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Abstract: This study aimed to develop a 5G + “mixed computing” + deep learning-based 
next-generation intelligent health-monitoring platform for an ethylene cracking furnace tube based 
on 5G communication technology, with the goal of improving the health management level of the 
key component of ethylene production, that is, the cracking furnace tube, and focusing on the key 
common technical difficulties of ethylene production of tube outer-surface temperature sensing and 
tube slagging diagnosis. It also integrated the edge-fog-cloud “mixed computing” technology and 
deep learning technology in artificial intelligence, which had a higher degree in the research and 
development of automation and intelligence, and was more versatile in an industrial environment. 
The platform included a 5G-based tube intelligent temperature-measuring device, a 5G-based 
intelligent peep door gearing, a 5G-based edge-fog-cloud collaboration mechanism, and a mixed 
deep learning-related application. The platform enhanced the automation and intelligence of the 
enterprise, which could not only promote the quality and efficiency of the enterprise but also protect 
the safe operation of the cracking furnace device and lead the technological progress and 
transformation and upgrading of the industry through the application. 

Keywords: 5G fusion; intelligent health-monitoring; ethylene cracking furnace tube; edge-fog-cloud 
collaboration mechanism; deep learning technology 
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1. Introduction  

Manufacturing industries play a key role at the national level and even in the whole human 
society [1]. Intelligent manufacturing is a major trend and the core content of the current 
manufacturing development. It is also an important initiative to accelerate the change in the 
development mode and promote the industry to the middle and high ends [2]. However, in intelligent 
manufacturing, the real-time communication between cloud platform and factory production 
facilities, information interaction between massive sensors and artificial intelligence platform, and 
efficient interaction between human and machine have diverse demands on communication networks 
and performance requirements, necessitating the introduction of highly reliable wireless 
communication technologies [3]. 5G network can provide extremely low time delay, high reliability, 
and massive connectivity, causing a new change to intelligent manufacturing systems [4,5]. 

In the petrochemical industry, the ethylene industry is particularly important. The industry chain 
covers a wide range. The current global production of ethylene continues to increase at a high rate 
of 7–8% per year [6]. The ethylene cracking furnace is the most important device in the ethylene 
industry. Further, the tube is the most critical part of the ethylene cracking furnace and also the 
reactor of steam cracking [7]. When the raw materials undergo cracking reactions at high 
temperatures, coke particles or coke bodies are generated and attached to the surface of tubes and 
equipment due to the special characteristics of hydrocarbons. Therefore, coke is inevitably generated 
during the cracking of hydrocarbon feedstocks, and the thickness of the coke layer increases further 
with the increase in the cracking time. The coke formed under such high-temperature conditions is a 
poor conductor of heat, which reduces the heat transfer coefficient, increases energy consumption, 
increases the thermal resistance of the tube wall, leads to a smaller inner diameter of the tube and a 
higher outer-surface temperature, and even blocks the tube, thus affecting the stable operation of the 
device. A more negative effect is the carburization of the tube, which causes material deterioration 
and reduces the mechanical strength of the tube [8]. Slagging leads to frequent coke cleaning of the 
cracking furnace, shortening of the cracking furnace operation and the effective production time of 
the device, an increase in energy consumption and equipment damage, and a decrease in tube life. 
Further, tubes are usually made of the nickel-chromium alloy and are expensive. Therefore, tube 
slagging causes a sharp increase in the production cost of ethylene devices. Additionally, severe 
slagging can lead to tube blockage and even tube explosion, forcing the ethylene production device 
to stop. If the local overtemperature caused by tube fire and internal slagging is not detected in time, 
it may result in a great safety hazard. In serious cases, it may even burn through the tube and cause a 
fire in the furnace, resulting in serious economic losses, endangering operators’ lives, and bringing 
huge economic losses and safety risks to the petrochemical industry. 

It is of great significance to conduct the diagnosis and prediction of tube slagging degree 
accurately and extend the effective operating cycle of the tube safely. These are effective technical 
means to ensure the safety of cracking furnace operation and improve the production efficiency of 
cracking furnace tubes. 
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2. Related work 

2.1. Outer-surface temperature measurement and slagging detection of the ethylene cracking 
furnace tube 

Cracking overtemperature is the most important cause of slagging in cracking furnace tubes, 
which, in turn, leads to mechanical failure of the tube [9]. Therefore, monitoring of the cracking 
furnace tube temperature during the ethylene production process, especially the outer-surface 
temperature monitoring, is of great importance, and then the tube slagging situation needs to be 
examined and judged [10–12]. 

At present, the outer-surface temperature of the cracking furnace tube is mainly measured by 
two methods [13,14]. First, the thermocouple measurement is performed in different parts of the tube. 
Second, the outside operator is arranged for tube positioning and measurement by aiming at the tube 
with the thermoprobe through the cracking furnace peephole regularly. The tube outer-surface 
temperature is measured using an artificial thermoprobe as shown in Figure 1 [15]. However, both 
methods have serious limitations: the thermocouple method is readily exposed to a temperature shift 
owing to the high-temperature environment in the furnace, resulting in extreme challenges in the 
process operation and control. Also, the portable thermoprobe has the following drawbacks that 
hinder ethylene production: 1) the large cracking furnace smoke and fire, high temperature, and large 
heat radiation result in high temperature in the surrounding environment. This is coupled with the 
cracking furnace constantly vibrating and generating noise, harsh temperature measurement 
environment, and high labor intensity. Especially, the current cracking furnace external operators are 
significantly reduced. Reducing their labor intensity is highly important to improve the quality of 
labor and labor enthusiasm [16]. 2) Cracking furnace is usually equipped with several hundreds of 
tubes. However, the manpower and time are limited due to the low efficiency of manual temperature 
measurement. Hence, the external operator can usually only randomly select a small number of tubes 
for temperature measurement. Further, the measured temperature data are not uniform, incomplete, 
and therefore not representative [17]. 3) The infrared beam angle of incidence has a greater impact 
on the infrared temperature measurement accuracy. Usually, the vertical irradiation accuracy is the 
highest, but the handheld approach is more arbitrary. Therefore, the manual temperature 
measurement accuracy is low, coupled with different operating habits, resulting in the same tube 
having 20–30℃ deviation in the measurement results [18]. 4) Cracking furnaces often shake in the 
production process. The visual inspection of the tube position and then hand aiming greatly affect the 
temperature measurement accuracy of the tube [19]. A few ethylene production enterprises use an 
infrared thermal imager and a multispectral monitoring probe for temperature measurement on the 
outer surface, as shown in Figure 2. Nevertheless, both methods are costly and uncontrollable, 
limiting their wide application. Therefore, many ethylene production enterprises urgently need a 
cost-effective, real-time online automatic monitoring of the outer-surface temperature of the cracking 
furnace tube with accurate diagnosis and prediction of the tube slagging platform. 
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Figure 1. Measurement of the outer-surface temperature using a thermoprobe. 

 

Figure 2. Measurement of the outer-surface temperature using a multispectral probe. 

2.2. Problems and challenges 

Based on the aforementioned common needs of ethylene production enterprises, this study 
developed an intelligent health-monitoring platform for ethylene cracking furnace tubes, which was 
successfully applied and achieved expected results [21,22]. Although the platform could effectively 
achieve the intelligent monitoring of cracking furnace tubes, tube monitoring became more difficult 
with the development of large, complex, and extreme operating parameters of cracking furnace 
equipment. The platform still had some technical difficulties that needed to be solved. The main 
aspects were as follows: 

1) LoRa network is easy to build and deploy. It has the advantages of low power consumption, 
long transmission distance, license-free band nodes, and long battery life. However, it also has the 
disadvantages of spectrum interference, highly centralized technology, need for new networks, low 
transmission rate, and small transmission bandwidth. Also, it is not suitable for video transmission, 
making it difficult to expand the scale of monitoring. Further, it has limited transmission data volume 
and high site distribution environment requirements, which is not conducive to the promotion and 
application of this platform. 

2) Temperature measurement using an intelligent temperature-measuring device still requires 
the external operator to open the peep door manually and control the temperature-measuring device 
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by remote control to scan the outer surface of the tube and the inner wall of the furnace wall, 
resulting in manual intervention in the entire temperature measurement process and hence limiting its 
working efficiency. Therefore, intelligent modification of the peep door and temperature-measuring 
device is urgently required. 

3) The platform uses a traditional central cloud structure, where the sampled data from devices 
are transmitted to a remote cloud for centralized analysis and processing. This has problems such as 
computing latency, congestion, low reliability, and security attacks. 

4) The core indicators of the intelligent temperature-measuring device, such as intelligence, 
cost-effectiveness, accuracy, measurement time, equipment cost, installation and maintenance cost, 
and data transmission, have obvious advantages compared with similar products at home and abroad. 
However, the intelligent algorithms in the temperature-measuring device, such as overlapping tube 
identification, surface temperature and inner-wall temperature identification, and tube outer-surface 
temperature measurement, are cured in the embedded chip of the instrument, which lacks 
self-adaptation to the field monitoring environment. As a typical edge device, the intelligent 
temperature-measuring device does not take full advantage of the edge-cloud collaboration for 
self-directed learning. 

Recently, modern communication technology represented by 5G; computer technology 
represented by edge computing, fog computing, and cloud computing; and artificial intelligence 
technology represented by deep learning have developed rapidly and are the hot spots for research 
and application in industry and academia in recent years. We used the interconnectivity and powerful 
communication capability of 5G and integrated edge-fog-cloud mixed computing and deep learning 
technology to build a 5G + mixed computing + deep learning technology system. The objectives 
were to upgrade and optimize the ethylene intelligent health-monitoring platform for the cracking 
furnace tube under cloud computing environment, solve the technical problems of the platform, 
improve the intelligence and automation of the platform, create the next-generation intelligent 
health-monitoring platform for ethylene cracking furnace tubes, further promote the quality and 
efficiency of the enterprise, and better protect the safe operation of the cracking furnace device. 

3. 5G fusion-based next-generation intelligent health-monitoring platform for the ethylene 
cracking furnace tube 

3.1. Overall structure of the proposed platform 

Figure 3 illustrates the overall structure of the proposed 5G fusion-based next-generation 
intelligent health-monitoring platform for the ethylene cracking furnace tube. Studying the key 
common problems in the platform, such as 5G-based intelligent temperature-measuring device, 
5G-based intelligent peep door gearing, 5G-based edge-fog-cloud collaboration mechanism, and 
mixed deep learning application, can improve the overall performance of the platform, enhance the 
automation and intelligence level of the platform, further promote the quality and efficiency of the 
enterprise, and better protect the safe operation of the cracking furnace device [23,24]. 
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Figure 3. Next-generation 5G fusion–based intelligent health-monitoring platform. 

3.2. Platform composition and technical solutions 

3.2.1. 5G-based intelligent temperature-measuring device 

The 5G-based intelligent temperature-measuring device comprises an intelligent 
temperature-measuring device, a drive console, and a charging protection cabin. 
1) Overall structure of the intelligent temperature-measuring device 

The intelligent temperature-measuring device is mainly applied to the intelligent monitoring of 
tube outer-surface temperature, cracking furnace peep-hole initial operating parameters of adaptive 
matching, and cracking furnace peephole operating conditions of real-time video monitoring. It also 
aims to achieve remote automatic measurement of the cracking furnace tube and remote monitoring 
of the cracking furnace peep door, solve the measurement deviation caused by the operator's 
technical level and operation method in the manual temperature measurement process, reduce 
operator’s labor intensity, and improve the accuracy and timeliness of data measurement and 
processing analysis. Figure 4 shows the overall structure of the intelligent temperature-measuring 
device. It comprises the main body control board, an infrared temperature sensor, a laser distance 
sensor, an HD binocular camera, the 5G wireless communication module, and the stepper motor 
drive module. 
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Figure 4. Intelligent temperature-measuring device. 

2) Overall structure of the drive console 
The drive console is the main part of intelligent temperature-measuring device motion control, 

mainly used to realize intelligent motion control of the intelligent temperature-measuring device. 
Figure 5 shows the overall structure of a drive console, which comprises a high-precision electric 
turntable, two-phase hybrid stepper motors, magnetic charging modules, Hall sensors, and 
optoelectronic sensors. Through the cooperation of each module, the functions of starting position 
positioning, initial angle determination, horizontal linear motion, simultaneous rotation of the 
measurement angle during automatic temperature measurement using an intelligent 
temperature-measuring device, as well as the function of self-testing and automatic recharging of the 
instrument after the measurement, can be realized. 

Magnetic suction 
charging module

Electric turntable stepping motor

Hall element  photoelectric sensor

Driver 
console

 

Figure 5. Drive console. 

3) Overall structure of the charging protection cabin 
The intelligent temperature-measuring device also comprises a charging protection cabin, as 

shown in Figure 6. It comprises an in-cabin inspection site, the power display section, and the 
magnetic charging module. During the automatic measurement process of the intelligent 
temperature-measuring device, when the power battery runs low, the automatic return to the charging 
protection cabin is initiated to realize the automatic charging of the temperature-measuring device. 
The in-cabin inspection site in the charging cabin is used to realize the in-cabin inspection function 
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of the intelligent temperature-measuring device. Whenever the intelligent temperature-measuring 
device measurement task is completed, the instrument automatically returns to the cabin, the detection 
point detects that the instrument has entered the cabin completely, and the charging protection cabin 
automatically locks the protection cabin door to prevent accidental loss of the instrument. 

battery indicator

check 
point

charger 
module

check 
point

Charging shelter

 

Figure 6. Intelligent temperature-measuring device: charging protection cabin. 

3.2.2. Development of 5G-based intelligent peep door gearing 

The ethylene cracking furnace is closed all year-round to minimize the heat loss from the 
furnace. The only way to measure the temperature on the outside of the cracking furnace tube is to 
make the cracking furnace tube visible to the temperature-measuring device through a small 
peephole in the furnace wall. Owing to technical limitations and safety, peep doors are still used 
mechanically and manually, which directly affects the automation and intelligence of the tube 
temperature measurement. 

The small peephole is the only way for the intelligent temperature-measuring device to peek 
into the cracking furnace and perform an outer-surface temperature measurement. The 
temperature-measuring device requires a high degree of a peep door opening. If the peep door is not 
open enough, some of the cracking furnace tubes may not be scanned and the detection data may be 
incomplete. 
1) Opening and closing gearing of the peep door 

The peephole of the ethylene cracking furnace is mechanically a vertical rotating single door. As 
shown in Figure 7, high-temperature and high-pressure flames are present in the ethylene cracking 
furnace chamber. When the peep door is opened, the high-temperature heat is radiated outward 
through the peephole due to the negative pressure effect. Therefore, the start/stop control of existing 
peep doors is opened by conventional manual operation. The inspection workers must wear 
high-temperature protective clothing, goggles, gloves, and other facilities before they can peep inside 
the furnace. The high-temperature and harsh operating environment bring great labor intensity to 
inspection workers and even causes injuries. 

Automatic opening/closing control of peep doors is achieved using a chain-type electrical 
system/drive. The peep door gearing consists of a stepper motor, a bi-directional drive telescopic 
chain, a connecting bracket, and a peephole door connector.  

The peep door gearing is located under the peep door, suspending the connection with the 
cracking furnace, reducing the direct contact area with the cracking furnace, effectively decreasing 
the operating environment temperature, reducing the high-temperature wear of the peep door gearing, 



9176 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9168-9199. 

and increasing its service life. 

 

Figure 7. Site image of the peephole of the ethylene cracking furnace. 

2) Peep door position detection device 
The amplitude of the peep door opening is one of the main bases for determining the scanning 

position and scanning initialization angle of the intelligent temperature-measuring device. It is 
directly related to the accuracy of tube temperature measurement and the prediction of tube operation 
status. Meanwhile, when the automatic control of peep door opening and closing is realized, the 
telescopic chain of peep door gearing is beyond the working position and damaged if the position of 
peep door operation is not detected in real time. This is because the motor cannot be controlled and 
stops. Therefore, the accurate detection of the peep door position is one of the key issues to be solved. 

The peep door position information is detected by the spring-press conversion method to ensure 
the accurate identification of the peep door position state. As shown in Figure 8, the spring is 
connected to the peep door through a bracket, and the other end of the spring is connected to the 
pressure sensor. When the position of the peep door changes, it drives the spring to deformation. The 
spring force is used to squeeze the pressure sensor to generate voltage change, the voltage change 
data are collected from the pressure sensor, the relationship between voltage and position is analyzed, 
and the position of the peep door is indirectly measured. 

 

Figure 8. Design principle of the peep door position detection device. 

3.2.3. 5G-based edge-fog-cloud collaboration mechanism 

Edge computing, fog computing, and cloud computing are core supporting technologies of the 
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intelligent monitoring platform structure [25]. Edge computing provides edge intelligent services 
nearby to meet the critical needs of industry digitization for agile connectivity, real-time business, 
data optimization, application intelligence, security, and privacy protection. Fog computing extends 
the services and tasks of the cloud to the network edge. Cloud computing, with its resource 
advantages, can provide large-scale data storage, analysis, working, and processing capabilities. At 
present, the cloud computing service model aggregates computation in the central cloud, which has 
shortcomings in location awareness, real-time content delivery, service latency, and mobility 
support [26,27]. 
1) Edge-fog-cloud layering mechanism 

Based on the central cloud structure, a three-tier architecture system of mixed computing based 
on edge computing, fog computing, and cloud computing was built, as shown in Figure 9. The 5G 
fusion-based next-generation intelligent monitoring platform for the ethylene cracking furnace tube 
comprises an edge computing layer, a fog computing layer, and a cloud computing layer. The edge 
computing layer communicates with the fog computing layer over a 5G network, while the fog and 
cloud computing layers are connected over a dedicated high-speed wired network.  
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Figure 9. Three-layer structure of the intelligent monitoring platform. 

Edge computing layer: It mainly includes an intelligent temperature-measuring device and an 
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intelligent peep door gearing, which can collect tube surface temperature data and peep door status 
data. The tube surface temperature data acquisition is complex, requiring optimization of the initial 
position and angle of temperature measurement, dual-phase synchronized control of horizontal 
motion and running rotation, overlapping tube identification, identification of outer-surface 
temperature and inner-wall temperature, outer-surface temperature measurement, and detection of 
abnormal temperatures. In the central cloud structure of the original platform, all these tasks run on 
the temperature-measuring device, making the device heavily burdened. With 5G and fog computing 
layer, the functions that are relatively simple and closely related to the temperature measurement 
instruments, such as the initial position and angle optimization of temperature measurement, 
dual-phase synchronous control of horizontal motion and running rotation, and identification of 
cracking furnace tube outer-surface temperature and inner-wall temperature, are still retained on the 
temperature-measuring device, while more complex functions, such as overlapping tube 
identification, outer-surface temperature measurement, and abnormal temperature detection, are 
moved to the fog computing layer. The peep door status data is mainly acquired using the HD camera 
integrated in the intelligent temperature-measuring device in the format of video. The base station 
server receives the video signal and identifies the status of the peep door, which is combined with the 
intelligent peep door control signal to achieve precise control of the peep door. 

Fog computing layer: It mainly includes 5G base station, base station server, and other network 
devices, forming a mini-data center, which is responsible for two main tasks. One is to further 
process the data transmitted by the intelligent temperature-measuring device, such as the overlapping 
tube identification, outer-surface temperature measurement, abnormal temperature detection, and 
transfer of the effective data to the cloud computing layer to reduce the amount of data uploaded to 
the cloud computing layer. The second is that the received video data is used to discriminate the peep 
door status using deep learning, migration learning, and other methods for the synchronized control 
of the intelligent peep door with the intelligent temperature-measuring device. 

Cloud computing layer: As the central cloud, it runs the slagging diagnosis and prediction 
system of the ethylene cracking furnace tube and other systems of the enterprise. It receives 
temperature measurement data from the fog computing layer, combines the data from the data 
collection system located in the same cloud, and includes cracking furnace tube outlet temperature, 
crossover section pressure, and venturi pressure so as to achieve real-time accurate diagnosis of the 
slagging degree of the ethylene cracking furnace tube and accurate prediction of slagging trends. 
Meanwhile, the cloud computing layer is responsible for the training of intelligent models in the 
monitoring platform, such as the peep door status identification model and the overlapping tube 
identification model. 
2) Edge-fog-cloud collaboration mechanism 

The divide-and-conquer and north-south collaboration methods were adopted. The edge 
computing layer is the site work node, which consists of edge devices such as an intelligent 
temperature-measuring device and an intelligent peep door control device. It is responsible for 
transferring the collected outer-surface temperature data of the cracking furnace tube, video data 
monitoring of the peep door and edge device working-state data northward through 5G to the fog 
computing layer, and receiving the operation commands and trained intelligent models from the fog 
computing layer. The fog computing layer is an intermediate node consisting of the 5G base station, 
base station server, and other network devices. It further cleans and processes the data in the south 
direction and exchanges data and control signals with the edge computing layer. The north 
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direction exchanges data with the cloud computing layer and provides data support for the cloud 
computing layer. The cloud computing layer obtains valuable data from the fog computing layer 
for mass storage. On the one hand, intelligent models are trained and the automatic intelligent 
model update of the relevant edge devices is conducted to the fog computing layer server or 
through the fog computing layer. On the other hand, the data from other systems in the central 
cloud are combined to perform large data analysis, diagnose and predict the slagging of the 
cracking furnace tube, and provide decision support for production. The three layers of the 
edge-fog-cloud operate efficiently in a complementary manner through data collaboration, 
intelligence collaboration, and control collaboration. 

The proposed edge-fog-cloud collaboration mechanism uses knowledge migration, embedded 
machine/deep learning, and other methods and techniques to optimize data collection, cleaning, 
transmission, storage, and application. The purpose is to achieve the collaboration of global 
optimization based on cloud computing and local optimization based on fog/edge computing through 
data collaboration, intelligence collaboration, and control collaboration. The working process of the 
next-generation platform involves three levels: data flow, control flow, and business flow. The whole 
platform’s edge-fog-cloud collaborative capability and content include data collaboration, 
intelligence collaboration, and control collaboration, as shown in Figure 10. 

Data collaboration: It consists of two data flows of tube temperature and peep door status. First, 
the intelligent temperature-measuring device in the edge computing layer initially processes and 
analyzes the collected data about the cracking furnace tube according to the rules or data model, and 
uploads the processing results to the fog computing layer through the 5G network. The fog 
computing layer further processes the received data and uploads it to the cloud computing terminal 
via a dedicated high-speed wired network. The cloud continuously receives data from the edge nodes 
and carries out a large data statistical analysis based on the massive operational status data (e.g., 
abnormal status data) to diagnose and predict the slagging degree of the cracking furnace tube. 
Second, the intelligent temperature-measuring device in the edge computing layer captures the video 
data of peep door status through the integrated camera and then uploads it to the fog computing layer 
through the 5G network. The fog computing layer uses a deep learning model to process the video to 
identify the state of the peep door, and uploads the key video to the cloud computing layer via a 
dedicated high-speed network for permanent storage. The data collaboration of edge, fog, and cloud 
supports the controlled and orderly flow of data between edge, fog, and cloud, forming a complete 
data flow path for efficient and low-cost data lifecycle management and value mining. 

Intelligence collaboration: The temperature identification intelligent models are embedded in 
the intelligent temperature-measuring device for edge devices, while the fog computing layer 
integrates intelligent models for overlapping tube identification, abnormal temperature detection, and 
video identification. The operating environment of the cracking furnace tube is complex and variable. 
These models need to learn continuously to improve the self-adaptability of the 
temperature-measuring device and fog computing layer server, but learning training is a 
computationally intensive and time-consuming process. Therefore, the training task can only be 
placed in the cloud computing layer. The edge computing layer and the fog computing layer provide 
data input for the training of the model, and are responsible for the execution of edge inference. 
Considering the limited resource constraints of edge nodes, deploying AI chips or modules enables 
intelligence collaboration more efficiently. The cloud computing layer performs large data analysis 
by combining auxiliary data provided by other systems, continuously optimizes the model training, 
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and updates the trained model to the fog computing layer server or to the intelligent 
temperature-measuring device via the fog computing layer. Through intelligence collaboration, the 
self-directed learning of the fog computing server and the intelligent temperature-measuring device 
can be achieved. 
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Figure 10. Edge-fog-cloud collaboration mechanism. 

Control collaboration: The peep door must be opened and closed automatically to achieve full 
automation of the temperature measurement process. As the temperature-measuring device measures 
the temperature of the cracking furnace tube through the peephole, the opening angle of the peep door 
is strict during the temperature measurement. The whole control process is divided into seven steps: 

Step 1: The fog computing layer server sends an open command to the intelligent peep door 
gearing according to a predefined policy. 

Step 2: The fog computing layer server sends a video capture command to the 
temperature-measuring device. 

Step 3: The fog computing layer server receives video signals from the edge computing layer 
and identifies the intelligent peep door status (e.g., whether it is open or closed).  

Step 4: If the peep door has been opened at a sufficient angle, the temperature-measuring device 
is started for temperature measurement. 

Step 5: When the temperature measurement is completed, a completion signal is sent to the fog 
computing layer server. 
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Step 6: The fog computing layer server sends a close command to the intelligent peep door gearing. 
Step 7: Steps 2 and 3 are executed, if the peep door is closed; then the task is completed. 

4. Applications of mixed deep learning algorithms 

4.1. Identification of peep door status based on time-domain multiscale long short-term memory networks 

4.1.1. Problem description 

The identification of peep door status via the peep door surveillance video involves complex 
timing information. In the basic multilayer long short-term memory (LSTM) modeling sequential 
characteristic, the deep LSTM networks take the output of the previous layer of LSTM networks as 
the input at this moment. Not only do the deep LSTM networks lose the original video information, 
but also the training and information transfer of the networks may encounter bottlenecks. A 
time-domain multiscale space–time fusion model based on the multiscale feature in image processing 
was proposed to solve this problem, as shown in Figure 11. As observed, the video was sampled at 
different intervals, and the space–time fusion features of the video frame were used as the input of 
the network to obtain the time-domain features of the video content at different sampling intervals. 
The first-layer LSTM extracted 16 video frames, that is, video frame sequences  as 
the input. The second-layer LSTM halved the input of the first layer, that is, eight video frames 

 as the input. The input of the third-layer LSTM was halved from the second-layer 
input, that is, four video frames  were extracted as input to the LSTM networks. The 
detail technical details and experimental results can be seen in [20]. 

LSTM

Temporal and spatial 
fusion characteristics …… …… ……

Temporal and spatial 
fusion characteristics

 

Figure 11. Time-domain multiscale space-time fusion model. 

4.1.2. Experimental verification 

1) Data set description 
In terms of figure collection method, 150 pictures were taken by mobile phone. The size of the 

image after shooting is 2328 × 4656 pixels, and the format is JPG format. The default RGB color 
display standard is adopted, and three color channels are included. View of the shooting angle, for 
most images of fire door is not at the same level with the lens, lens is slightly higher than the view on 
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the location of the fire door view fire door, most image medium fire door in a look down at the point 
of view of another part of the pictures were taken in view of the fire door side, and there are four 
without fire door airtight cover images. Parts of peep door data set are shown in the Figure 12.  

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 12. Parts of peep door data set. 

2) Network structure and arameters 
The keras framework in Tensorflow is used to construct the entire model structure. The structure 

of the convolutional neural network and parameters are shown in Table 1. 
3) Model performance test 

Figure 13 shows the accuracy and loss values of the training set and verification set respectively 
in the training process. A total of 10 epochs have been performed, and excellent recognition rate has 
been achieved in the first training. 

Densenet-121 network is used for transfer learning, the results are shown in Figure 14. Results 
on the training set and the validation set is shown in Figure 14. The recognition model requires 
multiple epochs of training until the accuracy rate meets the re quirements. It is glad to see that the 
accuracy on the training set already reaches 95% after the fifth epoch. The accuracy on the validation 
set reaches 100%. After training four epochs, the proposed model has a 100% recognition rate on the 
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test set. 

Table 1. Network structure and parameters. 

Layer (type) Output Shape Param 

conv2d_input (InputLayer) [(n, 200, 200, 3)] 0 

conv2d (Conv2D) (n, 198, 198, 16) 448 

max_pooling2d (MaxPooling2D) (n, 99, 99, 16) 0 

conv2d_1 (Conv2D) (n, 97, 97, 32) 4640 

max_pooling2d_1 (MaxPooling2) (n, 48, 48, 32) 0 

conv2d_2 (Conv2D) (n, 46, 46, 64) 18,496 

max_pooling2d_2 (MaxPooling2) (n, 23, 23, 64) 0 

flatten (Flatten) (n, 33856) 0 

dense (Dense) (n, 512) 17,334,784 

dense_1 (Dense) (n, 1) 513 

 

Figure 13. Model performance test. 



9184 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9168-9199. 

 

Figure 14. Densenet experiment results. 

4.2. Overlapping tube identification algorithm based on embedded DCNN porting in the 
temperature-measuring device 

4.2.1. Problem description 

The overlapping tubes in the cracking furnace meant that the tubes were caused to block each 
other and the blocked tubes were only partially visible through the peephole during the production 
process due to the tube shift. Therefore, the intelligent temperature-measuring device required an 
efficient and accurate overlapping tube identification method during the measurement process to 
correctly distinguish the measured outer-surface temperature. Empirically, the intelligent 
temperature-measuring device could be used for overlapping tube identification using the 
point-counting method and the adjacent point distance jump method, but the identification rate was 
low with a tendency for misjudgment situations and the most serious overlapping tubes were 
completely blocked, as shown in Figure 15, which led to the serious consequence of 
mismeasurement of the tube outer-surface temperature. 

Based on the difference between normal and overlapping tubes in the measured temperature and 
distance 2D data and the advantage of DCNN in identifying 2D image features, DCNN was 
transplanted to the embedded chip of the edge device (intelligent temperature-measuring device), and 
the compressed DCNN was used on the edge side to identify overlapping tubes and normal tubes 
with high accuracy. 

The DCNN for determining overlapping tubes is shown in Figure 16. It consisted of one input 
layer, three convolutional layers, two pooling layers, one fully connected layer, and one output layer. 
The input layer was used to input the 2D data features of normal and overlapping tubes, and the 
output layer was used to output the probability that the 2D data features belonged to normal and 
overlapping tubes. 

During feature extraction of tube distance data in the 2D map, the temperature data of tubes and 
furnace walls in the 2D map were removed first, and then the distance data of furnace walls in the 2D 
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map were removed. Further, the invalid threshold data of tube distance data having low feature 
correlation with overlapping tubes were removed so that the feature maps of overlapping and 
nonoverlapping tubes were extracted to form the dataset for DCNN network model training. After 
extracting the tube features, the DCNN overlapping tube identification model was trained and 
validated in cloud. 

The furnace tube 
keep out each other

Normal 
furnace tube

View the 
fire hole  

Figure 15. Schematic of overlapping tubes. 

 

Figure 16. DCNN structure for determining overlapping and nonoverlapping tubes. 

For realizing the overlapping tube identification function of the intelligent 
temperature-measuring device, the proposed steps to implement the DCNN overlapping tube 
identification inside the intelligent temperature-measuring device with an embedded processor as the 
core were as follows: 

Step 1: DCNN training weights were compressed, transformed, and ported. In the cloud server, 
the DCNN network model for identifying normal and overlapping tubes was first trained, and then 
the trained network model was compressed using the NCS-based method. Further, the compressed 
DCNN node weights were transformed into data types that could be stored and computed inside the 
ARM Cortex-M7 embedded processor. Finally, the transformed weights were embedded in the 
embedded processor. 

The ARM Cortex-M7 embedded processor only received 8-bit fixed-point numbers; therefore, 
the DCNN node weights data type needed to be compressed and transformed. The compression 
conversion process to be adopted was as follows: a generalized fixed-point number was represented 
as [QI: QF], where QI and QF corresponded to the integer and fractional parts, respectively. The 
fixed-point number usually included a sign bit to indicate the positive or negative of the number. The 
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relationship between the integer length (IL), fractional length (FL), and length of sign bits of the 
fixed-point number, and bit-width (B) of the bit number of fixed-point number was as follows: 

   (1) 

When converting floating-point numbers into fixed-point numbers, a specific rule was proposed 
to automatically determine the number of integer bits required. Specifically, enough bits were 
selected to avoid saturation. Therefore, for a given set of numbers S, the required length of the 
integer part was as follows: 

  (2) 

where  denotes the rounding up for . 

For conversion into fixed-point numbers with specified bit-width , the length of the integer 
part  was determined by: 

  (3) 

The length of the fractional part could be calculated by: 

   (4) 

The minimum positive number of the fixed-point number representation was defined as , 
which was the representation precision of the fixed-point number as . The formula was as follows: 

  (5) 

Therefore, a given floating-point number could be converted into an approximation of the 
specified bit-width according to the following equation, which facilitated the subsequent fixed-point 
conversion of the value: 

  (6) 

where  is defined as a value less than or equal to  and is the largest integer multiple with 

respect to . 
For a fixed-point number given bit-width, the numerical approximation took the range: 

  (7) 
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After the approximation of the original values, the fixed point of approximate value was 
implemented, and the fixed-point formula was as follows: 

  (8) 

where  represents the binary complement form of the approximation. 
Once the fixed point was complete, the fixed-point weights were finally ported to the 

embedded processor. 
Step 2: DCNN reconstruction. The implementation of DCNN reconstruction within the 

embedded processor applied the ported compressed fixed-point weights for network computation and 
relied on CMSIS-NN, an optimization software kernel proposed by ARM specifically for deploying 
neural networks on Cortex-M CPUs. The CMSIS-NN library contained two parts: NNFunction and 
NNSupportFunctions. The NNFunction contained functions that implemented common neural 
network layer types, such as convolution, full connectivity, pooling, and activation functions, which 
were used by the application code to implement neural network inference applications. The 
NNSupportFunctions included different utility functions, such as data conversion and activation 
menu functions, which could be used by the application code to construct more complex neural 
network modules. 

Step 3: The raw data collected were converted. The original one-dimensional data collected by 
the temperature-measuring device were converted into two-dimensional feature data, which were fed 
into the embedded processor reconstructed DCNN network and combined with the compressed and 
transformed weights to realize the function of DCNN to identify normal and overlapping tubes. The 
2D data were obtained by dimensionally transforming the one-dimensional tube feature data obtained 
from the temperature-measuring device, which was used as the input to the embedded DCNN network.  

4.2.2. Experimental verification 

The parameter settings of the CNN network are shown in Table 3, and the sample composition 
is shown in Table 4. 

Table 3. Network structure and parameters. 

Parameter Value Parameter Value 
test_iter 40 gamma 0.0001 
base_lr 0.001 power 0.75 
momentum 0.9 display 500 
weight_decay 0.0005 max_iter 10,000 

Table 4. Structural composition of experimental data. 

Sample Normal Overlapped Total 
Training 1,456 608 2064 
Test 1,028 412 1440 
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1) Model Validity Performance Test 
The main steps and model performance test are as follows, and the detail technical details and 

experimental results can be see in [22].  
Step 1: The furnace wall distance was removed from the original collection distance data, as 

shown in Figure 17 below:  

 

Figure 17. Data eliminate. 

Step 2: Extract the features of each normal tube and overlap tube, as shown in Figure 18: 

 

Figure 18. The features of each normal tube and overlap tube.  

Step 3: The training set is used to train the CNN network, and the validation set is used to judge 
the effect of the training model and optimize network parameters during the training process, the 
recognition results are shown in the Figure 19, the results show the output accuracy is 100%. 
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(a) (b) 

(c) (d) 

  

(e) (f) 

Figure 19. Model validity performance test. 

2) Model performance comparative analysis 
In the experiment, six different learning strategies such as Fixed, STEP, EXP, INV, Poly and 

SigmoID were used to train the model. The change curve of model accuracy during training is shown 
in Figure 18. It can be seen from Figure 20 that the final accuracy of the overlapping furnace tube 
identification model trained by other methods except step and EXP is 99.85%.  
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Figure 18. Comparison chart of different learning strategies. 

4.3. Edge computing resource scheduling based on deep reinforcement learning 

4.3.1. Problem description 

The intelligent temperature-measuring device was a typical mobile edge terminal device, which 
ran monitoring tasks in a remote data center through a high-speed and highly reliable wireless 
interface. The tasks were transmitted through the wireless access network and then through the core 
network to the data center. Nevertheless, this model had an inherent drawback due to the 
long-distance propagation from the end device to the data center. The message delivery needed to go 
through the wireless access network, backhaul network, where the network routing and management 
operations might add additional time delay overhead. For this reason, the industry has proposed 
mobile edge computing (MEC). MEC refers to the deployment of computing and storage resources 
at the mobile network edge to provide IT service environment and computing power for mobile 
networks, thus providing users with ultra-low time delay and high-bandwidth network service 
solutions, while enhancing the privacy and security of mobile applications. Although a certain 
amount of computing resource is placed at the access network edge, MEC can reduce the application 
time delay through computational offloading. However, with limited communication and computing 
resources, designing a reasonable offloading strategy and resource allocation scheme is still an issue 
to be explored. 

For the limited computing resource, communication resource, and local computing resource, an 
effective computation offloading and resource allocation strategy was designed based on the deep 
reinforcement learning method in combination with 5G communication technology so that all tasks 
could be executed with minimum total time delay. 

The objective of uninstall decisions of edge devices, such as multiple intelligent 
temperature-measuring devices in the system and the allocation of network and computing resources, 
was to minimize the total time delay of all tasks, and the problem was represented as follows: 
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  (9) 

 

 

where Cn represents the uninstall decision variable. As the task was nonseparable, the uninstall 
decision variable for edge device n is an integral 0, 1 variable. The second constraint indicated that 
the task needed to be uploaded to the MEC server first before it could be executed. 

To solve this problem, we needed to determine three decision variables, which were the 
uninstall decision variable, the upload data time of the uninstall task, and the execution time. As the 
number of edge devices increased, the solution space size of the problem increased rapidly. 
Meanwhile, because the three decision variables were integer variables, the problem was not a 
convex optimization problem, but an NP-hard problem. Hence, the problem was solved using deep 
reinforcement learning methods. 

It is first necessary to translate the problem into a representation of the basic elements of 
reinforcement learning to find the optimal strategy using the deep reinforcement learning approach. 
Second, the parameters of the deep learning network structure needed to be determined because deep 
learning was used as a reinforcement learning agent. Figure 19 shows the MEC resource scheduling 
model based on deep reinforcement learning. 
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Figure 19. MEC resource scheduling model based on deep reinforcement learning. 

4.3.2. Related concept of deep reinforcement learning 

Reinforcement learning comprised four components: state, action, reward, and agent. The agent 
in deep reinforcement learning was a neural network, that is, the strategy was represented by a deep 
learning network. The state, action, and reward were designed as follows. 



9192 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9168-9199. 

Status: In the MEC resource scheduling problem of this project, the status should include the 
network resource usage of the base station, the MEC server computing resource usage, and the tasks 
waiting for a decision in the mobile device. Figure 20 shows the network resources and computing 
resource occupancy from the current time slice to the next few time slices. The vertical direction 
represented the time slices to be allocated, and each small square represented a time slice resource. 
The horizontal direction represented the resource category, that is, computing resource or network 
resource. When the edge device had a task to perform, it first sent a request to the base station. The 
base station stored the corresponding task information, that is, network resource consumption, 
computing resource consumption, and channel status, in the backlog. When the job slot queue was 
empty, the base station scheduled the task from the backlog to the job slot and waited for the base 
station’s decision on the task scheduling. In the job slot queue, tasks were represented as the number 
of time slices of network resources to be consumed and the number of computing resource time slices. 

Action: It used deep learning as an agent, requiring a fixed input and output form. Therefore, the 
action space could not change as the number of tasks in the state changed. The action space should 
contain all uninstall possibilities. As the tasks waiting to be scheduled could choose some tasks 
uninstalled to the base station and others were executed on the local side, the agent could choose any 
part of the tasks waiting to be scheduled as an execute decision uninstalled to a base station and other 
tasks were executed on the local device. The relationship between the size of action space and the 
number  of tasks to be scheduled was , that is, any task could be scheduled to the base station 
and also be executed on the local device. As the number of tasks to be scheduled increased, the 
action space increased drastically, which did not meet the requirement of fixed action space for the 
neural network output. Therefore, the following method was used to reduce the action space size. 
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v1 tim
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Figure 20. State representation. 
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In each time slice, the base station could execute more than one task in a row. In the state, the 

tasks to be scheduled included tasks in the job slot and backlog queue. It was assumed that the size of 

the job slot was  and the action space was , where  meant no task to be 

scheduled and it was an empty action.  meant that the base station chose to 

uninstall the task on the th job slot to the base station side.  meant that 

the base station chose the task on the th job slot to execute in the edge device. 
Reward: Agents in reinforcement learning were designed to maximize the cumulative 

discounted rewards over time, that is, the value function: 

  (10) 

where  is the discount factor, and  represents the reward at state . The goal of this problem 
was to minimize the total time delay of all tasks. Specifically, the reward function was set as follows: 

  (11) 

where  represents all the tasks in the state and the tasks performed by the local device. As 
reinforcement learning had a reward for each action selection, the reward was 0 when the action was 
a valid action defined in the action space, and the reward was the value of reward function in Eq (11) 
when the action was an invalid action defined in the action space. In other words, the evaluation of 
the agent uninstall policy in this time slice needed to wait until the invalid action was generated, at 
which point the reward of Eq (11) was given, while the valid action indicated that the task uninstall 
was not finished in this time slice and returned to 0. After a task was executed on the edge device or 
base station side, it no longer belonged to J. The discount factor was set to 1, so that the –1 
accumulation of all time slices occupied by a task from the time the uninstall request was sent until it 
was executed represented a negative time delay in execution. The optimization of deep learning 
parameters used the gradient descent method, that is, minimized the loss function. While 
reinforcement learning maximized the long-term reward value, in deep reinforcement learning, the 
long-term reward was the loss function. Therefore, the reward of the aforementioned design was a 
negative time delay sum, and maximizing the negative time delay sum meant minimizing the total 
time delay. 

4.3.3. Experimental verification 

The train model parameter settings of the DQN are shown in Table 5, and the network 
parameters is shown in Table 6. 
1) Convergence verification 

Compared with classical heuristic short-job priority SJF algorithm, Teris* algorithm and 
strategy gradient algorithm DeepRM, the results of the experiment are shown in Figure 21. 
Compared with DeepRM, DQN algorithm shows faster convergence and more stable curve. 
Compared with DeepRM algorithm, the average completion time of the final convergent job is 
reduced by 5.2%. During the whole training process, the DQN and DeepRM curves were unstable 
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and oscillating in the first 100 iterations, and the average completion time was longer than that of the 
heuristic SJF algorithm and Teris* algorithm. After 200 rounds of training, the curve gradually tends 
to be stable, and the completion time is significantly lower than SJF algorithm and Teris* 
algorithm, and finally tends to converge. And the detail technical details and experimental results 
can be seen in [28–30]. 

Table 5. DQN train model parameters. 

Parameter Value Parameter Value 

Train time 
Learning rate 
Discount factor 
Target network update interval 
Experience pool size 

1000 
0.001 
0.95 
100 
30000 

Greedy factor ɛ initial value 
Greedy factor ɛ max value 
Ɛ amplification 
Round number 
Mini-batch 

0.5 
0.9 
0.001 
20 
32 

Table 6. Network parameters. 

Net layer Convolution layer Maximum pooling layer Full connection layer 

Input size 
Convolution kernel size 
Step size 
Number fo convolution kernel  
Activation function 
Output size 

180 * 20 
2 × 2 
(1,1) 
8 
ReLU 
178*18 

178 * 18 
2 × 2 
(2,2) 
-- 
-- 
89*9 

89 * 9 
-- 
-- 
-- 
-- 
21 

 

Figure 21. Average job completion time. 

2) Validity verification 
Figure 22 shows the change trend of the average operation sabotage of the four comparison 

algorithms under different loads. As shown in the figure, under the condition of low load, there is 
little difference in the change of different algorithms. When the load reaches or exceeds 90%, it can 
be clearly observed that the average operation sabotage change rate of DeepRM and DQN algorithms 
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is small. The results were significantly lower than those of the heuristic algorithms SJF and Tetris*. 
The results also shows that when the load reaches 130% and the training times reaches 200 rounds, 
DQN and DeepRM algorithms begin to converge, and the convergence result is smaller than SJF and 
Tetris*. At the same time, DQN converges faster than DeepRM and achieves smaller average 
operation slowdowns. 

 

Figure 22. Job slowdown under different loads. 

4.4. Comparison of the 5G fusion-based next-generation intelligent health-monitoring platform for 
ethylene cracking furnace tubes and the previous platform 

Compared with the previous platform, the 5G-based next-generation intelligent 
health-monitoring platform for ethylene cracking furnace tubes had a clear advantage (Table 7). The 
application site of this platform in a large petrochemical company is shown in Figure 23. 

 

Figure 23. Application of intelligent temperature-measuring device and software in 
petrochemical enterprises. 
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Table 7. Next-generation platform versus the previous platform. 

Function or technology Next-generation platform Previous platform 

Network transmission technology 5G-based LoRa-based 

Temperature measurement method 
Remote automated control  

in the workshop 

Manual control at the cracking 

furnace site 

Peep hole operational condition 

monitoring 

Real-time video remote 

monitoring 

Manual on-site visual 

inspection 

Peep hole initial operation parameter 

setting 
Fully adaptive Manual measurement 

Self-learning of temperature-measuring 

device 
Strong Weak 

Peep door 
Intelligent type, automatic  

open and close 

Mechanical type, manual  

open and close 

Identification of overlapping tubes ≥ 99.99% About 80% 

Charging of temperature-measuring 

device 
Automatic Manual 

Deep network model Compressed Not compressed 

Platform structure 
Edge-fog-cloud three-layer 

structure 
Central cloud structure 

Computing resource scheduling 

Based on deep reinforcement 

learning, resource utilization is 

higher 

Based on reinforcement 

learning, resource utilization 

needs to be improved 

Temperature measurement time per cycle ≤ 7 min ~10 min 

5. Conclusions 

Considering the technology demand from ethylene production industry and market, a 
next-generation intelligent health-monitoring platform was built based on 5G + mixed computing + 
deep learning for ethylene cracking furnace tubes deriving from the previously developed platform 
and its successful application. The key common problems in the platform, such as 5G-based 
intelligent temperature-measuring device, 5G-based intelligent peep door gearing, 5G-based 
edge-fog-cloud collaboration mechanism, and mixed deep learning application, were also examined. 
The aim was to improve the overall performance of the platform, enhance the automation and 
intelligence level of the platform, further promote the quality and efficiency of the enterprise, better 
protect the safe operation of the cracking furnace device, and also promote the industry-scientific and 
technological progress, transformation, and upgrading through the application of the platform. 
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