1. Chaos initialization 

In the initialisation process of intelligent optimisation algorithms, different generation methods 
produce different initial solution sequences. The basic BA generates the initial population randomly, 
therefore, the population lacks a variation mechanism, which has the problem of an uneven 
distribution of the original individuals, which in turn affects the optimisation performance of the 
algorithm. By adding chaotic initialisation to the traditional BA, the introduced chaotic sequence has 
the advantages of ergodicity, randomness, and regularity, which can be obtained by determining Eqs (9) 
and (10). The initial solution sequence generated by logistic chaotic mapping is proposed as: 

1 (1 )n n nx x x              (9) 

min max min( )n nx x x x x              (10) 

where   is 4, indicating that the system is completely chaotic; maxx  and minx  represent the upper 
and lower bounds of the variables in the solution space, respectively; nx  is the initialisation variable 
generated by chaos in (0, 1]; nx is the variable mapped by nx  to a range of values between maxx  and 

minx . Adding chaos initialisation makes the initial solution of the population more uniformly 
distributed and improves the quality of the initial solution. 

4.2. Sinusoidal control factor 

It can be seen from Eq (4) that the update rate of the BA is 1, which reduces the flexibility of 
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individual bats in the bat algorithm to some extent, reduces the diversity of the population, and does 
not consider the experience accumulated in the early stages of the bat search, thus greatly reducing 
the mobility of the algorithm, which in turn affects the imbalance between the global search and the 
local search of the algorithm. Seyedali Mirjalili created the Sine Cosine Algorithm [17], which 
integrates multiple random variables and adaptive variables, emphasizing the exploration and 
utilization of the search space in different optimization stages. Inspired by the Sine Cosine Algorithm, 
the sinusoidal control factor is added to the BA to improve the search accuracy and stability of the 
algorithm. The expression of the sinusoidal control factor is: 

=sin( )
2 2

t

T

  



           (11) 

The speed update formula reads: 

1 ( )t t t
i i i iv v x x f 

              (12) 

where t  is the current iteration number, T  is the maximum iteration number,   is a random 
number between [0, 1], and  is the sinusoidal control factor. The larger the value of   is in the 
first period, the larger is the search range of the algorithm, which is conducive to finding the global 
optimal value. Moreover, with an increasing number of iterations, the value of   gradually 
becomes smaller; at this time, to allow the bat to conduct a fine search. By changing the value of  , 
the balance between the global and local searches of the algorithm can be dynamically adjusted to 
improve the accuracy of the algorithm. 

4.3. Fusion SSA explorer ability 

Inspired by the foraging strategy of sparrows in nature, the SSA was proposed by Xue et al., 
in 2020 [18]. The SSA algorithm has the advantages of higher stability, better convergence accuracy, 
and avoiding falling into the local optimum to some extent compared with other algorithms. In the 
process of foraging, the sparrow as explorer provides the search direction and area for the population, 
and the sparrow as follower is guided by the explorer. The search is conducted by the explorer. To 
address the problem that the local search ability and search accuracy are not high enough and easily 
fall into local extremes, leading to early convergence in the bat search algorithm, the ability of the 
explorer sparrow in the SSA is integrated into BA. Because the searcher sparrow has a larger search 
range compared with other algorithms and can quickly update its position, the ability of the explorer 
can be given to part of the bat search algorithm for guiding the entire population to achieve the goal 
of rapid convergence and jump out of local extremes. The process for fusing Explorer abilities in 
SSA is as follows. 

The proportion of bats within the population that acquire explorer bat capabilities is first 
determined based on the proportionality factor a : 

best

N best

X P
a

X N P

 


           (13) 

bestX  represents the best positioned bat in the bat population, P , as the explorer bat. N bestX 

represents N P  bats with bad positions in the bat population, as follower bats, and usually a  
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is set to 20%. In a wide-range search environment, the warning value 2r  for becoming an explorer 
bat is constantly smaller than the safety value ST , when the explorer bat performs a wide-range 
jump search, and the explorer bat’s ability is updated according to Eq (14). 

1
, , exp( )t t

i j i j

i
x x

T
 
 


         (14) 

where 1
,

t
i jx   denotes the position of the i th bat in the 1t  th iteration in the j th dimension,   is a 

random number between (0, 1] and T  is the maximum number of iterations. All other bats follow the 
explorer bat at normal speed. According to this change in the explorer bat’s ability, an influence factor rr  
is generated, which in turn affects the influence of the bat’s past position and speed on its present position 
and speed. 

1
rr

T



            (15) 

where   is a random number between (0, 1] and T  is the maximum number of iterations. The 
velocities and positions of the follower bats are updated using Eqs (16) and (17). 

1 ( )t t t
i i i iv rr v x x f 

               (16) 

1+t t t
i i ix x v            (17) 

EasIly  falls into local 
optimum

Lack of variation 
mechanism in the 

population
Lack of mobility

Explorer BatsChaos initialization
Sinusoidal control 

factor

BA

IBA

Existing problems Existing problems

Solution
Solution

 

Figure 3. Diagram of improvement idea. 

By fusing the SSA into the BA, the fused BA gains the ability of explorer bats to perform a wide 
range search, making the jump out of local extremes easier, and resulting in faster convergence, and 
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higher accuracy. To clarify the IBA, a diagram of the improved idea is shown in Figure 3. 

4.4. IBA algorithm steps 

 

Figure 4. IBA program flow chart. 

1) Initialization of algorithm parameters: the number of bats is n , the frequency search range is 

 min max,f f ; the maximum pulse firing rate is 0r , the pulse rate coefficient is  ; the initial 

loudness is A , the loudness wave coefficient parameter is  , and the maximum number of 

iterations is T . 
2) Individual bat positions are assigned according to chaotic initialisation (9) and (10), and 
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according to the fitness function. The value of the fitness function is found for each bat, and the 
position of the bat for the optimal value x  is recorded. 

3) The population was divided into explorer bats and follower bats, and position updates were 
performed using Eq (14) when explorer bats performed a wide range search, while follower 
bats performed position and velocity updates using Eqs (3), (16), and (17). 

4) When irand A  and ( )new if f x , iA  and ir  are updated according to Eqs (7) and (8). 
5) Determine if ( )newf f x  , and if yes, update the global optimal solution. 
6) If the maximum number of iterations is reached, stop, and output the position of the best 

individual; otherwise, go back to Step (2). 
The flow chart of IBA is shown in Figure 4. 

4.5. Algorithm complexity 

Because the algorithm works with the same producer for each iteration, we therefore analyse the 
algorithm complexity of one iteration of the algorithm. The complexity of the proposed IBA 
algorithm in the worst case is as follows: 

The complexity of the traditional BA algorithm is ( )O N , where N  is the population size, using 
chaos initialization to make the population uniformly distributed. The complexity of chaos 
initialization is ( )O N , and the inertia weight is changed by the sinusoidal control factor, whereby the 
complexity of the sinusoidal control factor is (1)O . The explorer ability of the SSA is integrated into 
BA to change the position of the bat and the complexity is ( )O D , where D  is the dimensionality. 
Therefore, the total complexity of the IBA algorithm is (2 1)O N D  . From this equation we can see 
that chaos initialization, the sinusoidal control factor and explorer bat ability all increase the 
complexity of the IBA algorithm. 

5. Performance testing with roundness error simulation and example verification 

5.1. Performance Test 

5.1.1. IBA vs. BA/PSO/SCA/SSA for performance comparison on F1–F4 

To verify the performance of the IBA algorithm, four test functions were selected for performance 
testing in this study, and this experiment was performed using MATLAB 2018b software. The 
experimental platform was a PC with an operating system of win10 64-bit, a processor of Intel(R) 
core(TM) i5-7500CPU@3.40 GHz, and a 16.0 GB memory. The population size was set to 30, the 
maximum number of iterations was 300, the maximum value of loudness A  was 0.25, and the 
maximum value of pulse emissivity 0r  was 0.5. Each group of experiments was calculated 20 times, and 
the averages and standard deviations of the optimal solutions were recorded and saved. The number of 
iterations for each group of experiments was 300, and the IBA was compared with PSO, SCA, SSA, and 
the traditional BA. Four groups of test functions were included: F1 and F2 for single-peak benchmark 
functions; F3 and F4 for multi-peak benchmark functions. The results obtained are exhibited in Table 1, 
and the optimal values are shown in bold. Algorithm settings: PSO was set to 1 2 1c c  , 1  ; SSA was 
set to a = 20%, ST = 1.5. 
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Table 1. Test function results (dim = 5). 

Algorithm Function Avg Std Algorithm Function Avg Std 

IBA  

 

F1 

1.44E-70 6.42E-70 IBA  

 

F3 

9.88E-16 4.42E-15 

BA 1.35E-05 3.53E-06 BA 1.35E+00 1.83E+00 

SSA 2.07E-62 8.61E-62 SSA 4.08E-04 1.19E-03 

SCA 1.03E-17 2.99E-17 SCA 2.26E+00 4.35E-01 

PSO 8.69E+03 1.40E+04 PSO 1.84E+04 1.48E+04 

IBA  

 

F2 

3.15E-73 1.41E-72 IBA  

 

F4 

0 0 

BA 1.07E-05 4.11E-06 BA 9.77E-06 4.55E-06 

SSA 1.90E-37 5.87E-37 SSA 1.06E-32 3.85E-32 

SCA 5.33E-10 2.28E-09 SCA 2.58E-02 1.55E-02 

PSO 6.69E+03 4.67E+03 PSO 4.57E+03 3.39E+03 

(a) (b) 

(c) (d) 

Figure 5. F1–F4 performance test curve. 

In Figure 5(a), the convergence of BA and IBA tends to decrease when the number of iterations 
increases. After 20 iterations, BA falls into a local optimum, converges early, and cannot jump out. 
The IBA generates influence factors due to the explorer bats for a large range search and enhances 
the ability of the BA to jump out of local extremes by influencing the past positions and velocities of 
bats and therefore, the updates of the present positions and velocities. After 50 iterations, the 
convergence speed of IBA is obviously faster than that of BA, and it can be seen that the 
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integration of the ability of explorer sparrows into SSA can improve the ability of BA to jump out 
of local extremes. 

In Figure 5(b), BA converges to a local optimum approximately 40 times and falls into a local 
extremum, from which it cannot escape again. The IBA performs a wide-range search with explorer 
bats to generate an influence factor, which enhances the ability of the BA to jump out of a local 
extremum by influencing the past positions and velocities of the bats and therefore, the updates of the 
present positions and velocities. After jumping out of the local optimum by changing the sinusoidal 
control factor and thus, dynamically adjusting the inertia weights, IBA quickly converges to a more 
accurate solution. 

In Figure 5(c), both BA and IBA show a decreasing trend as the number of iterations increases, 
but IBA decreases faster than BA. BA quickly falls into a local optimum and is then unable to jump 
out of the local optimum. IBA quickly jumps out of the local extreme with the sinusoidal control 
factor and the fused SSA explorer sparrow capability, and the algorithm converges to the global 
optimum at 80 iterations. 

In Figure 5(d), when performing the search for the best value, the local optimum has a great 
impact on the convergence speed of the traditional BA because of a lack of variation mechanisms in 
the bat population once the population has been initialised. Therefore, chaos initialisation is added to 
enhance the random uniform distribution of the population. In subsequent iterations, the explorer bat 
performs a large search, generating an influence factor by influencing the present position and 
velocity updates through the bats’ past positions and velocities. So, after the algorithm jumps out of 
local extremes, the sinusoidal control factor dynamically adjusts the inertia weights to regulate 
the balance between global and local searches, so that the convergence of the IBA has a fast 
decreasing trend. 

5.1.2. IBA vs BA/PSO/MFO/DE for performance comparison on F5–F8 

Since the performance test 5.1.1 selected SSA, SCA, PSO and BA, however, the SSA and SCA 
algorithms still have low optimization accuracy.in order to further compare the performance of IBA 
and other algorithms, a performance test using IBA with traditional BA was used, and compared with 
the performance of the moth flame optimisation (MFO), the differential evolutionary algorithm (DE), 
and the PSO algorithm using four sets of benchmark functions in high dimensions, where F5 is the 
multi-peaked benchmark function, F6 is the fixed dimensional benchmark function, and F7 and F8 
are the composite benchmark functions. The population size was set to 30, the maximum number of 
iterations was 1000, each group of experiments was calculated 20 times, and the averages and 
standard deviations of the optimal solutions were recorded and saved. The obtained results are 
exhibited in Table 2, and the optimal values are shown in bold. Algorithm settings: IBA, BA, and 
PSO with the same settings as described in the previous Section 4.1.1. DE: F = 0.5, CR = 0.9; MFO: 
a = 1, A = 1. 

In Figure 6(a)–(d), the BA is caught in a local optimum and cannot jump out of the local 
optimum. IBA goes through population chaos initialisation to make the population distribution 
uniform and incorporates the ability of the explorer sparrow into SSA to make the algorithm jump 
out of local extremes quickly using the explorer bat to conduct a large-range search first and then, a 
global search using the follower bats. This ensures that the algorithm can jump out of local extremes 
through a sinusoidal control factor, which is used to control the non-inertial weight value change, and 
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then dynamically adjust the global search and local search. Thus, IBA converges quickly and reaches 
the global optimum. 

Table 2. Test function results (dim = 10). 

Algorithm Function Avg Std Algorithm Function Avg Std 

IBA  

 

F5 

2.34E-03 9.14E-04 IBA  

 

F7 

7.32E-07 8.01E-07 

BA 5.16E-02 7.60E-03 BA 1.03E-05 2.48E-06 

SFO 3.03E+00 3.85E+00 SFO 1.81E-01 1.45E-01 

PSO 2.88E+00 9.80E-01 PSO 7.07E+02 1.29E+02 

DE 2.04E+02 6.36E+00 DE 6.13E+00 2.76E+00 

IBA  

 

F6 

8.08E-04 4.13E-04 IBA  

 

F8 

3.45E-04 1.44E-04 

BA 2.37E-02 9.91E-03 BA 7.65E-04 6.00E-04 

SFO 7.77E-03 6.48E-03 SFO 1.06E-03 4.30E-04 

PSO 4.06E+00 2.92E+00 PSO 2.66E-02 2.63E-02 

DE 1.03E-01 6.46E-02 DE 2.45E-03 3.50E-03 

(a) (b) 

(c) (d) 

Figure 6. F5–F8 performance test curve. 

5.1.3. Performance test analysis 

It is obvious from Tables 1 and 2 that IBA has a better optimisation effect on a single-peaked 
function, multi-peaked function, fixed-dimensional multi-peaked function, and composite benchmark 
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test function. A good population initialisation can make the algorithm influence the process of 
finding the global optimum from the beginning of the algorithm. Chaos initialisation is introduced 
into BA to uniformly distribute the BA population and strengthen the optimisation performance of 
the algorithm. SSA explorer sparrows are fused into BA to enhance the exploration ability of the bats. 
Explorer bats are then made to perform a large range of fast searches, generating the influence factor 
rr , and influence the present position and velocity updates to make the algorithm jump out of local 
optimums through the past positions and velocities of the bats using rr . The sinusoidal control 
factor is also added into BA to enhance bat manoeuvrability, and make the algorithm converge to the 
global optimum quickly through changes of   with the goal of obtaining a more accurate solution 
of IBA. 

Table 3 shows the results of the statistical analysis of the algorithm’s Wilkerson rank test. The 
p-value is the value of Wilkerson’s test between IBA and other algorithms at a confidence level of 0.05. 
According to the results in Table 3, the calculated differences are all lower than 0.05, indicating that 
there is a significant difference between IBA and the other algorithms for the eight test functions; 
therefore, this conclusion is statistically significant. 

Table 3. P-values of the Wilcoxon rank test. 

 

 

Performance Test 

4.1.1 

Function BA SSA SCA PSO 

F1 7.4E-05 8.9E-05 8.9E-05 8.9E-05 

F2 8.8E-05 8.9E-05 8.9E-05 8.9E-05 

F3 8.9E-05 8.8E-05 8.9E-05 8.9E-05 

F4 8.8E-05 2.7E-02 8.9E-05 8.9E-05 

 

 

Performance Test 

4.1.2 

Function BA SFO PSO DE 

F5 8.9E-05 8.9E-05 8.9E-05 8.9E-05 

F6 8.9E-05 1.0E-04 8.9E-05 8.9E-05 

F7 8.9E-05 8.9E-05 8.9E-05 8.9E-05 

F8 8.9E-05 8.3E-05 8.9E-05 8.9E-05 

5.2. Roundness error simulation verification 

To verify the feasibility of this method for roundness error evaluation, two specified size circles 
were simulated [19]: the first specified circle had a radius of 1 mm, a roundness error of 10 μm, an 
inner diameter size of 0.997 mm, and an outer diameter size of 1.007 mm. The centre of the 
concentric circle was defined as the coordinate origin, and other measurement points of the circle 
contour were simulated. The simulated data points are shown in Table 4; the second specified circle 
has a radius of 1 mm and a roundness error of 10 μm. The inner diameter was 0.990 m, and the outer 
diameter was 1.000 mm. The data points of the simulation are presented in Table 5. Algorithm 
settings: The set population size was 30, the maximum number of iterations was 50, the maximum 
value of loudness A  was 0.25, and the maximum value of pulse emissivity 0r  was 0.5. The 
parameters used in the BA were the same as those described above. 
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Table 4. Simulation 1 data. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 0.704985 0.704985 5 0.868623 -0.5015 9 0.5 -0.866025 

2 -0.5035 -0.872086 6 1.004 0 10 -0.711349 -0.711349 

3 -0.997 0 7 -0.868623 -0.5015    

4 0 1.007 8 0.5 0.866025    

Table 5. Simulation 2 data. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 1 0 18 -0.56929 0.81612 35 -0.344039 -0.934865 

2 0.986291 0.127168 19 -0.670278 0.73805 36 -0.221349 -0.969793 

3 0.963874 0.252757 20 -0.760615 0.647521 37 -0.0954 -0.988926 

4 0.924223 0.374176 21 -0.837747 0.545313 38 0.032052 -0.999486 

5 0.869181 0.489514 22 -0.891959 0.429545 39 0.15933 -0.985512 

6 0.795612 0.59378 23 -0.944759 0.313681 40 0.283348 -0.954692 

7 0.716048 0.693454 24 -0.973104 0.189512 41 0.402961 -0.910295 

8 0.621339 0.779135 25 -0.989456 0.063525 42 0.517963 -0.854435 

9 0.514052 0.847982 26 -0.990536 -0.063595 43 0.619037 -0.776248 

10 0.401217 0.906357 27 -0.979996 -0.190854 44 0.716605 -0.693993 

11 0.2831 0.953859 28 -0.941978 -0.312758 45 0.79944 -0.596638 

12 0.159536 0.986784 29 -0.899296 -0.433078 46 0.86592 -0.487677 

13 0.03184 0.992893 30 -0.831748 -0.541408 47 0.917648 -0.371514 

14 -0.095625 0.991251 31 -0.760907 -0.64777 48 0.963114 -0.252558 

15 -0.220794 0.967361 32 -0.667931 -0.735466 49 0.982624 -0.126695 

16 -0.344506 0.936134 33 -0.56752 -0.813583 50 0.99054 -0.024261 

17 -0.459093 0.879995 34 -0.459074 -0.879959    

Table 6. Simulation 1 processing results. 

Method Centre coordinates Roundness error/mm 

x/mm y/mm 

BA 2.881e-04 -4.301e-04 0.01033 

IBA -7.714e-07 9.407e-07 0.01000 

MFO -150 150 1.6798 

SSA -7.6363e-07 9.1728e-07 0.0099998 

SCA -47.8307 47.8573 1.6777 
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Table 7. Simulation 2 processing results. 

Method Centre coordinates Roundness error/mm 

x/mm y/mm 

BA 6.2030e-04 1.2203e-03 0.01138 

IBA 2.0579e-07 3.3623e-09 0.01000 

MFO 149.9997 -68.4027 1.98 

SSA 2.0348e-07 -1.1253e-09 0.0099997 

SCA 76.3035 -34.731 1.98 

From the results in Tables 6 and 7, it can be seen that the result obtained by the IBA algorithm is 10 
μm, while the results obtained by other algorithms are all greater than 10um, which proves that the 
accuracy of IBA is higher than other algorithms in the roundness error evaluation. From Figure 7(a),(b), 
it can be seen that IBA, after the initialization of population chaos, has a downward trend, and through 
the large range search capability of the explorer bat, the algorithm jumps out of the local optimum and 
continues to search before using the sinusoidal control factor to dynamically adjust the inertia weights 
to make the algorithm converge quickly to the global optimum solution. While BA is caught in a local 
optimum, it is unable to jump out of local extremes because of the lack of mobility of the population, and 
it is verified through simulations that IBA converges faster and has a higher search accuracy than 
traditional BA. 

(a) (b) 

Figure 7. Roundness error simulation verification curve. 

5.3. Roundness error example verification 

To further verify the feasibility and effectiveness of the algorithm in roundness error assessment, 
sampling point data from the literature [11,20] were used for a roundness error assessment with IBA 
and BA. The original data are shown in Tables 8–11, the main object of the roundness error 
assessment is the centre of the circle ( , )O a b , so the search space of IBA is two-dimensional, the set 
population size is 30, the maximum number of iterations in Tables 7 and 9 is 50, and the maximum 
number of iterations in Tables 8 and 10 is 50. The maximum value of loudness A  is 0.25, and the 
maximum value of pulse emissivity 0r  is 0.5. The parameters used for BA were the same as those 
described above in Section 4.2. The results of the IBA runs are compared with the literature results. 
The optimal value is shown in black. 

5 10 15 20 25 30 35 40 45 50

Iteration

10-2

10-1

100

Convergence curve

IBA
BA
SSA
SCA
MFO
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Table 8. Eight data points from the literature [11]. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 65.0038 30 4 22.3181 47.6818 7 40 5.0001 

2 57.6809 47.6809 5 14.9978 30 8 57.6784 12.3215 

3 40 55.0041 6 22.3207 12.3207    

Table 9. Hundred data points from the literature [20]. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 0.57057 -0.95024 35 -0.5592 1.3352 69 -1.0411 -1.3206 

2 1.56665 0.42132 36 -0.637 1.8676 70 -0.7890 -1.0823 

3 1.01913 0.1475 37 1.1901 -1.3235 71 -0.0246 1.9005 

4 0.9179 -0.8385 38 -0.9668 -1.1753 72 0.7139 0.799 

5 -0.2496 1.7391 39 -0.7493 -1.0399 73 -0.4389 -1.1383 

6 -0.0585 1.6545 40 -1.6001 0.6525 74 -0.4092 -1.6016 

7 1.9574 0.0715 41 0.8048 -1.1432 75 1.3494 -0.1474 
8 -0.6388 1.1281 42 -1.1019 -0.6525 76 -0.48152 -1.29893 
9 -1.5951 0.8454 43 -0.7027 -0.7759 77 -0.6269 -1.2522 
10 1.4209 0.5318 44 -0.7597 -0.9567 78 -1.2637 -0.9311 
11 -1.0343 -0.467 45 1.5026 0.0313 79 -0.9584 -0.6098 
12 0.4236 1.3945 46 -0.595 -1.2948 80 -0.8003 -1.4396 
13 -1.0967 -1.3173 47 -0.1398 1.1773 81 -0.1384 1.3614 
14 -1.6096 -1.0501 48 -1.4483 -0.4282 82 1.2736 0.4495 
15 0.0079 -1.0619 49 -1.441 -0.5922 83 -0.6158 0.984 
16 1.3099 1.0251 50 1.2789 -0.8130 84 0.1276 -1.4463 
17 -0.9238 -1.2134 51 0.93272 1.04136 85 -0.7729 0.6518 
18 -1.1727 -0.1253 52 -1.6604 -0.7575 86 0.4013 -1.2335 
19 -1.0813 -0.2822 53 1.4369 0.0995 87 0.5666 -1.5757 
20 -1.475 -0.1511 54 0.5633 -1.0538 88 -0.6014 -1.1251 
21 0.29 1.0206 55 0.9646 1.2285 89 1.4585 -0.3672 
22 0.261 -1.6876 56 0.462 0.9718 90 -1.3337 0.3174 
23 -0.9285 -0.3927 57 1.0986 0.1462 91 -0.7503 -1.0336
24 0.0358 -1.6369 58 0.9888 0.8213 92 -1.4079 0.539 
25 1.1664 0.0082 59 -0.5729 -1.8727 93 -1.7150 0.3622 
26 0.12293 -1.00482 60 -1.1051 -0.6512 94 -0.3396 -1.6304 
27 1.487 1.0866 61 1.4011 1.148 95 -1.5630 0.302 
28 -0.3555 0.9602 62 1.4449 0.4777 96 -0.0920 -1.0383 
29 -1.2198 0.1289 63 0.417 0.9303 97 0.4708 1.5051 
30 0.5685 -1.7243 64 0.8847 -0.8546 98 1.6367 -0.5885 
31 -0.0124 1.4314 65 -0.2688 -1.0733 99 1.7043 -0.1240 
32 -0.156 1.0188 66 1.0129 -0.3987 100 -0.5162 0.9141 
33 -0.9631 -0.3251 67 -1.3342 0.1675    
34 -0.3253 -1.1068 68 -0.5876 -1.4324    

Table 10. Twenty-four data points from the literature [20]. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 107.5811 114.2119 9 55.7576 109.7039 17 85.6152 67.1081 

2 102.2909 119.9906 10 53.4073 102.218 18 93.2669 68.7926 

3 95.6848 124.2034 11 53.0774 94.3816 19 100.2245 72.4009 

4 88.2128 126.5634 12 54.7849 86.7302 20 106.0093 77.6929 

5 80.3826 126.9159 13 58.4107 79.7824 21 110.2199 84.3073 

6 72.7251 125.2311 14 63.7075 74.0083 22 112.5676 91.7864 

7 65.7612 121.6196 15 70.3176 69.8019 23 112.8977 99.6156 

8 59.9721 116.3232 16 77.7899 67.4519 24 111.2129 107.2695 
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Table 11. Thirty-nine data points from the literature [20]. 

No. x/mm y/mm No. x/mm y/mm No. x/mm y/mm 

1 1.0249 0.0863 14 -0.9394 0.1561 27 -0.4635 -0.9105 

2 0.9991 0.2226 15 -0.2071 0.9218 28 0.4736 -0.9507 

3 0.5974 0.7736 16 -0.3381 0.8782 29 0.5942 -0.8781 

4 0.4731 0.8485 17 -0.4643 0.8132 30 -0.2059 -1.0269 

5 0.8803 0.4794 18 -0.5771 0.7369 31 0.9950 -0.3272 

6 0.8017 0.5899 19 -0.7763 0.5367 32 1.0218 -0.1921 

7 0.9527 0.3551 20 -0.6838 -0.7485 33 -0.0686 -1.0512 

8 0.7047 0.6884 21 -0.5795 -0.8424 34 0.0710 -1.0568 

9 0.2101 0.9295 22 -0.9618 -0.017 35 0.2087 -1.0377 

10 0.0708 0.9382 23 -0.9454 -0.2605 36 0.3445 -1.0078 

11 -0.0683 0.9382 24 -0.9077 -0.3956 37 0.7082 -0.7982 

12 -0.8432 0.4157 25 -0.8443 -0.5203 38 0.8873 -0.5832 

13 -0.9022 0.2890 26 -0.7764 -0.6394 39 0.9510 -0.4578 

Table 12. Comparison results for 8 data points. 

Method Centre coordinates Roundness error/mm SR 

x/mm y/mm 

MCC [11] 40.0000 30.0014 0.0024147 7.4% 

MIC [11] 40.0000 30.0010 0.0022945 2.5% 

MZC [11] 39.9998 30.0022 0.0022430 0.2% 

LSM [11] 40.0002 30.0012 0.0024657 9.3% 

MFO 39.9976 29.9855 0.03324 93.3% 

SCA 39.8158 30.5173 1.0304 98.8% 

SSA 39.9998 30.0022 0.0022772 1.8% 

BA 12.3789 41.4372 42.1202 99.8% 

IBA 39.999682 30.002218 0.002236716  

Table 13. Comparison results for 100 data points. 

Method Centre coordinates Roundness error/mm SR 

x/mm y/mm 

MIC [20] 0.00655 0.00277 0.95846 0.2% 

MCC [20] -0.00567 0.00772 0.96237 0.6% 

MZC [20] 0.00535 0.00791 0.95742 0 

MFO -150 91.04567 3.507 72.7% 

SCA 84.178 -51.4637 3.5063 72.7% 

SSA 0.0053467 0.0079089 0.9574200 0 

BA 0.0053885 0.0078137 0.9574537 0.1% 

IBA 0.0053467 0.0079091 0.9574200  
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Table 14. Comparison results of 24 data points. 

Method Centre coordinates Roundness error/mm SR 

x/mm y/mm 

MIC [20] 82.9891 97.0096 0.0396 4.5% 

MCC [20] 82.9907 97.0081 0.0386 1.0% 

MZC [20] 82.9909 97.0084 0.0382 0 

GA [21] 
STA [22] 

82.990941 
82.990941 

97.008387 
97.008387

0.00382309 
0.00382309 

0 
0 

MFO 82.9909 97.0085 0.03833 0.3% 

SCA 82.433 94.254 5.621 99.4% 

SSA 82.9909 97.0084 0.03826 0.08% 

BA -16.5516 5.70016 59.4891 99.9% 

IBA 82.990941 97.008387 0.0382309  

Table 15. Comparison results for 39 data points. 

Method Centre coordinates Roundness error/mm SR 
x/mm y/mm 

LSM [2] 0.035535201 -0.053585512 0.0091672738 6.9% 
GA [23] 0.035550359 -0.052929068 0.0085379971 0.01% 
PSO [24] 0.035613523 -0.052928923 0.0085384689 0.02% 
ABC [2] 0.035614964 -0.052929492 0.0085374723 0.01% 
MZC [20] 0.0356 -0.0529 0.00856 0.27% 
MZC [25] 0.035614972 -0.052929481 0.0085374644 0 
MZC [10] 0.035614972 -0.052929481 0.0085374644 0 
MFO 32.8326 -0.406248 1.9855 99.6% 
SCA 0.03895159 -0.05118344 0.01446 40.9% 
SSA 0.035614 -0.052929 0.0085385 0.01% 
BA 0.035191159 -0.053098839 0.0088937156 5.1% 
IBA 0.035614972 -0.052929481 0.0085374644  

In order to test the accuracy of the roundness error evaluation of IBA and other algorithms, the 
evaluation efficiency is expressed by SR: 

(1 ) 100%
Contrast algorithm

IBA
SR     

Among them, the Contrast algorithm is other algorithms and algorithms in the literature applied 
to the roundness error to be compared. 

Figure 8(a),(c) show the circularity error-iteration number plots obtained for the data points in 
Tables 8 and 10, respectively. It can be seen that the IBA algorithm converges quickly at the very 
beginning of the algorithm and reaches the global optimum, whereas the BA algorithm cannot jump 
out after falling into a local extreme. From the results in Table 12, it can be seen that the roundness 
error obtained by the IBA algorithm is lower than that obtained by the literature [11] and other 
algorithms, and the roundness error obtained is 98.8% higher than the original algorithm. It can be 
seen from Table 13 that the roundness error value obtained by the IBA algorithm is lower than the 
roundness error obtained by the literature [20] and other algorithms, the obtained roundness error 
value is 0.1% higher than the original algorithm, and the circle center coordinate value is close to the 
actual circle center value. Figure 8(b),(d) show the circularity error-iteration number plots obtained 
from the data points in Tables 9 and 11, respectively, from which it can be seen that IBA first uses the 
explorer bat to perform a wide range search. The influence factor rr  is generated in this wide-range 
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search through the explorer bat. The past position and velocity of the bat are influenced by rr , 
which is used to update the present position and velocity, so that the algorithm jumps out of the local 
optimum. In subsequent iterations, the sinusoidal control factor is used to change the nonlinear 
inertia weights, and thus, the global optimum is reached quickly, while BA is trapped in the local 
optimum and cannot jump out of it. The results shown in Table 14 are similar to those in [20], and 
the roundness error values are equivalent to those obtained by MZC, and the roundness error 
obtained is 99.9% higher than the original algorithm. It can be seen from Table 15 that IBA yields 
smaller results than LSM, GA, PSO, ABC, and BA, and a higher accuracy for the roundness error, 
and the roundness error obtained is 5.1% higher than the original algorithm, Through the verification 
of the above four examples, we can see that the improved bat algorithm not only has the same results 
as the literature, but also has a more accurate roundness error value than the literature.it is verified that 
the roundness error obtained by IBA has a high accuracy when applied to the roundness error 
evaluation problem. 

(a) (b) 

(c) (d) 

Figure 8. Example validation curve graph. 

6. Conclusions 

In order to improve the evaluation accuracy of the roundness errors of shaft-hole class parts, BA 
is applied to roundness error evaluation, and an improved bat algorithm is proposed for solving the 
problems of BA easily falling into local extremes, experiencing premature convergence, and the lack 
of a variation mechanism in the population. In addition to retaining the good characteristics of BA, 
chaos initialisation is applied to the population initialisation to uniformly distribute the population, 
add a sinusoidal control factor and fused SSA. The explorer bat enables the population to perform a 
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large range search quickly, so that the algorithm can jump out of local extremes and obtains a great 
improvement in convergence speed, which in turn enhances the balance between the global and local 
searches of the algorithm. The excellent performance shown by IBA can be seen through the 
performance test, which is much higher than that of other optimisation algorithms and more stable. 
Although the algorithm is effective, there is still much room for improvements with regards to the 
optimisation effect in high-dimensional spaces. Simulation and example verifications show that IBA 
is an effective means for evaluating roundness errors, and that IBA is more accurate than other 
optimisation algorithms in evaluating roundness error values. The method proposed in this paper can 
not only evaluate roundness errors but can also be applied to straightness and flatness in the future. 
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Appendix. 

Table A1. F1–F8 performance test function table. 

No. Function Scope Min 
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 -5,5  0.0003 
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(c) (d) 

(e) (f) 

 

(g) (h) 

Figure A1. (a–h) is the test function (F1–F8) 3D plot. 
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