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Abstract: Anthropogenic modification of natural habitats is a growing threat to biodiversity and 
ecosystem services. The protection of biospecies has become increasingly important. Here, we pay 
attention to a single species as a conservation target. The species has three processes: reproduction, 
death and movement. Two different measures of habitat protection are introduced. One is partial 
protection in a single habitat (patch); the mortality rate of the species is reduced inside a rectangular 
area. The other is patch protection in a two-patch system, where only the mortality rate in a particular 
patch is reduced. For the one-patch system, we carry out computer simulations of a stochastic cellular 
automaton for a “contact process”. Individual movements follow random walking. For the two-patch 
system, we assume an individual migrates into the empty cell in the destination patch. The reaction-
diffusion equation (RDE) is derived, whereby the recently developed “swapping migration” is used. It 
is found that both measures are mostly effective for population persistence. However, comparing the 
results of the two measures revealed different behaviors. i) In the case of the one-patch system, the 
steady-state densities in protected areas are always higher than those in wild areas. However, in the 
two-patch system, we have found a paradox: the densities in protected areas can be lower than those 
in wild areas. ii) In the two-patch system, we have found another paradox: the total density in both 
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patches can be lower, even though the proportion of the protected area is larger. Both paradoxes clearly 
occur for the RDE with swapping migration. 

Keywords: habitat conservation; stochastic cellular automaton; contact process; reaction-diffusion 
equation; swapping migration; birth and death processes; metapopulation model 
 

1. Introduction  

Species extinctions are ongoing due to various factors, such as habitat destruction and climate 
change [1–3]. The development of conservation policies for endangered species is one of the most 
urgent issues [4,5]. In the present article, we focus on the simplest system consisting of one species. 
To save the species, we consider the following two conservation measures: (i) Partial protection in a 
one-patch system, wherein the target species lives in a single habitat, a partial region is protected and 
individuals can move around randomly; (ii) Patch protection in a two-patch system, wherein the 
species lives in two patches, one of which is protected, and the individuals can migrate between both 
patches. In the two-patch system, we report on “paradoxes of habitat protection”. So far, paradoxes 
have often been observed when systems contain plural species [6–9]. However, paradoxes may be rare 
in systems composed of only one species. 

In a one-patch system, an agent- or individual-based model is applied [4,5,7,10–16]. Given our 
choice of a model ecosystem, we apply a “contact process” (CP), which exhibits the phase transition 
between survival and extinction phases [10,17,18]. CP model, which contains a single species, is a 
local-interaction version of a logistic equation because the well-mixed population (mean-field theory) 
of CP corresponds to logistic equations. In the present study, we added migration to CP. The 
movements of individuals are basic characteristics of animals and humans [19,20]. 

In a two-patch system, we study the population dynamics, which involve individuals migrating 
between spatially separated patches. Modeling such dynamics in a patch environment, which is 
presented as a metapopulation model, has long been studied in ecology [21–23]. In recent years, 
metapopulation dynamics have been extensively studied in many fields [9,24–27]. Traditionally, the 
dynamics have been described by the reaction-diffusion equation (RDE), which is composed of 
reaction and diffusion (migration) terms. Between the patches, individuals (agents) can freely migrate. 
In the present study, however, we assume the capacities of patches are finite. Individuals migrate into empty 
cells in the destination patch. For this reason, we apply nonlinear (or “swapping”) migration [28,29]. 

2. Preliminary 

CP is a well-known model in various fields, such as mathematics [17,30], physics [31–33] and 
epidemiology [17,34–36]. In ecology, CP is regarded as a simple ecosystem consisting of a single 
species [10,13]. The target species (X) lives on a square lattice. Each lattice site (cell) is either 
occupied (X) or vacant (O). CP model is defined as follows:  

 X + O → X + X (rate: r),   (1a) 

 X → O (rate: μ).  (1b) 

Here, Reactions (1a) and (1b) denote reproduction and death processes, respectively. The parameters 
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r and μ respectively denote the reproduction and death rates. Simulations are usually carried out y 
considering either local or global interaction. For the former, Reaction (1a) occurs between adjacent 
cells. On the other hand, for the latter, it occurs between any pair of cells.  

In the case of global interaction, the population dynamics are described by the mean-field theory: 

 𝑑𝑥 𝑑𝑡⁄ = 𝑟𝑥 1 − 𝑥 − 𝜇𝑥,   (2) 

where 𝑥 𝑡  is the density of X at time t. The first and second terms on the right side denote the birth 
and death process, respectively. Eq (2) can be rewritten as a logistic function: 

 𝑑𝑥 𝑑𝑡⁄ = 𝑅𝑥 1 − 𝑥 𝐾⁄ .   (3) 

Here, we set 𝑅 = 𝑟 − 𝜇 and 𝐾 = 1 − 𝜇 𝑟⁄ . Hence, we can say that CP is a lattice version of the 
logistic equation.  

 

Figure 1. Results of simulating the contact process (CP). The steady-state densities of CP 
are plotted against 𝜇 𝑟⁄ . The straight line indicates the results of the logistic equation 
(well-mixed population).  

In Figure 1, the simulation results for local and global interactions are shown. The steady-state 
densities of local interactions (CP) are plotted against 𝜇 𝑟⁄ . For the sake of comparison, the results 
of global interactions (logistic growth: well-mixed population) are represented by a straight line. 
Figure 1 reveals a phase transition between the survival and extinction phases. The critical value (𝑐) of 
survival is known to be 𝑐 = 1 for global interaction (logistic equation). However, the rigorous value of 𝑐  is unknown for local interaction. Figure 1 indicates 𝑐 ≈ 0.62  for CP [31,32]. When 𝜇 𝑟⁄ < 𝑐 , the 
species X survives; in contrast, for 𝜇 𝑟⁄ ≥ 𝑐, the species X goes extinct. To save the species, it is 
necessary to increase the reproduction rate or decrease the death rate. 
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3. Models and methods 

In Figure 2, two measures of species protection are depicted. Figure 2(a) represents partial 
protection in a one-patch system; the mortality rate of a species is reduced inside the rectangular (grey) 
area. On the other hand, Figure 2(b) shows patch protection in a two-patch system; only the mortality 
rate in the grey patch is reduced. The mortality rate (𝜇 ) in a protected region is less than 𝜇 , where 𝜇  denotes the mortality rate in a wild region: 𝜇  < 𝜇 . Let us define 𝑔 as the protection ratio (fraction 
of the protected area relative to the whole area). It measures the degree of habitat protection. In Table 1, 
the parameters and variables are listed.  

Table 1. Descriptions of symbols and parameters. 

Symbols and parameters Descriptions 
X biospecies 
O vacant (empty) cell 
r reproduction (birth) rate 𝜇  mortality rate in protected region 𝜇  mortality rate in wild region 𝑔 protection ratio 
D migration rate 𝑥  density of X in Patch 1 𝑥  density of X in Patch 2 

 

Figure 2. Two types of habitat protection systems. (a) Partial protection in a one-patch 
system. A species lives on a single lattice. The protection sites, which form a rectangle, are 
colored grey. (b) Patch protection in a two-patch system. Patch 1 (grey) is protected, while 
Patch 2 (white) is not protected. 

Migration

Patch 1 Patch 2
(a) (b)



9248 
 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9244–9257. 

3.1. One-patch system 

We want to carry out the simulations on each lattice in consideration of both local and global 
interactions. We apply a CP model with migration as follows [37]: 

 X + O → X + X (rate: r),   (4a) 

 X → O  (rate: 𝜇  or 𝜇 ),  (4b) 

 X + O → O + X (rate: D).   (4c) 

Both Reactions (4a) and (4b) are the same as CP. Note that the mortality rate takes different 
values. If an individual is located in a protected region (grey area in Figure 2(a)), the mortality rate 
takes 𝜇 ; otherwise, it takes 𝜇 . Reaction (4c) denotes the movement (random walk). The lattice is 
updated as follows:  

1) Initially, we randomly distribute the biospecies X on a square lattice in such a way that each cell 
is occupied by only one individual or vacant cell. Here, we employ periodic boundary conditions. 

2) Each reaction process is performed by applying the following procedures: 
i) Initiate the reproduction process given by Reaction (4a). We randomly choose a single site on the 

lattice. When the chosen cell is X, we select one more cell from four adjacent sites. If the latter 
cell is O, the latter cell is changed to X at a rate r. 

ii) Initiate the death process given by Reaction (4b). We randomly choose one site on the lattice. If 
the site is X, then it becomes O because of a different mortality rate. When the selected cell is 
located in a protected area (or a wild area), the mortality rate takes 𝜇  (or 𝜇 ). 

iii) Initiate the diffusion (migration) process given by Reaction (4c). We randomly choose one site on 
the lattice. If the cell is X, then we choose one more cell from four adjacent sites. If the latter cell 
is O, then X migrates into O at a rate D. After the migration, both X and O are exchanged (swapped). 

3) Repeat Steps i), ii) and iii) for 2000 Monte Carlo steps (MCS), where 1 MCS means that the steps 
i), ii) and iii) are repeated 𝐿 × 𝐿 times [7,38]. Here, L2 is the lattice size; we set L = 100. 

For the global interaction, the reproduction process (Reaction (4a)) and migration process 
(Reaction (4c)) occur between any pair of sites. In this case, the mean-field theory holds. We define 𝑥 𝑡  and 𝑥 𝑡  as the densities in protected and wild regions at time 𝑡, respectively. The densities can 
be described by 𝑑𝑥 𝑡𝑑𝑡 = 𝑟 1 − 𝑥 𝑡 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡  

 + 𝐷 𝑥 𝑡 𝑔 − 𝑥 𝑡 − 𝐷 𝑥 𝑡 1 − 𝑔 − 𝑥 𝑡 , (5a) 𝑑𝑥 𝑡𝑑𝑡 = 𝑟 1 − 𝑥 𝑡 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡  

  + 𝐷 𝑥 𝑡 1 − 𝑔 − 𝑥 𝑡 − 𝐷 𝑥 𝑡 𝑔 − 𝑥 𝑡 , (5b) 

where 𝐷  and 𝐷  are the rates of migration from a wild to protected region and from a protected to 
wild region, respectively. The first and second terms on the right-hand side of Eqs (5a) and (5b) 
represent the reproduction and death processes, respectively. The last term denotes the migration 
process. The total density 𝑥 𝑡  is given by 𝑥 𝑡 = 𝑥 𝑡 + 𝑥 𝑡 .  
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3.2. Two-patch system 

We consider a two-patch model consisting of a protected area (Patch 1) and wild area (Patch 2) (see 
Figure 2(b)). Let 𝐶  and 𝐶  be the capacities of Patches 1 and 2, respectively. For example, Patch 1 
contains 𝐶  cells. Each cell is either occupied (X) or empty (O). All cells are assumed to be well mixed. 
Hence, the fraction (𝑔) of protection is represented by 𝑔 = 𝐶 𝐶 + 𝐶⁄ . In order to define the density 
(𝑥 ) in Patch 𝑗. (For 𝑗 = 1,2, we set 𝑋  as the number of X cells in Patch 𝑗.) The densities in Patches 1 
and 2 are defined as 𝑥 = 𝑋 𝐶 + 𝐶⁄  and 𝑥 = 𝑋 𝐶 + 𝐶⁄ , respectively. Hereafter, we normalize as 𝐶 + 𝐶 = 1. The dynamics are described by the mean-field theory. According to the traditional RDE, 
we get 

 = 𝑟 𝑔 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡 + 𝐷 𝑥 𝑡 − 𝐷 𝑥 𝑡 ,  (6a) 

 = 𝑟 1 − 𝑔 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡 + 𝐷 𝑥 𝑡 − 𝐷 𝑥 𝑡 , (6b) 

where 𝐷  is the rate of migration from patch 𝑗 to 𝑖 (𝑖 = 1,2 and 𝑖 ≠ 𝑗). The first and second terms of 
the right side of Eqs (6a) and (6b) represent the logistic equation. The last term denotes the migration 
(net flow), which is expressed by a linear function of densities. 

In the present article, we take into account the capacities of patches. The migration is defined by 
Reaction 4(c). For example, when an agent (X) migrates from Patch 1 to 2, the agent X goes into the 
empty cell (O) in Patch 2; thus, the occupied cell (X) in Patch 1 and empty cell (O) in Patch 2 are 
exchanged (swapped). Note that both patch capacities remain the same over time. In this case, we have = 𝑟 𝑔 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡 + 𝑓 𝑔, 𝑥 , 𝑥 ,  (7a) = 𝑟 1 − 𝑔 − 𝑥 𝑡 𝑥 𝑡 − 𝜇 𝑥 𝑡 + 𝑓 𝑔, 𝑥 , 𝑥 ,  (7b) 

where the function 𝑓 𝑔, 𝑥 , 𝑥  represents the net flow from Patch j to Patch i. From Reaction (4c),  

 

Figure 3. Results for one-patch model. In the present study, we always set 𝜇  = 0.2, 𝜇  
= 0.6 and D = 1. Population dynamics are depicted for local (blue plots) and global (red 
plots) interactions. (a) 𝑟 = 0.7 and 𝑔 = 0.3, (b) 𝑟 = 0.5 and 𝑔 = 0.3. 

(a) r = 0.7 (b) r = 0.5
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Figure 4. Typical spatial patterns in a stationary state ( 𝑟 = 0.5  and 𝑔 = 0.3 ). Spatial 
distributions are shown for (a) local interaction and (b) global interaction. The grey 
rectangles denote the protected areas, and the red cells represent individuals. The total 
density is higher in (a) than in (b). 

We have 

 𝑓 𝑔, 𝑥 , 𝑥 = 𝐷 𝑥 𝑡 𝑒 𝑡 − 𝐷 𝑥 𝑡 𝑒 𝑡 ,  (8) 

where 𝑒 𝑡  means the empty density in Patch j: 

 𝑒 𝑡 = 𝑔 − 𝑥 𝑡 ,     𝑒 𝑡 = 1 − 𝑔 − 𝑥 𝑡 .  (9) 

It should be emphasized that Eq (8), which denotes the migration term, is generally the nonlinear 
function of densities.  

4. Results 

4.1. Results for one-patch system 

The simulation results for local and global interactions are reported. Hereafter, we apply the 
model parameters as follows: 𝜇  = 0.2, 𝜇  = 0.6 and D = 1. In Figure 3, the typical population dynamics 
in a one-patch system are plotted, where (a) r = 0.7 and g = 0.3, and (b) r = 0.5 and g = 0.3. In both 
cases, the system is found to evolve into a stationary state. We can confirm that the results of global 
interaction agree well with the prediction of Eqs (5a) and (5b). The population dynamics in Figure 3(b) 
reveal an unexpected result that differs from the previous results of CP. Namely, we can observe that 
the steady-state density for local interactions is higher than that for a well-mixed population (global 
interaction). To elucidate the mechanism of such an unexpected result, we identified the spatial patterns 
in a stationary state. Figure 4(a),(b) show snapshots of the distributions of individuals from the 

(a) Local (b) Global
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perspectives of local and global interactions, respectively. Here, we set 𝑟 = 0.5 and 𝑔 = 0.3. It is shown 
in Figure 4(a) that individuals are distributed at high densities inside the protected area. On the contrary, 
in the case of global interaction, individuals are randomly distributed everywhere (see Figure 4(b)).  

In Figure 5, the steady-state densities are plotted against 𝑔 for a one-patch model. The consecutive 
dots and lined curves show the results for the local and global interactions, respectively. When r is 
large, the densities for local interactions are smaller than those for global interactions. On the other 
hand, when r takes a small value (i.e., r = 0.5), we find the opposite result: the densities for local 
interactions can be larger those for global interactions. Moreover, in the case of local interactions 
(spatial model), the biospecies never goes extinct for nearly any value of 𝑔. 

 

Figure 5. Steady-state densities for local and global interactions are plotted against the 
protection rate (𝑔). The consecutive dots represent the simulation results for local interactions 
for r = 0.9, 0.7 and 0.5, while the lined curves indicate the results for global interactions. 
Each curve reflects the average over the interval 1000 < 𝑡 ≤ 2000. 

4.2. Results for two-patch system 

The numerical results for the RDE are reported. For simplicity, we set 𝐷  = 𝐷 = 1. Two types 
of solutions are obtained. The first solution can be calculated by using the traditional RDE (Eqs (6a) 
and (6b)). The second solution can be obtained by using the RDE with swapping migration (Eqs (7a) 
and (7b)). The population dynamics in a two-patch system exhibit the results similar to those in a one-
patch system. Namely, the system eventually evolves into a stationary (equilibrium) state. The steady-
state density can be calculated by performing numerical analysis (𝑡 =106). In Figure 6, the steady-state 
densities are plotted against the protection ratio 𝑔, where (a) and (b) are the results for traditional and 
swapping migrations (r = 0.7). In both cases, the steady-state density tends to increase as the protection 
ratio 𝑔 increases. However, when 𝑔 is small, a clear difference can be observed between the migration 
types in Figure 6(a),(b). In the case of swapping migration (Figure 6(b)), we can observe two paradoxes 

g

D
en

si
ty

0.9 (global)
0.7 (global)
0.5 (global)
0.9 (local)
0.7 (local)
0.5 (local)

0              0.2             0.4             0.6             0.8             1.0

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
   0



9252 
 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9244–9257. 

that are not seen in a one-patch system. (i) When 𝑔 ≈ 0.05, we can find that 𝑥 < 𝑥 .  Namely, the 
densities in the protected areas (green curves) are lower than those in the wild areas (orange curves). 
(ii) The total density does not always increase with the increase of 𝑔. The density can decrease in spite 
of an increase of 𝑔. We refer to both (i) and (ii) as “paradoxes of habitat protection”.  

 

Figure 6. Results for two-patch model (𝐷 = 𝐷 = 1 ). The steady-state (equilibrium) 
densities are plotted against the protection ratio 𝑔 ; (a) traditional migration and (b) 
swapping migration. The green and orange curves are the numerical results for the 
densities in Patches 1 and 2, respectively (𝑡 =106). The blue curves denote the total density 
in both patches. The initial values are fixed at 𝑥 0 = 𝑥 0 = 0.1. 

5. Discussion 

For the one-patch system, we have applied a CP model as a simple ecosystem and dealt with the 
reaction processes described by Reactions (4a)–(4c). The effects of the random walk on CP in a 
homogeneous lattice has been studied by Harada et al. [37]. If the migration rate 𝐷 takes a value of 
zero, then the steady-state density becomes the same as the result of CP in Figure 1. Conversely, if 𝐷 → ∞, the density approaches the prediction of the logistic equation in Figure 1. Hence, the density 
under the condition of a random walk always takes a lower value than the outcomes for global 
interaction. On the other hand, we investigated CP under the conditions of a heterogeneous 
environment (Figure 2(a)). In this case, we obtained the opposite result: the densities for local 
interactions can be larger than those for global interactions (see Figures 4 and 5). Hence, we have 
found that the spatial heterogeneity of habitats promotes the survival of a species [18,39]. 

In the case of the two-patch system, the metapopulation dynamics was studied. In most cases, the 
RDE ignores the difference in patch capacities, as shown in Eqs (6a) and (6b). To take into account the 
patch difference, Zou and Wang [40] and Wei and Wang [41] corrected the RDE. In their formulas, the 
migration terms are still the linear function of densities. In the present study, however, we have applied 
“swapping migration”, which highlights the exchange between occupied and empty cells. The 
migration terms in Eqs (7a) and (7b) generally form the nonlinear functions of densities. An individual 

(a) Traditional migration (b) Swapping migration
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can only migrate when there are empty cells in the destination patch.  

 

Figure 7. Summary of traditional migration. It is generally the same as in Figure 6(a), 
but r takes various values. 

The paradoxes of habitat protection can be observed for swapping migration. We shall discuss the 
mechanism of paradoxes. First, we will consider the special case of 𝐷 = 0 (no migration) in Eqs (7a) 
and (7b). When 𝑔 ≈ 0.5, the species can survive in Patch 1, but it goes extinct in Patch 2. Conversely, 
when 𝑔  takes a small value (e.g., 𝑔 ≈ 0.05), the species only survives in Patch 2. These results are 
sensitive to the density of empty cells. If the migration occurs (𝐷 ≠ 0), the paradoxes emerge due to 
the combined effect of three processes: birth, death and migration. Regarding parameter dependence, 
we have explored the behavior of density for various values of the reproduction rate (𝑟). In Figures 7 
and 8, the 𝑟 dependencies of density are displayed for traditional and swapping migrations, respectively. 
From Figure 7, we can find paradoxes in the cases of 𝑟 = 0.8 and 𝑟 = 0.9. Hence, both paradoxes of 
habitat protection can be confirmed even for traditional migration. In the case of swapping migration, 
however, the paradoxes are clearly observed for 𝑟 ≥ 0.7. 
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Figure 8. Summary of swapping migration. It is generally the same as in Figure 6(b), but 
r takes various values. 

Here, we discuss the parameter dependencies of 𝐷  and 𝐷 . We assumed 𝐷 = 𝐷  to obtain the 
results for the two-patch system. Under this assumption, the migration term in Eqs (7a) and (7b) 
becomes the linear function of densities. In other words, the swapping migration becomes linear for 𝐷 = 𝐷 . We have explored more general cases of 𝐷  ≠ 𝐷 . It can be seen that, whether the migration 
term in Eqs (7a) and (7b) is linear or nonlinear, there is no significant effect on the results. For example, 
we set 𝐷  =1 and 𝐷 = 1.2 (nonlinear migration). In this case, the results were almost the same as 
those obtained for 𝐷 = 𝐷 = 1; the shapes of the curves in Figures 6–8 were unchanged.  

6. Conclusions 

We have developed a model of population dynamics under two conservation measures: partial 
protection in a one-patch system and patch protection in a two-patch system. We found that habitat 
protection is generally effective with both measures. In the case of the one-patch system, the 
conservation of a species effectively functions by setting the species protection. Extinction can be 
avoided because many individuals survive in the protected area (see Figure 4(a)). However, in the case 
of the two-patch system, we found two paradoxes of habitat protection. (i) The density in the protected 
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patch not always higher than that in the wild patch. (ii) The steady-state density of a species can 
decrease in spite of an increase in the protection ratio (𝑔). Such paradoxes were clearly observed for 
the RDE with swapping migration (see Figure 8). Paradox (i) can be observed experimentally. 
However, Paradox (ii) cannot be observed because the patch capacity cannot be changed artificially. 
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