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Abstract: In the mobile edge computing environment, aiming at the problems of few classifications 
of resource nodes and low resource utilization in the process of multi-user and multi-server resource 
allocation, a resource optimization algorithm based on comprehensive utility is proposed. First, the 
algorithm improves the Naive Bayes algorithm, obtains the conditional probabilities of job types based 
on the established Naive Bayes formula and calculates the posterior probabilities of different job types 
under specific conditions. Second, the classification method of resource service nodes is designed. 
According to the resource utilization rate of the CPU and I/O, the resource service nodes are divided 
into CPU main resources and I/O main resources. Finally, the resource allocation based on 
comprehensive utility is considered. According to three factors, resource location, task priority and 
network transmission cost, the matching computing resource nodes are allocated to the job, and the 
optimal solution of matching job and resource nodes is obtained by the weighted bipartite graph 
method. The experimental results show that, compared with similar resource optimization algorithms, 
this method can effectively classify job types and resource service nodes, reduce resource occupancy 
rate and improve resource utilization rate. 
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1. Introduction 

According to Ericsson’s “Mobile Market Report”, it is predicted that by the end of 2025, there 
will be more than 2.8 billion 5G subscribers worldwide. 5G will cover nearly 65% of the world’s 
population, and 5G networks will carry 45% of data traffic. Among that, smartphones will account 
for 86%, and the world will usher in the Internet era of the explosive growth of network data and 
information. The increasing popularity of 5G networks has witnessed the rapid development of the 
Internet of Things [1], which has stimulated the emergence of various forms of new applications, such 
as AR, VR, autonomous driving, smart cities, telemedicine and other technical fields. These 
application scenarios require a higher bandwidth rate and lower system energy consumption and 
computing delay [2,3], while the centralized processing mode adopted by the mobile cloud computing 
model is far from the terminal devices and cannot meet the daily needs of users [4,5]. Therefore, mobile 
edge computing (MEC) technology has emerged. 

Mobile edge computing [6] is considered one of the core technologies in developing modern 
communication networks and 5G technology. MEC performs operations such as computing processing 
and resource allocation on edge nodes by introducing computing data to the edge of the mobile network. 
As a research hotspot of MEC, resource allocation mainly studies the problem of where to unload 
computing tasks [7]. In the MEC network scenario of computing-intensive applications, tasks need to 
be reasonably allocated to maximize the utilization rate of each computing node’s storage, CPU and 
other resources. Therefore, effective resource allocation can not only avoid channel interference 
between tasks but also increase the calculation rate of tasks, effectively reducing resource occupancy 
rate and improving resource utilization rate [8,9]. Although a large number of excellent works are 
devoted to the related research of resource allocation in the MEC environment, numerous studies cover 
resource allocation based on joint computing offload, channel allocation, spectrum allocation, power 
allocation and other technologies; and most of the optimization objectives are offload delay, system 
energy consumption or user income. Thus, there is little research on dynamic resource allocation under 
multi-user and multiple MEC servers. Therefore, this paper studies the dynamic resource allocation 
problem in the mobile edge environment and proposes a resource allocation optimization method 
based on comprehensive utility in the MEC (RAOCU). The method mainly includes three parts: job 
classification based on an improved Naive Bayes algorithm, resource service node classification based 
on resource utilization and resource allocation based on comprehensive utility. The main, specific 
contributions of this work are summarized as follows. 
1) Aiming at the problem of inaccurate job classification results caused by the underflow of the Naive 

Bayes algorithm, the Naive Bayes algorithm is optimized. The conditional probability of the job 
type is obtained according to the established Naive Bayes formula, and then the posterior 
probability that the running job is a CPU-intensive job and I/O-intensive job under certain 
conditions is obtained, which improves the Naive Bayes Classifier performance. 

2) For resource allocation based on comprehensive utility, by considering the three factors of resource 
location, task priority and network transmission cost, matching computing resources are assigned 
to the particular types of jobs, and according to the weighted bipartite graph, the optimal solution 
of matching job and resource nodes is obtained. 

3) The experimental results demonstrate that, compared with other algorithms, the algorithm of this 
paper can classify job types and resource service nodes more effectively, reduce resource 
occupancy rate and improve resource utilization rate. 
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The rest of the paper is organized as follows: Section 2 is the research status, and Section 3 
expounds on and analyzes the design of resource optimization methods based on comprehensive utility 
in an MEC environment, including job classification based on an improved Naive Bayes algorithm, 
resource service node classification based on resource utilization rate and resource allocation based on 
comprehensive utility. Section 4 provides a detailed description of the proposed algorithm. Section 5 
provides a comparison and analysis of experimental results. Finally, Section 6 summarizes the paper 
and discusses its development direction. 

2. Related work 

Many scholars have conducted relevant research on resource allocation in the MEC environment. 
Tran et al. [10] studied joint task offloading and resource allocation, aiming at maximizing the revenue 
of user task offloading, and the total revenue of the user is characterized as the weighted sum of task 
execution delay and energy consumption. Xu et al. [11] established a comprehensive model, Zenith, 
to capture the optimization problem of online resource allocation in the edge cloud. Based on the 
proposed model, an auction-based resource contract mechanism and a delay scheduling technology to 
maximize the utility of service providers were proposed. Dab et al. [12] proposed a joint task allocation 
and resource allocation method aiming at minimizing the energy consumption of mobile terminals. 
This scheme formulated the optimization problem based on integer programming and proposed an 
enhancement algorithm considering the waiting delay of mobile terminals and data transmission. Jinke 
et al. [13] studied the joint communication and computing resource allocation of multi-user multiple 
access communication systems, established a function with the delay and energy consumption of 
mobile devices as the optimization objectives and proposed a resource allocation scheme based on a 
subgradient algorithm. You et al. [14] discussed the resource allocation problem of minimum energy 
consumption in multi-user multiple access systems, defined the average unloading priority function 
and described the resource allocation as a convex optimization problem to minimize the weighted sum 
of system energy consumption under the constraint of calculation execution delay. Sardellitti et al. [15] 
considered a multi-cell mobile edge computing offload system, which jointly allocates radio and 
computing resources to minimize the total energy consumption of mobile terminals under the constraint 
of offload delay. Ketyko et al. [16] studied the offloading decision with the goal of maximizing the 
number of service applications and assigning computing nodes by priority. Wang et al. [17] used the 
method of deep learning to allocate resources and proposed a dynamic unloading scheme. Lemaréchal 
et al. [18] proposed a layered MEC deployment architecture when MEC computing resources are 
limited. Boyd et al. [19] proposed three different cloud selection strategies to optimize delay, total cluster 
energy consumption and energy consumption of each SCeNB in the cluster. Liu et al. [20] used the 
knapsack model to optimize the whole resource allocation and load balancing problem. Jabeen et al. [21] 
proposed an interference management scheme, which allocates communication resources and 
computing resources under the condition of minimum interference. Avgeris et al. [22] proposed an 
optimal resource allocation framework leveraging the amalgamation of the edge resources. A 
mechanism based on Markov Random Fields was introduced to allocate redundant workload. To speed 
up the learning and reduce the resource consumption of the network, Zuo et al. [23] formulated a 
problem of joint transmission time allocation, computing frequency control and user selection. Fan 
et al. [24] modeled the resource allocation and pricing of a cloud/edge computing service provider 
(CESP) as a mixed-integer programming problem (MIP) with the goal of optimizing the revenue of 
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the CESP, and an efficient resource allocation and pricing algorithm based on iterative greed and search 
was proposed. AlQerm et al. [25] proposed a novel resource allocation model that aimed to maximize 
the IoT applications’ utilities considering multiple applications’ priorities and various delay 
requirements and guaranteed resource allocation fairness. In order to solve the multi-user resource 
allocation problem, Huang et al. [26] adopted a performance-aware resource allocation (PARA) 
scheme based on a depth deterministic policy gradient (DDPG) to derive the optimal resource 
allocation strategy. Lin et al. [27] formulated the upstream resource allocation as a stratified multi-
objective optimization model, adjusting the spectrum and storage allocation between latency-critical 
and delay-tolerant flows. Zhu et al. [28] formulated the virtual resource allocation strategy as an 
optimization problem that aims to maximize the revenue earned by mobile virtual network operators and 
proposed a distributed virtual resource allocation algorithm based on the alternating direction method of 
multipliers. Shabbir et al. [29] compared other commonly used algorithms against the health 
information security at the MCC environment in terms of better performance and auxiliary qualitative 
security-ensuring measures. 

Although the literature mentioned above on resource allocation optimization has made some 
achievements, in the multi-user and multi-MEC server environment, the classification of resource 
nodes and the low utilization rate of resources in resource allocation are seldom considered. Therefore, 
this paper proposes a resource optimization algorithm based on comprehensive utility in the MEC 
environment, and the dynamic resource allocation problem in the mobile edge environment is studied. 

3. Design of resource allocation optimization algorithm based on comprehensive utility in 
MEC environment 

The resource allocation optimization method based on comprehensive utility in the MEC 
environment proposed in this paper mainly includes job classification based on an improved Naive 
Bayesian algorithm, classification of resource service nodes based on resource utilization rate and 
resource allocation based on comprehensive utility. The main parameters involved and their meanings 
are shown in Table 1. 

3.1. Job classification based on improved Naive Bayesian algorithm 

In the edge computing environment, by deploying edge computing nodes at the edge of the 
network, various mobile applications and new application scenarios can provide users with various 
services, increasing the number and types of jobs that edge computing nodes need to handle 
exponentially. Therefore, different types of jobs will generate different workloads on the cluster, 
including I/O-bound or CPU-bound workloads. In the research of job classification, jobs are 
mostly divided into I/O type or CPU type. I/O-intensive jobs are allocated to I/O type resources. 
CPU-intensive jobs are allocated to CPU type resources to achieve the load balance of cluster 
nodes and reduce the response delay of task allocation in the edge environment. Job classification 
based on job priority or resource requirements will also affect job resource allocation for most 
applications. The job controller uses the priority and the load indexes to establish the Bayes’ 
theorem’s conditional probability. 

The jobs are divided into I/O type or CPU type according to the characteristics of the jobs. The 
ratio of input data (MID) to output data (MOD) is represented as =MOD / MID , MCD denotes Map 
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processing data, SOD indicates the output result of Shuffle, RID shows the output data of Reduce, 
MTCT  represents the completion time of the Map task, DIOR  illustrates the I/O rate of the disk, and 
N  illustrates the number of tasks. Therefore, I/O type and CPU type tasks can be defined as follows: 

    1 2+ +SOD+SID N MID SIDN MID MOD
DIOR

MTCT MTCT

 
  .                       (1) 

    1 2 ++ N MID SIDN MID MOD SOD SID
DIOR

MTCT MTCT

 
  .                       (2) 

Table 1. The meanings of main parameters. 

Parameter Definition 
MTCT Completion time of Map task 
DIOR Disk I/O rate 
  Number of tasks 

zjob  job z  
last

CPUT  Last cumulative CPU cycle 
cumulative

CPUT  The actual CPU cycle used to execute the job is the cumulative CPU cycle 
current

CPUT  Current CPU cycle 
lastcurrent

CPUT  Historical CPU cycle and CPU cycle at the last heartbeat 
read
i / oU  The amount of reads that the job accumulates in I/O 
write
i/oU  The cumulative output of the job in I/O 
z
hv  The amount of calculation required to complete the task zh  
z
hs  The amount of memory required to complete the task zh  

J  Resource pool set 

jv  Computing power 

js  Memory size of resource pool j  

 y z  Priority of job z  
z
hy  Priority of resources required for task zh  

el  Location of the local server 

ol  Location of required resources 

  Quantity of content required 

tw  Size of the t -th required content 

 zh , j  Weight between task zh  and container ru  

If the sum of the resource utilization rates of the five stages of MapReduce (MID, MOD, MCD, 
SOD and RID) is greater than or equal to the disk I/O utilization rate, the job is a CPU type job; 
otherwise, it is an I/O type of job. According to Eqs (1) and (2), it can be seen that the categories that 
affect the job include input data (MID), output data (MOD), Shuffle output result (SOD), Reduce 
output data (RID) and   factors, and among them, the values of some factors need to be determined 
after the job is executed. This paper needs to classify jobs before they are executed, so Eqs (1) and (2) 
cannot be used to directly judge the types of work. Therefore, this paper uses the Bayesian classifier 
to classify jobs in Hadoop. According to job-related features and node characteristics, the Bayesian 
classifier is adopted, and its input data is expressed as job characteristics and node characteristics. 
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According to job characteristics and node characteristics, the Bayesian classifier divides jobs into I/O-
intensive and CPU-intensive jobs. 

Equations (3) and (4) calculate the conditional probability that the running job is I/O-intensive 
and CPU-intensive under certain specific conditions. 

 1 2|z nP job CPU , , ,   K                                   (3) 

 1 2|z nP job I / O , , ,   K                                   (4) 

zjob  represents job z , and n  indicates job characteristics and node characteristics, where it is 
assumed that each n  is independent of each other. Taking CPU-intensive jobs as an example, 

     P B| A P AB / P A  can be acquired according to the Bayesian formula, as shown in Eq (5). 

      
 

1 2 z z
z 1 2

1 2

= n
n

n

P , , , | job CPU P job CPU
P job CPU | , , ,

P , , ,

    
   

  
K

K
K

                   (5) 

Equation (6) can be derived from Eq (5). 

   1 2 z z
1

= =
n

n nP , , , | job CPU P | job CPU    K                           (6) 

Since there is no correlation between  1 2 nP , , ,  K  and job attributes, it can be ignored. Thus, 

Eq (6) can be converted to Eq (7). 

     z 1 2 z z
1

= = =
n

n nP job CPU | , , , P job CPU P | job CPU    K                       (7) 

As shown in Eqs (5)–(7), the posterior probability  z 1 2= nP job CPU | , , ,  K  can be obtained by 

being given z =job CPU   under the premise of the conditional independence assumption, which is 

expressed as Eq (8). 

 
   

 
z z

1
z 1 2

1 2

= =
=

n

n

n
n

P job CPU P | job CPU
P job CPU | , , ,

P , , ,


   

  


K

K
                     (8) 

Owing to the value of  1 2 nP , , ,  K  being constant, it is only necessary to calculate the relative 
size of the numerator in Eq (8), which can be expressed as Eq (9). 

       z z 1 2 z z
1

= =argmax = = =
n

n nmax
job CPU P job CPU | , , , arg maxP job CPU P | job CPU    K              (9) 

Based on Eq (9), when the posterior probability  z 1 2= nP job CPU | , , ,  K   is contrasted, more 
conditional probabilities are required for multiplication calculation. At the same time, it is likely that 
underflow will occur, which will lead to the abnormal execution of the next command, thus leading to 
the uncertainty result of a posterior probability  z 1 2= nP job CPU | , , ,  K , thereby affecting the judgment 
of job type, influencing the feasibility of the algorithm and reducing the performance of the algorithm. 
Consequently, this paper optimizes according to the disadvantages of the Naive Bayes algorithm, and 
Eq (9) is transformed into the following: 

       z z 1 2 z z
1

= =argmax = = + =
n

n nmax
job CPU P job CPU | , , , InP job CPU InP | job CPU    K .           (10) 
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It can be seen from Eq (10) that there may be a value of 0 on the right side of the equation, which 
will have a certain impact on the job classification result, thus affecting the performance of the 
algorithm. The Laplace smoothing technique can effectively avoid the situation where the right side 
of the equation is 0, and we can add 1 to the right side of the equation. Therefore, the class conditional 
probability of I/O-intensive jobs and CPU-intensive jobs can be expressed as 

 1 2 z

1
| = k

n
k c

k

T
P , , , job CPU

T T


   


K .                               (11) 

In Eq (11), kT  denotes the number of occurrences of feature items in I/O-intensive jobs and CPU-
intensive jobs in the total workload, the total number of all feature items of a job type, and cT   

illustrates the smoothing factor, the total number of feature items of all job types. Therefore, the 
posterior probability for the two types of operations can be formulated as 

   z 1 2 z
1

1
= =

n
k

n
k c

k

T
P job CPU | , , , arg maxP job CPU

T T


   


K .                     (12) 

   z 1 2 z
1

1
= =

n
k

n
k c

k

T
P job I / O| , , , arg maxP job I / O

T T


   


K .                      (13) 

The job type is judged according to the established Naive Bayes posterior probability. Therefore, 
when    1 1| |z n z nP job CPU , , P job I / O , ,      K K  , the job is CPU-intensive, and when

   1 1| |z n z nP job I / O , , P job CPU , ,      K K , the job is I/O-intensive. The job classification algorithm 

based on improved Naive Bayes is shown in Algorithm 4.1. 

3.2. Resource service nodes are classified based on resource utilization 

In the problem of resource allocation in the edge cloud environment, not only the types of jobs 
and the arrival times and regularity of jobs should be considered, but also the requirements for 
resource types of jobs should be considered. Therefore, according to the resource utilization rates of 
I/O and CPU, the resource service nodes are divided into I/O main resource and CPU main resource 
to make full use of the system resources. 

TaskTracker sends heartbeat information to JobTracker within a specific time to indicate that the 
node is running. Therefore, I/O and CPU usages on TaskTracker are captured by adding specific 
indicators. According to the heartbeat message received from TaskTracker, JobTracker obtains the 
resource utilization rate information of the node. There, I/O and CPU resource utilization rates in 
TaskTracker are achieved as follows: 

 
cumulative last

CPU CPU
usage current lastcurrent

CPU CPU

T T
CPU

T T Num _ of _ processors




 
.                      (14) 

   
 

read lastread write lastwrite
i / o i / o i / o i / o

usage current lastcurrent
CPU CPU

U U U U
I / O

T T

  



.                         (15) 
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In Eq (14), cumulative
CPUT  shows the actual CPU cycle used to execute the job, the cumulative CPU 

cycle, last
CPUT  indicates the last cumulative CPU cycle, current

CPUT  denotes the current CPU cycle, and the 
value of lastcurrent

CPUT  manifests the historical CPU cycle and the CPU cycle at the last heartbeat. read
i / oU

indicates the cumulative read amount of the job in I/O, and write
i / oU  shows the cumulative output of the 

job in I/O. When usage usageCPU I / O  , the resource node is the main CPU resource, and when

usage usageCPU I / O , the resource node is the main I/O resource. The classification algorithm of resource 

service nodes is shown in Algorithm 4.2. 

3.3. Resource allocation based on comprehensive utility 

In this section, resource nodes are calculated for job allocation according to three factors: resource 
location, task priority and network transmission cost. The optimal solution of job and resource node 
matching is obtained according to the method of a weighted bipartite graph. 

The job is denoted as z , each job  0z z f   is composed of multiple tasks zl , and each task is 

indivisible, independent and non-preemptive. The task zh   is illustrated as   = 1z z
z h h z zh v ,s h l   , z

hv

represents the amount of computation required to complete task zh , and z
hs  illustrates the memory 

size required to complete task zh . The resource pool set is defined as  0j j J  , and each resource 

pool is indicated as  j jj v ,s@ , where jv  is the computing power of the CPU, and js  is the memory 

size of the resource pool j . Therefore, the similarity between task zh  and resource service node j

can be defined as follows. '
ju  is the transpose of vector ju . 

 
'

z
z

z

h j
Sim h , j

h j


                                   (16) 

The priority  zy h  of task zh  is expressed as 

     = 1   z
z hy h y z y .                              (17) 

In Eq (17),  y z  represents the priority of job z , which is determined by the scheduling priority 

in the data processing system, z
hy   denotes the priority of resources required by task zh  , and   

indicates the weight coefficient. As the value of  zy h   increases, the priority of task zh   will also 

increase, and z
hy  is determined by the location of resources required by task zh . When the required 

resources are stored in the memory on the local server, set =2z
hy . When the demand resources are stored 

in the disk on the local server =1z
hy , and otherwise, 

 
1

=z
h

e o

y
h l ,l

. el  represents the location of the local 

server, ol   illustrates the location of the required resources, and  e oh l ,l   describes the minimum 

network distance between the local server and the required resources. 
The network transmission cost is illustrated as 

   
 

e = t e t
z

t e t

w h l ,w
h , j

band l ,w



 .                             (18) 

In Eq (18),   represents the quantity of required content, tw  indicates the size of the t -th 
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required content,  e th l ,w  manifests the minimum network distance between the local server and the 

needed content location, and  e tband l ,w   illustrates the bandwidth between the local server and the 

required content location. When the demand content is stored on the local server,  =0e th l ,w   and

 =1e tband l ,w . Therefore, the job resource matching optimization problem is described as 

   
 1 1 1

1
1

z

z

zlf J
hj z z

z j h z

Sim h , j y h
P : max

e h , j      


π
.                        (19) 

s.t.

 

1

0 1

1

1 2

1 2

z
hj

J
z
hj

j

z

,

j , , , J

h , , ,l












π

π

L

L

.                                (20) 

In Eq (19), for  0 1z
hj ,π  , when the h -th task matches the j -th resource pool, =1z

hjπ  ; 

otherwise, =0z
hjπ . Since problem 1P  is a shaping programming problem, that is, an NP hard problem, 

in order to solve this problem, problem 1P  is transformed into an optimal matching problem under 

the condition of a weighted bipartite graph. Consequently, in the weighted bipartite graph, the weight 

of task zh  and resource pool j  is composed of their similarities. The weight between task priority 

and network transmission cost can be depicted as 

   
 

 
 

 
 

1 2 3= + -z z z
z

z z z

Sim h , j y h e h , j
h , j

Sim h , j y h e h , j

  
 .                       (21) 

 zh , j represents the weight between task zh  and container ru ,
1  denotes the weight coefficient 

of similarity, 
2   illustrates the weight coefficient of task priority, and 3   manifests the weight 

coefficient of network transmission cost. 

   
1 1 1

1 1

=
z

z

z

z

lf J
z

z lf
z j h

z h

Sim h , j
Sim h , j

j  

 




                            (22) 

   
1 1

1

=
z

z

lf
z

z f
z h

z
z

y h
y h

l 






                                  (23) 

   
1 1 1

1 1

=

'
g

z

z

z

zf J
z

z lf
z j h

z h

e h , j
e h , j

j  

 




                               (24) 

1P  can be reduced to the following programming problem. 

 
1 1 1

2
z

z

lf J
z
hj z

z j h

P : max h , j
  
π                            (25) 
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s.t.  

 

1

0 1

1

1 2

1 2

z
hj

J
z
hj

j

z

,

j , , ,J

h , , ,l












π

π

L

L

                                  (26) 

When 
1

f

zz
l j


 , 

1
-j

f

zz
l

  virtual resource pools need to be added, so that there is a one-to-one 

relationship between each task and each resource pool. The weight between each task and the added 
virtual resource pool is zero. The resource allocation algorithm is based on comprehensive utility, as 
shown in Algorithm 4.3. 

4. Implementation of resource allocation optimization algorithm based on comprehensive 
utility in MEC environment 

4.1. Job classification based on improved Naive Bayesian algorithm 

The first step is to establish the conditional probability of the job by using Naive Bayes and then 
calculate the posterior probability of each job type according to the formula. Aiming at the 
shortcomings of Naive Bayes, the Laplace Smoothing technique is used to optimize the Naive Bayes 
algorithm. Finally, the posterior probability of the job to be classified is computed, and the job type is 
judged according to the acquired posterior probability of the job type. The core pseudo-code of job 
classification based on the improved Naive Bayesian algorithm is shown in Algorithm 1. 

Algorithm 1: Job classification based on improved Naive Bayesian algorithm 
Input: Job volume  , job [1,2,..., f] // job is defined as the job to be classified 
1. for ( =1 ; f  ; ++ ) do 

2.  Establish Bayesian conditional probability    // according to Eq (3), (4) 

3.  Calculate the posterior probability of the operation type according to Eq (8) 

4.  Use Laplace smoothing technique to eliminate the situation where the right side of Eq (8) is 0 
// Eq (11) 
5.  Obtain the posterior probability of CPU-intensive jobs and I/O-intensive jobs // Eq (12) and 
Eq (13) 
6.  call.Classifier( ) 

7.  if    1 1| |z n z nP job CPU , , P job I / O , ,        K K  then 

8.      the job is CPU-intensive 

9.     else if    1 1| |z n z nP job I / O , , P job CPU , ,        K K  

10.      the job is I/O-intensive 

11.    end if 

12. end for 

13. return JobType[1,2,…,f] 
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4.2. Resource service nodes are classified based on resource utilization 

According to the resource utilization rate, the resource pool is divided into CPU main 
resources and I/O main resources. The core pseudo-code for classifying resource service nodes is 
shown in Algorithm 2. 

Algorithm 2: Resource classification algorithm based on status of resource service nodes 
Input: Resource Service Node  j= 1,2, ,JL  // The number of J resource nodes to be classified 
Output：  1,2, ,JClassify K  // Classified resource nodes 
1. For each j 
2.   usageCPU ， usageI / O  // Obtain the resource utilization of the CPU and I/O in TaskTracker
according to Eqs (14) and (15) 
3.   if usage usageCPU I / O  
4.     the resource node is the main CPU resource 
5.   else usage usageCPU I / O  
6.     the resource node is the main I/O resource 
7.   end if 
8. end for 
9. return  1,2, ,JClassify K  

4.3. Resource allocation optimization based on comprehensive utility 

It is necessary to divide corresponding types of jobs into corresponding resource pools. This paper 
formulates a resource allocation algorithm based on comprehensive utility by calculating the similarity 
between tasks and resource pools, task priority and network transmission overhead of required 
resources. The core pseudo-code is exhibited in Algorithm 3. 

The flow chart of the resource allocation optimization algorithm based on comprehensive utility 
in the MEC environment is shown in Figure 1. 

5. Performance evaluation 

5.1. Experimental environment and configuration 

5.1.1. Environment settings 

1) Experimental environment 

This experimental environment is ubuntu-18.10-desktop-amd64, JDK1.8.0_11. Use the virtual 
machine software VMware Workstation 15.0.4 and SSH tools OpenSSH-server and OpenSSH-client. 
Build cloud computing framework Hadoop-3.1.2. The Linux system cloning tool is Clonezilla. The 
integrated development environment is Linux Eclipse 4.5.0. The specific experimental test 
environment and cluster node configuration in this study are indicated in Figure 2 and Table 2. 
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In order to simulate the actual scene of the experiment, the edge server is built with nine mobile 
terminals with different configurations. The remote cloud uses the Aliyun instance to build the 
environment. Edge servers and remote cloud communicate via VPN. Table 2 shows the configuration 
of the cluster node of the Edge Server. 

2) Experimental data 

The experiment data comes from the dataset of Stanford Network [30] (SNAP), including the 
online social network set, communication network set, Amazon network set, and other large network 
data sets. The range is [2, 40] G, the size of the experimental data set is about 40 GB, the size of each 
segmented data is 128 MB, and the range of the map task is [14, 300]. Therefore, the scale of the 
dataset executed by the benchmark program in this experiment is shown in Table 3. 

Algorithm 3: Resource allocation algorithm based on Comprehensive Utility 

Input：Resource pool set  1,2,J , j K ，job  1 2Job , , , f ，task set  1 2 1 2zH h ,h , ,h ;z , , , f K K  

Output：Resource allocation result HashMap 

1. for each zh H do 

2. Calculate the similarity  zSim h , j  between task zh  and resource service node j  // according 
to Eq (16) 
3. Calculate the priority  zy h  of task zh  // according to Eq (17) 

4. Calculate the network transmission cost  e zh , j  // according to Eq (18) 

5. end for each 

6. for each heartbeat information 

7. if 
1

f

zz
l j


  then 

8.    add 
1

-
f

zz
l j

  virtual resource pools 

9.    Repeat 

10.   Use weighted bipartite graph matching method to select mutually matching job and resource 
service nodes 
11.   until obtaining the optimal solution matching the job and resource service node // according 
to the formula (19) 
12. else  

13.   add 
1

f

zz
j l


  virtual resource pools 

14. end if 

15. update matching operation of job and resource service node 

16. end for each 

17. return obtained matching jobs and resource service nodes 
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Figure 1. The flow chart of resource allocation optimization algorithm based on 
comprehensive utility in MEC environment. 

Table 2. Edge server cluster node configuration. 

Node type and name IP address CPU type Running memory 

Master (NameNode) 193.168.121.101 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 8 GB 

Slave (DateNode1) 193.168.121.102 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 2 GB 

Slave (DateNode2) 193.168.121.103 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 8 GB 

Slave (DateNode3) 193.168.121.104 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 4 GB 
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Figure 2. Experimental test environment. 

Table 3. Data set size of benchmark program execution. 

Data set Data count Map tasks 

Online social network collection 4039 data of Facebook social circle, a total of 2 G data volume 16 

Communication network set 36,692 data of e-mail communication network, a total of 8G data volume 32 

Amazon Web collection Purchase information and all comment data of various products, a total of 

25 G data volume 

190 

Wikipedia Network 7115 data voted by Wiki, a total of 4 G data 25 

5.1.2. Test cases and parameter settings 

The experiment uses different job streams as the test cases [31], namely Wordcount, Kmeans, 
and Teragen. Since there are not many data calculation operations in the map and reduced phases of 
WordCount, this type of job can be classified as I/O-intensive. Kmeans involves more data computing 
operations in the Map and Reduce phases and does not have too many intermediate data read and write 
operations, so this type of job is classified as CPU-intensive. The data generated by Teragen is mostly 
used for subsequent programs, so this type of job can be classified as I/O intensive. The test case 
related data description of this experiment is shown in Table 4. 
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Table 4. Description of experimental test cases. 

Test procedure Description Characteristic 

WordCount Total word count I/O-intensive 

Kmeans Smaller dimension, numerical and continuous data set CPU-intensive 

Teragen The generated data (3 GB) is used in subsequent procedures I/O-intensive 

5.2. Experimental results and analysis 

In order to verify the effectiveness and stability of the algorithm proposed in this paper, the 
average job execution time and hit rate are used as the evaluation indicators of algorithm performance.  

5.2.1. Influence of job number on algorithm performance 

This group of experiments analyzes the average job execution time of the same job running under 
FIFO [32], FAIR [33], COSHH [34] and RAOCU. This experiment sets four job streams for each type 
of job, each job stream has 35 jobs, and a total of 140 jobs are submitted. Jobs of WorkCount, Kmeans 
and Teragen types are executed eight times each with job counts of 20, 60, 100 and 140, respectively. 
The average execution times of jobs under different numbers of jobs are shown in Figure 3. The job hit 
rates under different job numbers are shown in Figure 4. 
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Figure 3. Comparison of average job execution times in different job quantities. 

Figure 3 shows that when the number of jobs is 20, the average execution times of FIFO, FAIR, 
COSHH and RAOCU have little distinction, and they can all be stable at about 350 s. With increasing job 
data, COSHH can achieve a lower average job execution delay than FIFO and FAIR. The average job 
execution delay of the algorithm in this paper can show a lower trend than the other three algorithms. As 
the scale of job data increases, some jobs have priority implemented, while some jobs are only part of the 
execution jobs. For the jobs with priority execution, the Map task collects the job execution information 
and classifies the jobs, and then the remaining job allocates resources according to the corresponding labels. 
Because the RAOCU uses an improved Naive Bayes classification algorithm to classify the job, it can 
effectively speed up the classification of job data and reduce the average job execution time. 
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Figure 4. Comparison of job hit rates in different job numbers. 

Figure 4 shows that with the increase in the number of tasks, the job hit rate of each algorithm also 
increases. For example, under the number of 140 jobs, the job hit rate of RAOCU is about 46.3% higher 
than that of 20 tasks, so the job hit rate of RAOCU is higher than those of the FIFO, FAIR and COSHH 
algorithms. In the case of 140 jobs, the RAOCU hit rate is about 25.9% higher than FIFO, 12.96% higher 
than FAIR and 11.1% higher than COSHH. 

5.2.2. Influence of available storage space on algorithm performance under different resource 
service nodes 

Figure 5 describes the average execution times of jobs with available storage space under different 
resource service nodes. Figure 6 illustrates the hit rates of job resources under different storage spaces. 
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Figure 5. Comparison of average job execution time in different available storage spaces. 

As shown in Figure 5, as the available storage space increases, the average job execution time for 
each algorithm decreases. When the size of the storage space under the resource service node increases 
from 20 to 50, the average job execution time of RAOCU is reduced by about 53.3%. Under the same 
available storage space, the average job execution time of the algorithm in this paper shows a lower 
trend than the other three algorithms. The resource location considered in RAOCU establishes the 
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relationship between the task and the resource pool according to the similarity, which can be matched 
by the task content and effectively reduce the average execution time of the job. 
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Figure 6. Comparison of job hit rates in different available storage spaces. 

As shown in Figure 6, with the increase of storage space under the resource service node, the job 
hit rate of each algorithm also rises. When the size of the storage space under the resource service node 
changes from 20 to 50, the job hit rate of RAOCU increases by about 61.5%, which is higher than those 
of the FIFO, FAIR and COSHH algorithms. When the available storage space is 50, RAOCU’s job hit 
rate is about 31.2% higher than FIFO’s, 26% higher than FAIR’s and 14.3% higher than COSHH’s. With 
the same available storage space, the job hit rates of the other three algorithms are lower than that of the 
RAOCU algorithm. As the available storage space under the resource service node increases, the edge 
nodes contain more content. In resource matching, RAOCU considers three factors: resource location, 
task priority and network transmission cost, thus improving the hit rate of each algorithm. 

5.2.3. Influence of the number of resource service nodes on algorithm performance 

Figure 7 depicts the influence of the number of resource service nodes on the average job execution 
times. Figure 8 manifests the influence of the number of resource service nodes on the job hit rates. 
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Figure 7. Comparison of average job execution times in different numbers of resource service nodes. 
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As shown in Figure 7, when the number of resource service nodes is between 20 and 100, the 
FIFO and FAIR algorithms fluctuate greatly. The average task execution delay of FIFO decreases first 
and then increases with the increase of resource service nodes. FAIR’s average task execution delay 
first decreases and gradually increases with the number of resource service nodes. COSHH’s 
performance shows a trend of first declining and then stabilizing. When it is stable, RAOCU shows a 
lower average job response time than COSHH. When the number of resource service nodes is about 52, 
the average job response time of RAOCU is the lowest. 

It can be seen from Figure 8 that with the increasing number of resource service nodes, the job 
hit rates of FIFO and FAIR algorithms are in a relatively stable trend. Compared with FIFO and FAIR, 
COSHH and RAOCU show a convex trend with the increase in the number of resource service nodes. 
With the increase of resource service nodes, the job hit rates first show an upward trend and then 
gradually decrease. RAOCU considers the classification of jobs and the classification of resource 
service nodes. When the number of resource service nodes is too low, the matching between jobs and 
corresponding resource service nodes cannot be well completed, so the job hit rate is low. When the 
number of resource service nodes exceeds a specific number, the job will be matched to resource 
service nodes of the same type. Hence, RAOCU improves the utilization rate of resource nodes to a 
certain extent and has higher optimization performance than FIFO, FAIR and COSHH. 
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Figure 8. Comparison of job hit rates in different numbers of resource service nodes. 

5.3. Experiment summary 

By analyzing the above three sets of experiments, the following conclusions can be drawn: 1) The 
number of jobs impacts the resource optimization algorithm. As the number of jobs increases, the 
average task execution delay and the job hit rate also increase. 2) The available storage space under 
different resource service nodes will affect the resource allocation optimization algorithm. As the 
available storage space increases, the average task execution delay decreases, and the job hit rate 
gradually increases. 3) The number of resource service nodes influences the resource optimization 
algorithm. As the number of resource service nodes increases, the average task execution time 
increases steadily, while the job hit rate increases first and then gradually decreases. 
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6. Conclusions and future work 

This paper studies the resource allocation optimization method based on comprehensive utility in 
multi-user and multiple MEC environments. The algorithm mainly includes job classification based 
on an improved Naive Bayesian algorithm, resource service node classification based on resource 
utilization rate and resource allocation based on comprehensive utility. Finally, the simulation results 
show that the RAOCU algorithm can reduce the resource occupancy rate and improve the resource 
utilization rate. At the same time, it has good performance in the average job execution delay and job 
hit rate. However, when classifying the computing tasks requested by the mobile terminal, this work 
does not consider the deadline and computing cost of the job. In the classification method of resource 
service nodes, only the resource utilization rate of resource service nodes is considered for 
classification. The network load of resource service node classification after job classification is not 
considered, so the next key work will be about these aspects of research. 
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