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Abstract: Due to nonlinearity and uncertainty of the robotic manipulator, the design of the robot 

controller has a crucial impact on its performance of motion and trajectory tracking. In this paper, the 

linear parameter varying (LPV) - model predictive controller (MPC) of a two-link robot manipulator 

is established and then the controller’s optimal parameters are determined via a newly developed meta-

heuristic algorithm, transient search optimization (TSO). The proposed control method is verified by 

set point and nonlinear trajectory tracking. In the test of set-point tracking, the LPV-MPC scheme 

optimized by TSO has better performance compared to the computed torque controller (CTC) schemes 

tuned by TSO or other metaheuristic algorithms. In addition, good performances can also be observed 

in the tests of nonlinear trajectory tracking via the LPV-MPC scheme by TSO. Moreover, the 

robustness of the method to structural uncertainty is verified by setting a large system parameter 

deviation. Results reveal that we achieved some improvements in the optimization of MPC of the robot 

manipulator by employing the proposed method. 

Keywords: model predictive controller (MPC); linear parameter-varying (LPV); metaheuristic 

algorithm; transient search optimization (TSO); computed torque controller (CTC) 

 

1. Introduction  

In the past decade, robot manipulators have been extensively concerned in industrial assembly, 

agricultural picking, medical surgery, and other fields [1]. Robot manipulators usually face 
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uncertainties such as parameter perturbations, external interferences, frictions, and noises during the 

service process. Meanwhile, it is expected of high working accuracy such as in position reaching and 

trajectory tracking. Therefore, the control techniques of robot manipulators are fundamental. 

PID controller has been widely used due to its simple structure and acceptable performance during 

the early stages of the robot industry [2]. However, it is quite challenging to obtain the optimum PID 

parameters because robot manipulators are complex systems with nonlinearity, strong coupling and 

time varying characteristics. Even worse, for occasions with high precision requirements and complex 

dynamic constraints, PID is difficult to achieve an ideal performance. To improve the control precision 

of robot manipulators, sustained efforts have been made to implement robust and optimal control. 

Many novel control techniques have since emerged, for example, artificial neural network controller [3], 

fuzzy logical controller [4–6], adaptive nonlinear controller [7], sliding mode controller [8], linear 

matrix inequality scheme [9], linear quadratic controller [10], H∞ controller [11,12], reinforcement 

learning-based controller [13], model predictive control (MPC) [14,15] and other optimal control 

strategies [16–18]. 

Optimal control techniques always have a distinctive feature, which can simultaneously consider 

the constraints of input variables, output variables and state variables. Due to robustness, MPC is 

considered to be a promising controller among the optimal control techniques for the applications in 

industrial robots [19]. Satoh et al. proposed a disturbance observer-based MPC for the tracking control 

of manipulators [20]. Wilson et al. introduced a simplified nonlinear model predictive control (NMPC) 

for a 2-DoF (degree of freedom) vertical robot manipulator [21]. Best et al. put forward a control 

scheme based on MPC for a 5-DoF soft humanoid robot [22]. Based on MPC, Incremona et al. 

presented a hierarchical multiloop control scheme integrated with a sliding mode controller for a 3-

DoF robot manipulator [19]. Guechi et al. compared MPC with a linear quadratic controller of a 2‐

DoF robot manipulator [23]. Carron et al. developed a Gaussian process-based MPC for the offset-free 

tracking of a robot manipulator [24]. MPC and NMPC always encounter some parameters to be 

determined, and intuitively chosen parameters mostly bring mediocre performance. The 

aforementioned MPC/NMPC parameters are determined by the trial and error method or the Ziegler 

Nichols method. Nevertheless, these traditional optimization methods are usually brutal or 

cumbersome to determine the parameters of MPC/NMPC for robot manipulators due to the 

nonlinearity and complexity.  

The determination of MPC parameters can also be transformed into an engineering optimization 

problem. In this way, the problem can be extended to take advantage of the benefits from the meta 

heuristics, which is an efficient strategy for solving complex engineering optimization problems based 

on computational intelligence. Growing numbers of metaheuristic algorithms have emerged in recent 

years, such as Particle swarm optimization (PSO) [25], Grey wolf optimizer (GWO) [26], Monarch 

butterfly optimization (MBO) [27], Sparrow search algorithm (SSA) [28], Slime mould algorithm 

(SMA) [29], Moth search algorithm (MSA) [30], Hunger games search (HGS) [31], RUNge Kutta 

optimizer (RUN) [32], Colony predation algorithm (CPA) [33], Multi-tracker optimization (MTO) [34], 

weIghted meaN oF vectOrs (INFO) [35], Harris hawks optimization (HHO) [36], Mayfly optimization 

(MO) [37], and Satin bowerbird optimizer (SBO) [38]. Lately, a new metaheuristic algorithm, 

Transient search optimization (TSO) [39], inspired by the transient physical behavior of switched 

electrical circuits with inductance and capacitance included, was initiated and it has shown 

considerable competitiveness for solving engineering optimization problems.  

To address the problem of the determination of MPC parameters, Elsisi recently provided an 
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optimal design scheme of NMPC on the basis of MTO, by using the packaged NMPC toolbox in 

Matlab [40]. However, it is noted that NMPC generally requires higher computational time or cost 

than MPC does. In addition, to our best knowledge, only seldom literature discussed the optimization 

of MPC/NMPC by metaheuristic algorithm and no existing applications of TSO in MPC parameter 

optimization have been mentioned yet. This motivated our attempt to propose a new scheme for 

optimizing MPC parameters of the robotic manipulator by using TSO. 

In this paper, inspired by [39] and [40], aiming of reducing the computational complexity due to 

nonlinearity of NMPC and extending the application of TSO algorithm, an alternative TSO-based MPC 

(TSO-MPC for short) controller is proposed. Specifically, the nonlinear dynamics equation of a two-

link robot manipulator is transformed into linear parametric-varying (LPV) forms and then the 

corresponding MPC scheme is established. Afterwards, the TSO algorithm is employed to optimize 

the objective function, figure of demerit (FoD), of the MPC for the robot manipulator. As will be seen 

in a later section, the proposed TSO-MPC suggests state-of-the-art performance in solving the tracking 

problem of the robot manipulator. 

The remainder of this paper is organized as follows. Section 2 reviews the dynamic model of the 

robotic system and establishes the linear parametric-varying MPC (LPV-MPC, also written by MPC 

for short below). In Section 3, the TSO is described and the objective function and error indices to be 

optimized are given. Section 4 implements the proposed MPC scheme and optimization process, and 

discusses the optimized performance of the MPC scheme in set-point tracking, trajectory tracking, and 

robustness on parameters uncertainties. Section 5 summarizes the full text. 

2. LPV-MPC for robot manipulators 

2.1. Dynamics equation of robot manipulators 

When a robot manipulator working in a horizontal plane, the dynamics equation can be denoted 

by [41] 

               �(�)�̈ + �(�, �̇)�̇ = � (1) 

where � is the generalized coordinates, �(�) is the inertia matrix, �(�, �̇) is the centrifugal and 
Coriolis torque, and � is the input torque of the links. Let � = [�, �̇] and � = �, then the nonlinear 
dynamics equation can be reformed as a linear parameter-varying (LPV) model: 

                   �
�̇(�) = �(�(�))�(�) + �(�(�))�(�)
�(�) = �(�(�))�(�)

 (2) 

where � = �
� �
� ���(−�)

�, � = �
�

����, and � = �
�
�

�. A and B depend on the parameter p(t). 

To facilitate digital control, Eq (2) needs to be discretized. Set the sampling period as Ts, then 

                      
( 1) ( ( )) ( ) ( ( )) ( )

( ) ( ( )) ( )

d d

d

k p k k p k k

k p k k

  



x A x B u

y C x
 (3) 

where �� = ����,  �� = ��(���� − �)�. And �� is the pseudo inverse matrix of ��.  
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2.2. LPV-MPC for robot manipulators 

In the LPV-MPC, the objective function needs to minimize the error between the output trajectory 

and the desired one. Most of the time, extra penalties concerning the input torques are also needed. 

Thus the objective function can be defined by 

                � = ∑ ���(�(� + �|�) − �(� + �|�))�
�

��
��� + ∑ ‖��(�(� + �|�))‖�

����
���  (4) 

where ��  and ��  are diagonal matrices concerning the output and input weighting values. 
( | )k i ky , ( | )k i kr , and ( | )k i ku  respectively represent the prediction output, reference output 

and prediction input for the (k + i) times during the kth sampling. 
2

.  is the Euclidean norm. 

Let 
T
y yQ w w , T

u uR w w  and ( | ) ( | ) ( | )k i k k i k k i k    e y r , then 
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 

e Qe u Ru
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 (5) 

where Q and R are the error weight matrix and the input torque weight matrix, respectively. They are 
also the parameter to be optimized in MPC in this article. 

Eventually, the objective function at sampling step k can be formulated as: 

               
1

1 0

min ( | ) ( | ) ( | ) ( | )
k

N N
T T

u
i i

J k i k k i k k i k k i k


 

      e Qe u Ru  (6) 

                . .s t               
min max

( 1) ( ) ( ) ( ) ( )d d

k

k k k k k  

 

x A x B u

u u u
 

where umin and umax represent the lower and upper limits of the input torque. 

3. Transient search optimization and objective function design 

TSO is inspired by the transient physical behavior of the switched electrical circuits rather 

than by swarm animals’ behavior. It has been testified the superiority against other algorithms, 

simple yet powerful. 

3.1. Transient search optimization 

The TSO algorithm includes three main procedures: i) Initialization, the procedure to generate 

the search agents among the search space; ii) Exploration, the procedure to explore the entire search 

space to seek diverse solutions; iii) Exploitation, the procedure to search for better solutions close to 

the local optimal solutions. 

Like other metaheuristic algorithms, the initialization of the search agent is generated randomly, 
as denoted by Eq (7) 
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where d and n describe the variables’ dimension and the total number of search agents therein. For 
instance, Xnd is the coordinate of the nth search agent in dth dimension. 
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where c1 3 2 1c r k c    ,  m2 ax2 1 /c i t   and  2 22 1r c    ; r1, r2 and r3 are random numbers 
in the interval [0,1], t is the number of iterations, tmax is the maximum number of iterations; c1 and 
are random coefficients, c2 is an attenuation variable gradually decaying from 2 to 0, and ck  is a 
constant.  

t
ijX is the search location of the agent  ijX  in iteration t;  

t
bestX  is the current best solution 

in iteration t. When r1 is greater than or equal to 0.5, TSO implements the exploration process; 
otherwise, TSO implements the exploitation process. Besides, by using the big-oh notation O(n), the 
computational complexity of TSO is   max max 1dO n t t  . 

3.2. Objective function and error indices of the TSO-MPC 

Many factors can influence the performance of the robot manipulator response. An ideal answer 

of robot manipulators must have slight maximum overshoot, settling time, and steady-state error in the 

meantime. In this work, Figure of demerit (FoD) is selected as the objective function to evaluate the 

control performance of the robot system to minimize the maximum overshoot, steady-state error, and 

settling time synchronously. The objective function FoD is represented by 

                   
2

1

FoD 1 e ei i i i
os ss st r

i

M e t t  



         (9) 

where i
osM  is the maximum overshoot (%), i

stt  is the settling time (sec), i
rt  is the rise time (sec), 

i
sse  is the steady‐state error, η is an exponential factor to balance the weights of the term  i i

os ssM e  
and the term  i i

st rt t , and i is the index of robot links.  
By setting the value of  , one can adjust the penalty degree of the items. Specifically, when 

η = 0.6932, the weight factor  1 e   and e   are equal, which means the term of the maximum 
overshoot, the term of the steady‐state error, and the term of the setting time have fair influences on 
the objective function FoD.  

In addition, for quantitative comparative analysis, four popular error indices are employed to 
evaluate the performance of the controller approaches [42]. The error indices can be denoted as follows. 
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where ISE is the abbreviation of the integral of the squared error, ITSE is the abbreviation of the 
integral of the product of time and the square error, IAE is the abbreviation of the integral of the 
absolute error, ITAE is the abbreviation of the integral time absolute error. 

4. Results and discussion 

Without loss of generality, a two-link robot manipulator working in a horizontal plane is suggested 

in Figure 1. 

 

Figure 1. Diagram of two-link planar robot manipulator. 

Thus the terms � and � of the dynamics equation (1) can be presented as 

         �(�) = �
(�� + ��)��

� + ����
� + 2������ ��� �� ����

� + ������ ��� ��

����
� + ������ ��� �� ����

� �                 

                        �(�, �̇) = �
−�������̇� ��� �� −������(�̇� + �̇�) ��� ��

�������̇� ��� �� 0
� (11) 

where the structural parameters in this work are set to l1 = 0.8, l2 = 0.4, m1 = 0.1, and m2 = 0.1; g is the 
gravity acceleration. 

4.1. Optimization of TSO-MPC of the robot manipulator 

The optimization progress of MPC and CTC based on the TSO of robot manipulators was 

implemented via a unit step reference, as shown in Figure 2. 

 

Figure 2. Tuning process of LPV-MPC using TSO. 
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In the optimization of MPC and CTC, the sampling period is set to Ts = 0.01 s, and a prediction 

horizon Hp = 10 is employed. In the MPC control, the parameters to be optimized are Q and R; We set 

1 2 2 2 2

2 2 2 2 2

Q

Q

 

 

 
   

I 0
Q

0 I
 , 

1

2

R

R

 
  
 

R  ; 1 20.1 , 50Q Q   , 1 20 , 50R R   , and min 500u    , 

max 500u  . In the CTC control, the parameters to be optimized are kp and kd. 

During the procedure of the simulation experiment, the search agents of these metaheuristic 
algorithms are 30, and the maximum iterations of the optimization are 50 times. Expressly, in the TSO 
method, the constant kc is set to 1; In GWO, HHO, MO, and SBO, the required parameters are 
consistent with the original literature. For instance, in GWO, a decreases linearly from 2 to 0; in HHO, 
β is set to 1.5; in MO, g = 0.8, a1 = 1.0, a2 = 1.5, a3 = 1.5, β = 2, and mutation rate is set to 0.01; in 
SBO, α = 0.94, mutation rate is set to 0.05, and the percent of the difference between the upper and 
lower limit is set to 0.02. Afterwards, each algorithm takes the mean value of six independent trials as 
the final result. After the optimization process, we get the cost function value FoD of these different 
methods, the standard deviation, the key parameters of the controllers, the settling time, and the 
maximum overshoot, as tabulated in Table 1. Then the set-point tracking performance on the unit step 
reference for the robot manipulator using these controllers can be illustrated in Figure 3. 

As can be seen from Table 1 and Figure 3, the proposed TSO-MPC has the minimum settling 
time, overshoot, as well as the performance indices compared with the other methods. Particularly, by 
employing TSO-MPC, the overshoot of joints 1 and 2 are both zero. To compare with the trial and 
error method, we set Q1 = 0.1, Q2 = 50, R1 = R2 = 0; however, the FoD value obtained is 0.06952. It is 
slightly larger than the optimal value of 0.06455. 

In conclusion, the larger the weight coefficient of the angle, the smaller the weight coefficient of 
the angular speed, and the smaller the weight coefficient of the input torque, the better the performance 
of the objective function FoD. Although the optimal parameters are not all at the boundaries, they are 
very close to them. 

Table 1. The cost function value, optimal parameters and performances of the 

metaheuristic-algorithm-based CTC and MPC.  

  GWO-CTC HHO-CTC MO-CTC SBO-CTC TSO-CTC TSO-MPC 

FoD 
Ave. 0.10401 0.12794 0.11343 0.1222 0.10386 0.06455 

St.d. 0.00675 0.00379 0.00711 0.00703 0.00383 0.00332 

Optimal 
parameters 

Link1 
and 
Link2 

kp1 = 
11.2297, 
kd1 = 
49.5653, 
kp2 = 
11.0395, 
kd2 = 
48.3801. 

kp1 = 
8.1915, kd1 
= 26.5169, 
kp2 = 
11.9300, 
kd2 = 
49.8765. 

kp1 = 
9.5640, kd1 
= 35.9166, 
kp2 = 
10.0813, 
kd2 = 
40.3256. 

kp1 = 
8.88092, 
kd1 = 
30.9013, 
kp2 = 
9.80207, 
kd2 = 
37.4771. 

kp1 = 
11.1218, 
kd1 = 
48.9795, 
kp2 = 
11.164, 
kd2 = 
48.9795.  

Q1 = 
0.1010, 
R1 = 0, 
Q2 = 50,  
R2 = 0. 

Settling 
time(s) 

Link1 0.5 0.69 0.59 0.64 0.5 0.19 

Link2 0.5 0.55 0.55 0.59 0.5 0.19 

Maximum 
overshoot(%) 

Link1 1.89468 1.85569 1.83179 1.78839 1.97104 0 

Link2 1.99610 0.86986 1.95880 1.77093 1.89138 0 
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(a) 

  

(b) 

Figure 3. Set-point tracking performance for (a) joint 1 and (b) joint 2 using MPC and 

CTC based on the TSO and other metaheuristic algorithms. 

4.2. Performance of set-point tracking 

Set-point tracking control is an important performance index for the control technique of robot 

manipulators. Unit step tracking is a typical set-point tracking. In the previous section, MPC and CTC 

are optimized using a unit step reference trajectory, and key parameters in these control methods are 

obtained. For quantitative comparative purposes, different error indices are employed to evaluate the 

performance of different control algorithms in terms of set-point tracking. The implementations of 

these algorithms under the error indexes are listed in Table 2. 
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Table 2. The error indices of the control schemes by the different metaheuristic algorithms. 

 GWO-CTC HHO-CTC MO-CTC SBO-CTC TSO-CTC TSO-MPC 

IAE 0.45338 0.45337 0.45337 0.50303 0.45561 0.11608 

ITAE 0.07620 0.07666 0.076198 0.09532 0.08517 0.00561 

ISE 0.28802 0.29004 0.28802 0.31247 0.29497 0.06850 

ITSE 0.00486 0.00492 0.00486 0.00700 0.00500 8.38E-05 

As can be seen from Table 2, all the error indicators of the TSO-MPC algorithm are the smallest. 

Again, it is proved that TSO-MPC has the best performance among the control schemes. 

4.3. Performance of nonlinear trajectory tracking 

In addition to set-point tracking, nonlinear trajectory tracking is also essential in various 

applications of robot manipulators. Besides, proper nonlinear excitation trajectories for the robot 

manipulator are required to test the effectiveness of the MPC methods. 

For this purpose, the periodic trajectories by a sum of finite Fourier series are utilized hereinafter 

due to the ascendancy in terms of signal processing and target reaching. The finite-term periodic 

Fourier series trajectories for joint i of the robot manipulator can be formulated as 

                 0
1 1

( ) cos sin
N N

i i f i f i
i i

q t a it b it q 
 

     (12) 

where �� is the fundamental frequency, ai and bi are amplitudes of the terms, and ��� is the offsets 
of the ith joint angles. The fundamental frequencies are all set to 0.5, and thus, all of the period of the 
trajectories is 4π second. 

In order to facilitate analysis, we let a1 = [0.156, -0.478, 0.078, -0.388, -0.070], b1 = [0.088, 0.253, 
-0.207, 0.549, 0.150], a2 = [0.064, -0.335, 0.451, 0.292, 0.746], b2 = [-0.125, 0.292, -0.369, 0.557, 
0.564], q0 = [0.168, 0.193]; and the initial state of the system is set to ��(0) = �̇�(0) = ��(0) =
�̇�(0) = 0. The final generated nonlinear reference trajectory is presented in Figure 4. 

After simulation, the output response of the proposed MPC for tracking nonlinear trajectory is 
demonstrated in Figure 5. It can be seen that the performance of TSO-MPC still follows the nonlinear 
trajectory well, and the steady-state error is insignificant. 
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Figure 4. The design of the nonlinear reference trajectories. 

 

Figure 5. Tracking performance of (a) joint 1 and (b) joint 2 on the nonlinear reference 

using TSO-MPC. 

4.4. Performance of robustness regarding parameter uncertainties 

Robot manipulators always encounter varieties of structural and non-structural uncertainties when 

in service. Uncertainty factors adversely affect the tracking implementation and performance of the 

robotic system. Therefore, the controllers of robot manipulators are required of good robustness to 

uncertainty factors. In this section, a pair of trails are conducted to validate the robust performance of 

the proposed TSO-MPC scheme. Specifically, ± 50% measurement errors in terms of the link masses 

and the link lengths of the robot manipulator were established to test and verify the robustness of the 

proposed TSO-MPC.  
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As demonstrated in Figures 6 and 7, the TSO-MPC can tackle the uncertainties of the system 

parameters with an ignorable steady-state error in the system response. It should be pointed out that 

there are many other excellent algorithms that can be used to optimize MPC of the robot manipulator, 

but they were not yet considered in this work. 

 

(a) 

 

(b) 

Figure 6. Robust performance against length uncertainty for (a) joint 1 and (b) joint 2 

using TSO-MPC. 
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(a) 

 

(b) 

Figure 7. Robust performance against mass uncertainty for (a) joint 1 and (b) joint 2 using 

TSO-MPC. 

5. Conclusions 

A newly proposed metaheuristic, TSO algorithm, was employed for tuning the LPV-MPC 

parameters of robot manipulators rather than using the trial and error method from experts’ experience. 

The parameters of LPV-MPC were turned using TSO by the minimization of an objective function 

FoD, which can simultaneously minimize overshoot, steady-state error, and settling time. It is 

suggested that the larger the weight coefficient of the angle, the smaller the weight coefficient of the 
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angular speed, and the smaller the weight coefficient of the input torque, the better the performance of 

the TSO-MPC. The control performances achieved with TSO-MPC controllers are then compared with 

the performances obtained using GWO-CTC, HHO-CTC, MO-CTC, SBO-CTC, and TSO-CTC 

controllers. Although all the algorithms can achieve small steady-state error, TSO-MPC has better 

performance in terms of maximum overshoot and settling time than the metaheuristic-algorithm-based 

CTC schemes. Moreover, TSO-MPC can also effectively track nonlinear trajectories and handle the 

uncertainty of the robot manipulator parameters. The results can indicate that the proposed TSO-MPC 

method in some areas is more efficient than other control schemes of robot manipulators. 
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Appendix 

Table A. Abbreviations. 

Abbreviations Full name 

CTC Computed Torque Controller 

CPA Colony Predation Algorithm 

DoF Degree of Freedom 

FoD Figure of Demerit 

GWO Grey Wolf Optimizer 

HGS Hunger Games Search 

HHO Harris Hawks Optimization 

ISE Integral of the Squared Error 

ITSE Integral of the product of Time and the Square Error 

IAE Integral of the Absolute Error 

ITAE Integral of the product of Time and the Absolute Error 

LPV Linear Parameter Varying 

MBO Monarch Butterfly Optimization 

MO Mayfly Optimization 

MPC Model Predictive Controller 

MSA Moth Search Algorithm 

MTO Multi-Tracker Optimization 

NMPC Nonlinear Model Predictive Control 

PID  Proportion Integration Differentiation 
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PSO Particle Swarm Optimization 

RUN RUNge Kutta optimizer 

SSA Sparrow Search Algorithm 

SMA Slime Mould Algorithm 

SBO Satin Bowerbird Optimizer 

TSO Transient Search Optimization 
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