
MBE, 19(9): 9147–9167.

DOI: 10.3934/mbe.2022425

Received: 29 April 2022

Revised: 29 May 2022

Accepted: 06 June 2022

Published: 22 June 2022

http://www.aimspress.com/journal/MBE

Research article

Resources allocation optimization algorithm based on the

comprehensive utility in edge computing applications

Yanpei Liu*, Yunjing Zhu, Yanru Bin and Ningning Chen

School of Computer and Communication Engineering, Zhengzhou University of Light Industry,
Zhengzhou 450002, China

* Correspondence: Email: liuyanpei@zzuli.edu.cn; Tel: +8618339810322.

Abstract: In the mobile edge computing environment, aiming at the problems of few classifications
of resource nodes and low resource utilization in the process of multi-user and multi-server resource
allocation, a resource optimization algorithm based on comprehensive utility is proposed. First, the
algorithm improves the Naive Bayes algorithm, obtains the conditional probabilities of job types based
on the established Naive Bayes formula and calculates the posterior probabilities of different job types
under specific conditions. Second, the classification method of resource service nodes is designed.
According to the resource utilization rate of the CPU and I/O, the resource service nodes are divided
into CPU main resources and I/O main resources. Finally, the resource allocation based on
comprehensive utility is considered. According to three factors, resource location, task priority and
network transmission cost, the matching computing resource nodes are allocated to the job, and the
optimal solution of matching job and resource nodes is obtained by the weighted bipartite graph
method. The experimental results show that, compared with similar resource optimization algorithms,
this method can effectively classify job types and resource service nodes, reduce resource occupancy
rate and improve resource utilization rate.

Keywords: edge computing; resource allocation; improved Naive Bayes algorithm; resource service
node classification; weighted bipartite graph

9148

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

1. Introduction

According to Ericsson’s “Mobile Market Report”, it is predicted that by the end of 2025, there
will be more than 2.8 billion 5G subscribers worldwide. 5G will cover nearly 65% of the world’s
population, and 5G networks will carry 45% of data traffic. Among that, smartphones will account
for 86%, and the world will usher in the Internet era of the explosive growth of network data and
information. The increasing popularity of 5G networks has witnessed the rapid development of the
Internet of Things [1], which has stimulated the emergence of various forms of new applications, such
as AR, VR, autonomous driving, smart cities, telemedicine and other technical fields. These
application scenarios require a higher bandwidth rate and lower system energy consumption and
computing delay [2,3], while the centralized processing mode adopted by the mobile cloud computing
model is far from the terminal devices and cannot meet the daily needs of users [4,5]. Therefore, mobile
edge computing (MEC) technology has emerged.

Mobile edge computing [6] is considered one of the core technologies in developing modern
communication networks and 5G technology. MEC performs operations such as computing processing
and resource allocation on edge nodes by introducing computing data to the edge of the mobile network.
As a research hotspot of MEC, resource allocation mainly studies the problem of where to unload
computing tasks [7]. In the MEC network scenario of computing-intensive applications, tasks need to
be reasonably allocated to maximize the utilization rate of each computing node’s storage, CPU and
other resources. Therefore, effective resource allocation can not only avoid channel interference
between tasks but also increase the calculation rate of tasks, effectively reducing resource occupancy
rate and improving resource utilization rate [8,9]. Although a large number of excellent works are
devoted to the related research of resource allocation in the MEC environment, numerous studies cover
resource allocation based on joint computing offload, channel allocation, spectrum allocation, power
allocation and other technologies; and most of the optimization objectives are offload delay, system
energy consumption or user income. Thus, there is little research on dynamic resource allocation under
multi-user and multiple MEC servers. Therefore, this paper studies the dynamic resource allocation
problem in the mobile edge environment and proposes a resource allocation optimization method
based on comprehensive utility in the MEC (RAOCU). The method mainly includes three parts: job
classification based on an improved Naive Bayes algorithm, resource service node classification based
on resource utilization and resource allocation based on comprehensive utility. The main, specific
contributions of this work are summarized as follows.
1) Aiming at the problem of inaccurate job classification results caused by the underflow of the Naive

Bayes algorithm, the Naive Bayes algorithm is optimized. The conditional probability of the job
type is obtained according to the established Naive Bayes formula, and then the posterior
probability that the running job is a CPU-intensive job and I/O-intensive job under certain
conditions is obtained, which improves the Naive Bayes Classifier performance.

2) For resource allocation based on comprehensive utility, by considering the three factors of resource
location, task priority and network transmission cost, matching computing resources are assigned
to the particular types of jobs, and according to the weighted bipartite graph, the optimal solution
of matching job and resource nodes is obtained.

3) The experimental results demonstrate that, compared with other algorithms, the algorithm of this
paper can classify job types and resource service nodes more effectively, reduce resource
occupancy rate and improve resource utilization rate.

9149

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

The rest of the paper is organized as follows: Section 2 is the research status, and Section 3
expounds on and analyzes the design of resource optimization methods based on comprehensive utility
in an MEC environment, including job classification based on an improved Naive Bayes algorithm,
resource service node classification based on resource utilization rate and resource allocation based on
comprehensive utility. Section 4 provides a detailed description of the proposed algorithm. Section 5
provides a comparison and analysis of experimental results. Finally, Section 6 summarizes the paper
and discusses its development direction.

2. Related work

Many scholars have conducted relevant research on resource allocation in the MEC environment.
Tran et al. [10] studied joint task offloading and resource allocation, aiming at maximizing the revenue
of user task offloading, and the total revenue of the user is characterized as the weighted sum of task
execution delay and energy consumption. Xu et al. [11] established a comprehensive model, Zenith,
to capture the optimization problem of online resource allocation in the edge cloud. Based on the
proposed model, an auction-based resource contract mechanism and a delay scheduling technology to
maximize the utility of service providers were proposed. Dab et al. [12] proposed a joint task allocation
and resource allocation method aiming at minimizing the energy consumption of mobile terminals.
This scheme formulated the optimization problem based on integer programming and proposed an
enhancement algorithm considering the waiting delay of mobile terminals and data transmission. Jinke
et al. [13] studied the joint communication and computing resource allocation of multi-user multiple
access communication systems, established a function with the delay and energy consumption of
mobile devices as the optimization objectives and proposed a resource allocation scheme based on a
subgradient algorithm. You et al. [14] discussed the resource allocation problem of minimum energy
consumption in multi-user multiple access systems, defined the average unloading priority function
and described the resource allocation as a convex optimization problem to minimize the weighted sum
of system energy consumption under the constraint of calculation execution delay. Sardellitti et al. [15]
considered a multi-cell mobile edge computing offload system, which jointly allocates radio and
computing resources to minimize the total energy consumption of mobile terminals under the constraint
of offload delay. Ketyko et al. [16] studied the offloading decision with the goal of maximizing the
number of service applications and assigning computing nodes by priority. Wang et al. [17] used the
method of deep learning to allocate resources and proposed a dynamic unloading scheme. Lemaréchal
et al. [18] proposed a layered MEC deployment architecture when MEC computing resources are
limited. Boyd et al. [19] proposed three different cloud selection strategies to optimize delay, total cluster
energy consumption and energy consumption of each SCeNB in the cluster. Liu et al. [20] used the
knapsack model to optimize the whole resource allocation and load balancing problem. Jabeen et al. [21]
proposed an interference management scheme, which allocates communication resources and
computing resources under the condition of minimum interference. Avgeris et al. [22] proposed an
optimal resource allocation framework leveraging the amalgamation of the edge resources. A
mechanism based on Markov Random Fields was introduced to allocate redundant workload. To speed
up the learning and reduce the resource consumption of the network, Zuo et al. [23] formulated a
problem of joint transmission time allocation, computing frequency control and user selection. Fan
et al. [24] modeled the resource allocation and pricing of a cloud/edge computing service provider
(CESP) as a mixed-integer programming problem (MIP) with the goal of optimizing the revenue of

9150

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

the CESP, and an efficient resource allocation and pricing algorithm based on iterative greed and search
was proposed. AlQerm et al. [25] proposed a novel resource allocation model that aimed to maximize
the IoT applications’ utilities considering multiple applications’ priorities and various delay
requirements and guaranteed resource allocation fairness. In order to solve the multi-user resource
allocation problem, Huang et al. [26] adopted a performance-aware resource allocation (PARA)
scheme based on a depth deterministic policy gradient (DDPG) to derive the optimal resource
allocation strategy. Lin et al. [27] formulated the upstream resource allocation as a stratified multi-
objective optimization model, adjusting the spectrum and storage allocation between latency-critical
and delay-tolerant flows. Zhu et al. [28] formulated the virtual resource allocation strategy as an
optimization problem that aims to maximize the revenue earned by mobile virtual network operators and
proposed a distributed virtual resource allocation algorithm based on the alternating direction method of
multipliers. Shabbir et al. [29] compared other commonly used algorithms against the health
information security at the MCC environment in terms of better performance and auxiliary qualitative
security-ensuring measures.

Although the literature mentioned above on resource allocation optimization has made some
achievements, in the multi-user and multi-MEC server environment, the classification of resource
nodes and the low utilization rate of resources in resource allocation are seldom considered. Therefore,
this paper proposes a resource optimization algorithm based on comprehensive utility in the MEC
environment, and the dynamic resource allocation problem in the mobile edge environment is studied.

3. Design of resource allocation optimization algorithm based on comprehensive utility in
MEC environment

The resource allocation optimization method based on comprehensive utility in the MEC
environment proposed in this paper mainly includes job classification based on an improved Naive
Bayesian algorithm, classification of resource service nodes based on resource utilization rate and
resource allocation based on comprehensive utility. The main parameters involved and their meanings
are shown in Table 1.

3.1. Job classification based on improved Naive Bayesian algorithm

In the edge computing environment, by deploying edge computing nodes at the edge of the
network, various mobile applications and new application scenarios can provide users with various
services, increasing the number and types of jobs that edge computing nodes need to handle
exponentially. Therefore, different types of jobs will generate different workloads on the cluster,
including I/O-bound or CPU-bound workloads. In the research of job classification, jobs are
mostly divided into I/O type or CPU type. I/O-intensive jobs are allocated to I/O type resources.
CPU-intensive jobs are allocated to CPU type resources to achieve the load balance of cluster
nodes and reduce the response delay of task allocation in the edge environment. Job classification
based on job priority or resource requirements will also affect job resource allocation for most
applications. The job controller uses the priority and the load indexes to establish the Bayes’
theorem’s conditional probability.

The jobs are divided into I/O type or CPU type according to the characteristics of the jobs. The
ratio of input data (MID) to output data (MOD) is represented as =MOD / MID , MCD denotes Map

9151

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

processing data, SOD indicates the output result of Shuffle, RID shows the output data of Reduce,
MTCT represents the completion time of the Map task, DIOR illustrates the I/O rate of the disk, and
N illustrates the number of tasks. Therefore, I/O type and CPU type tasks can be defined as follows:

    1 2+ +SOD+SID N MID SIDN MID MOD
DIOR

MTCT MTCT

 
  . (1)

    1 2 ++ N MID SIDN MID MOD SOD SID
DIOR

MTCT MTCT

 
  . (2)

Table 1. The meanings of main parameters.

Parameter Definition
MTCT Completion time of Map task
DIOR Disk I/O rate
 Number of tasks

zjob job z
last

CPUT Last cumulative CPU cycle
cumulative

CPUT The actual CPU cycle used to execute the job is the cumulative CPU cycle
current

CPUT Current CPU cycle
lastcurrent

CPUT Historical CPU cycle and CPU cycle at the last heartbeat
read
i / oU The amount of reads that the job accumulates in I/O
write
i/oU The cumulative output of the job in I/O
z
hv The amount of calculation required to complete the task zh
z
hs The amount of memory required to complete the task zh

J Resource pool set

jv Computing power

js Memory size of resource pool j

 y z Priority of job z
z
hy Priority of resources required for task zh

el Location of the local server

ol Location of required resources

 Quantity of content required

tw Size of the t -th required content

 zh , j Weight between task zh and container ru

If the sum of the resource utilization rates of the five stages of MapReduce (MID, MOD, MCD,
SOD and RID) is greater than or equal to the disk I/O utilization rate, the job is a CPU type job;
otherwise, it is an I/O type of job. According to Eqs (1) and (2), it can be seen that the categories that
affect the job include input data (MID), output data (MOD), Shuffle output result (SOD), Reduce
output data (RID) and  factors, and among them, the values of some factors need to be determined
after the job is executed. This paper needs to classify jobs before they are executed, so Eqs (1) and (2)
cannot be used to directly judge the types of work. Therefore, this paper uses the Bayesian classifier
to classify jobs in Hadoop. According to job-related features and node characteristics, the Bayesian
classifier is adopted, and its input data is expressed as job characteristics and node characteristics.

9152

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

According to job characteristics and node characteristics, the Bayesian classifier divides jobs into I/O-
intensive and CPU-intensive jobs.

Equations (3) and (4) calculate the conditional probability that the running job is I/O-intensive
and CPU-intensive under certain specific conditions.

 1 2|z nP job CPU , , ,   K (3)

 1 2|z nP job I / O , , ,   K (4)

zjob represents job z , and n indicates job characteristics and node characteristics, where it is
assumed that each n is independent of each other. Taking CPU-intensive jobs as an example,

     P B| A P AB / P A can be acquired according to the Bayesian formula, as shown in Eq (5).

      
 

1 2 z z
z 1 2

1 2

= n
n

n

P , , , | job CPU P job CPU
P job CPU | , , ,

P , , ,

    
   

  
K

K
K

 (5)

Equation (6) can be derived from Eq (5).

   1 2 z z
1

= =
n

n nP , , , | job CPU P | job CPU    K (6)

Since there is no correlation between  1 2 nP , , ,  K and job attributes, it can be ignored. Thus,

Eq (6) can be converted to Eq (7).

     z 1 2 z z
1

= = =
n

n nP job CPU | , , , P job CPU P | job CPU    K (7)

As shown in Eqs (5)–(7), the posterior probability  z 1 2= nP job CPU | , , ,  K can be obtained by

being given z =job CPU under the premise of the conditional independence assumption, which is

expressed as Eq (8).

 
   

 
z z

1
z 1 2

1 2

= =
=

n

n

n
n

P job CPU P | job CPU
P job CPU | , , ,

P , , ,


   

  


K

K
 (8)

Owing to the value of  1 2 nP , , ,  K being constant, it is only necessary to calculate the relative
size of the numerator in Eq (8), which can be expressed as Eq (9).

       z z 1 2 z z
1

= =argmax = = =
n

n nmax
job CPU P job CPU | , , , arg maxP job CPU P | job CPU    K (9)

Based on Eq (9), when the posterior probability  z 1 2= nP job CPU | , , ,  K is contrasted, more
conditional probabilities are required for multiplication calculation. At the same time, it is likely that
underflow will occur, which will lead to the abnormal execution of the next command, thus leading to
the uncertainty result of a posterior probability  z 1 2= nP job CPU | , , ,  K , thereby affecting the judgment
of job type, influencing the feasibility of the algorithm and reducing the performance of the algorithm.
Consequently, this paper optimizes according to the disadvantages of the Naive Bayes algorithm, and
Eq (9) is transformed into the following:

       z z 1 2 z z
1

= =argmax = = + =
n

n nmax
job CPU P job CPU | , , , InP job CPU InP | job CPU    K . (10)

9153

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

It can be seen from Eq (10) that there may be a value of 0 on the right side of the equation, which
will have a certain impact on the job classification result, thus affecting the performance of the
algorithm. The Laplace smoothing technique can effectively avoid the situation where the right side
of the equation is 0, and we can add 1 to the right side of the equation. Therefore, the class conditional
probability of I/O-intensive jobs and CPU-intensive jobs can be expressed as

 1 2 z

1
| = k

n
k c

k

T
P , , , job CPU

T T


   


K . (11)

In Eq (11), kT denotes the number of occurrences of feature items in I/O-intensive jobs and CPU-
intensive jobs in the total workload, the total number of all feature items of a job type, and cT

illustrates the smoothing factor, the total number of feature items of all job types. Therefore, the
posterior probability for the two types of operations can be formulated as

   z 1 2 z
1

1
= =

n
k

n
k c

k

T
P job CPU | , , , arg maxP job CPU

T T


   


K . (12)

   z 1 2 z
1

1
= =

n
k

n
k c

k

T
P job I / O| , , , arg maxP job I / O

T T


   


K . (13)

The job type is judged according to the established Naive Bayes posterior probability. Therefore,
when    1 1| |z n z nP job CPU , , P job I / O , ,      K K , the job is CPU-intensive, and when

   1 1| |z n z nP job I / O , , P job CPU , ,      K K , the job is I/O-intensive. The job classification algorithm

based on improved Naive Bayes is shown in Algorithm 4.1.

3.2. Resource service nodes are classified based on resource utilization

In the problem of resource allocation in the edge cloud environment, not only the types of jobs
and the arrival times and regularity of jobs should be considered, but also the requirements for
resource types of jobs should be considered. Therefore, according to the resource utilization rates of
I/O and CPU, the resource service nodes are divided into I/O main resource and CPU main resource
to make full use of the system resources.

TaskTracker sends heartbeat information to JobTracker within a specific time to indicate that the
node is running. Therefore, I/O and CPU usages on TaskTracker are captured by adding specific
indicators. According to the heartbeat message received from TaskTracker, JobTracker obtains the
resource utilization rate information of the node. There, I/O and CPU resource utilization rates in
TaskTracker are achieved as follows:

 
cumulative last

CPU CPU
usage current lastcurrent

CPU CPU

T T
CPU

T T Num _ of _ processors




 
. (14)

   
 

read lastread write lastwrite
i / o i / o i / o i / o

usage current lastcurrent
CPU CPU

U U U U
I / O

T T

  



. (15)

9154

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

In Eq (14), cumulative
CPUT shows the actual CPU cycle used to execute the job, the cumulative CPU

cycle, last
CPUT indicates the last cumulative CPU cycle, current

CPUT denotes the current CPU cycle, and the
value of lastcurrent

CPUT manifests the historical CPU cycle and the CPU cycle at the last heartbeat. read
i / oU

indicates the cumulative read amount of the job in I/O, and write
i / oU shows the cumulative output of the

job in I/O. When usage usageCPU I / O , the resource node is the main CPU resource, and when

usage usageCPU I / O , the resource node is the main I/O resource. The classification algorithm of resource

service nodes is shown in Algorithm 4.2.

3.3. Resource allocation based on comprehensive utility

In this section, resource nodes are calculated for job allocation according to three factors: resource
location, task priority and network transmission cost. The optimal solution of job and resource node
matching is obtained according to the method of a weighted bipartite graph.

The job is denoted as z , each job  0z z f  is composed of multiple tasks zl , and each task is

indivisible, independent and non-preemptive. The task zh is illustrated as   = 1z z
z h h z zh v ,s h l  , z

hv

represents the amount of computation required to complete task zh , and z
hs illustrates the memory

size required to complete task zh . The resource pool set is defined as  0j j J  , and each resource

pool is indicated as  j jj v ,s@ , where jv is the computing power of the CPU, and js is the memory

size of the resource pool j . Therefore, the similarity between task zh and resource service node j

can be defined as follows. '
ju is the transpose of vector ju .

 
'

z
z

z

h j
Sim h , j

h j


 (16)

The priority  zy h of task zh is expressed as

     = 1   z
z hy h y z y . (17)

In Eq (17),  y z represents the priority of job z , which is determined by the scheduling priority

in the data processing system, z
hy denotes the priority of resources required by task zh , and 

indicates the weight coefficient. As the value of  zy h increases, the priority of task zh will also

increase, and z
hy is determined by the location of resources required by task zh . When the required

resources are stored in the memory on the local server, set =2z
hy . When the demand resources are stored

in the disk on the local server =1z
hy , and otherwise,

 
1

=z
h

e o

y
h l ,l

. el represents the location of the local

server, ol illustrates the location of the required resources, and  e oh l ,l describes the minimum

network distance between the local server and the required resources.
The network transmission cost is illustrated as

   
 

e = t e t
z

t e t

w h l ,w
h , j

band l ,w



 . (18)

In Eq (18),  represents the quantity of required content, tw indicates the size of the t -th

9155

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

required content,  e th l ,w manifests the minimum network distance between the local server and the

needed content location, and  e tband l ,w illustrates the bandwidth between the local server and the

required content location. When the demand content is stored on the local server,  =0e th l ,w and

 =1e tband l ,w . Therefore, the job resource matching optimization problem is described as

   
 1 1 1

1
1

z

z

zlf J
hj z z

z j h z

Sim h , j y h
P : max

e h , j      


π
. (19)

s.t.

 

1

0 1

1

1 2

1 2

z
hj

J
z
hj

j

z

,

j , , , J

h , , ,l












π

π

L

L

. (20)

In Eq (19), for  0 1z
hj ,π , when the h -th task matches the j -th resource pool, =1z

hjπ ;

otherwise, =0z
hjπ . Since problem 1P is a shaping programming problem, that is, an NP hard problem,

in order to solve this problem, problem 1P is transformed into an optimal matching problem under

the condition of a weighted bipartite graph. Consequently, in the weighted bipartite graph, the weight

of task zh and resource pool j is composed of their similarities. The weight between task priority

and network transmission cost can be depicted as

   
 

 
 

 
 

1 2 3= + -z z z
z

z z z

Sim h , j y h e h , j
h , j

Sim h , j y h e h , j

  
 . (21)

 zh , j represents the weight between task zh and container ru ,
1 denotes the weight coefficient

of similarity,
2 illustrates the weight coefficient of task priority, and 3 manifests the weight

coefficient of network transmission cost.

   
1 1 1

1 1

=
z

z

z

z

lf J
z

z lf
z j h

z h

Sim h , j
Sim h , j

j  

 




 (22)

   
1 1

1

=
z

z

lf
z

z f
z h

z
z

y h
y h

l 






 (23)

   
1 1 1

1 1

=

'
g

z

z

z

zf J
z

z lf
z j h

z h

e h , j
e h , j

j  

 




 (24)

1P can be reduced to the following programming problem.

 
1 1 1

2
z

z

lf J
z
hj z

z j h

P : max h , j
  
π (25)

9156

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

s.t.

 

1

0 1

1

1 2

1 2

z
hj

J
z
hj

j

z

,

j , , ,J

h , , ,l












π

π

L

L

 (26)

When
1

f

zz
l j


 ,

1
-j

f

zz
l

 virtual resource pools need to be added, so that there is a one-to-one

relationship between each task and each resource pool. The weight between each task and the added
virtual resource pool is zero. The resource allocation algorithm is based on comprehensive utility, as
shown in Algorithm 4.3.

4. Implementation of resource allocation optimization algorithm based on comprehensive
utility in MEC environment

4.1. Job classification based on improved Naive Bayesian algorithm

The first step is to establish the conditional probability of the job by using Naive Bayes and then
calculate the posterior probability of each job type according to the formula. Aiming at the
shortcomings of Naive Bayes, the Laplace Smoothing technique is used to optimize the Naive Bayes
algorithm. Finally, the posterior probability of the job to be classified is computed, and the job type is
judged according to the acquired posterior probability of the job type. The core pseudo-code of job
classification based on the improved Naive Bayesian algorithm is shown in Algorithm 1.

Algorithm 1: Job classification based on improved Naive Bayesian algorithm
Input: Job volume  , job [1,2,..., f] // job is defined as the job to be classified
1. for (=1 ; f  ; ++) do

2. Establish Bayesian conditional probability // according to Eq (3), (4)

3. Calculate the posterior probability of the operation type according to Eq (8)

4. Use Laplace smoothing technique to eliminate the situation where the right side of Eq (8) is 0
// Eq (11)
5. Obtain the posterior probability of CPU-intensive jobs and I/O-intensive jobs // Eq (12) and
Eq (13)
6. call.Classifier()

7. if    1 1| |z n z nP job CPU , , P job I / O , ,        K K then

8. the job is CPU-intensive

9. else if    1 1| |z n z nP job I / O , , P job CPU , ,        K K

10. the job is I/O-intensive

11. end if

12. end for

13. return JobType[1,2,…,f]

9157

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

4.2. Resource service nodes are classified based on resource utilization

According to the resource utilization rate, the resource pool is divided into CPU main
resources and I/O main resources. The core pseudo-code for classifying resource service nodes is
shown in Algorithm 2.

Algorithm 2: Resource classification algorithm based on status of resource service nodes
Input: Resource Service Node  j= 1,2, ,JL // The number of J resource nodes to be classified
Output：  1,2, ,JClassify K // Classified resource nodes
1. For each j
2. usageCPU ， usageI / O // Obtain the resource utilization of the CPU and I/O in TaskTracker
according to Eqs (14) and (15)
3. if usage usageCPU I / O
4. the resource node is the main CPU resource
5. else usage usageCPU I / O
6. the resource node is the main I/O resource
7. end if
8. end for
9. return  1,2, ,JClassify K

4.3. Resource allocation optimization based on comprehensive utility

It is necessary to divide corresponding types of jobs into corresponding resource pools. This paper
formulates a resource allocation algorithm based on comprehensive utility by calculating the similarity
between tasks and resource pools, task priority and network transmission overhead of required
resources. The core pseudo-code is exhibited in Algorithm 3.

The flow chart of the resource allocation optimization algorithm based on comprehensive utility
in the MEC environment is shown in Figure 1.

5. Performance evaluation

5.1. Experimental environment and configuration

5.1.1. Environment settings

1) Experimental environment

This experimental environment is ubuntu-18.10-desktop-amd64, JDK1.8.0_11. Use the virtual
machine software VMware Workstation 15.0.4 and SSH tools OpenSSH-server and OpenSSH-client.
Build cloud computing framework Hadoop-3.1.2. The Linux system cloning tool is Clonezilla. The
integrated development environment is Linux Eclipse 4.5.0. The specific experimental test
environment and cluster node configuration in this study are indicated in Figure 2 and Table 2.

9158

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

In order to simulate the actual scene of the experiment, the edge server is built with nine mobile
terminals with different configurations. The remote cloud uses the Aliyun instance to build the
environment. Edge servers and remote cloud communicate via VPN. Table 2 shows the configuration
of the cluster node of the Edge Server.

2) Experimental data

The experiment data comes from the dataset of Stanford Network [30] (SNAP), including the
online social network set, communication network set, Amazon network set, and other large network
data sets. The range is [2, 40] G, the size of the experimental data set is about 40 GB, the size of each
segmented data is 128 MB, and the range of the map task is [14, 300]. Therefore, the scale of the
dataset executed by the benchmark program in this experiment is shown in Table 3.

Algorithm 3: Resource allocation algorithm based on Comprehensive Utility

Input：Resource pool set  1,2,J , j K ，job  1 2Job , , , f ，task set  1 2 1 2zH h ,h , ,h ;z , , , f K K

Output：Resource allocation result HashMap

1. for each zh H do

2. Calculate the similarity  zSim h , j between task zh and resource service node j // according
to Eq (16)
3. Calculate the priority  zy h of task zh // according to Eq (17)

4. Calculate the network transmission cost  e zh , j // according to Eq (18)

5. end for each

6. for each heartbeat information

7. if
1

f

zz
l j


 then

8. add
1

-
f

zz
l j

 virtual resource pools

9. Repeat

10. Use weighted bipartite graph matching method to select mutually matching job and resource
service nodes
11. until obtaining the optimal solution matching the job and resource service node // according
to the formula (19)
12. else

13. add
1

f

zz
j l


 virtual resource pools

14. end if

15. update matching operation of job and resource service node

16. end for each

17. return obtained matching jobs and resource service nodes

9159

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

start

The conditional probability and a
posteriori probability of the job are
obtained according to naive Bayes

The naive Bayes classification
method is improved by Laplace

technique

Obtain the posterior probability of
improved CPU -intensive and I/O-

intensive jobs

end

NO YES

 The number of
classified resource

nodes is J

Get the resource
utilization of CPU and

I/O in TaskTracker

CPUusage>I/Ousage

JobType[1,2,…,f
] Classified jobs

YES

NO

Classified job sets
and resource
service nodes

Calculate the similarity between
task Hz and resource service node
J, the priority of task Hz, and the
network transmission cost

Get each heartbeat
information

the number of tasks > the
number of resource

service nodes

the weighted
bipartite graph is

used to match jobs
and resource nodes

gain the optimal
section that the job

matches the resource
service node

YES

 Add a certain
number of virtual

resource pools

NO

A posterior probability
of CPU jobs >I/O jobs

JobType[1,2,…,f
] Classified jobs

I/O- intensive
jobs

CPU -
intensive jobs

I/O-
intensive

jobs

CPU -
intensive

jobs

Update the match
between job and
resource node

Initialization
workload and jobs to

be classified

 Add a certain
number of virtual

resource pools

Figure 1. The flow chart of resource allocation optimization algorithm based on
comprehensive utility in MEC environment.

Table 2. Edge server cluster node configuration.

Node type and name IP address CPU type Running memory

Master (NameNode) 193.168.121.101 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 8 GB

Slave (DateNode1) 193.168.121.102 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 2 GB

Slave (DateNode2) 193.168.121.103 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 8 GB

Slave (DateNode3) 193.168.121.104 Inter Core i5 3.30 GHz, 2 cores, 500 G disk 4 GB

9160

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

Figure 2. Experimental test environment.

Table 3. Data set size of benchmark program execution.

Data set Data count Map tasks

Online social network collection 4039 data of Facebook social circle, a total of 2 G data volume 16

Communication network set 36,692 data of e-mail communication network, a total of 8G data volume 32

Amazon Web collection Purchase information and all comment data of various products, a total of

25 G data volume

190

Wikipedia Network 7115 data voted by Wiki, a total of 4 G data 25

5.1.2. Test cases and parameter settings

The experiment uses different job streams as the test cases [31], namely Wordcount, Kmeans,
and Teragen. Since there are not many data calculation operations in the map and reduced phases of
WordCount, this type of job can be classified as I/O-intensive. Kmeans involves more data computing
operations in the Map and Reduce phases and does not have too many intermediate data read and write
operations, so this type of job is classified as CPU-intensive. The data generated by Teragen is mostly
used for subsequent programs, so this type of job can be classified as I/O intensive. The test case
related data description of this experiment is shown in Table 4.

9161

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

Table 4. Description of experimental test cases.

Test procedure Description Characteristic

WordCount Total word count I/O-intensive

Kmeans Smaller dimension, numerical and continuous data set CPU-intensive

Teragen The generated data (3 GB) is used in subsequent procedures I/O-intensive

5.2. Experimental results and analysis

In order to verify the effectiveness and stability of the algorithm proposed in this paper, the
average job execution time and hit rate are used as the evaluation indicators of algorithm performance.

5.2.1. Influence of job number on algorithm performance

This group of experiments analyzes the average job execution time of the same job running under
FIFO [32], FAIR [33], COSHH [34] and RAOCU. This experiment sets four job streams for each type
of job, each job stream has 35 jobs, and a total of 140 jobs are submitted. Jobs of WorkCount, Kmeans
and Teragen types are executed eight times each with job counts of 20, 60, 100 and 140, respectively.
The average execution times of jobs under different numbers of jobs are shown in Figure 3. The job hit
rates under different job numbers are shown in Figure 4.

20 60 100 140
0

200

400

600

800

1000

1200

1400

Av
er
ag
e
jo
b
ex
ec
ut
io
n
t
im
e/
s

Number of jobs

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 3. Comparison of average job execution times in different job quantities.

Figure 3 shows that when the number of jobs is 20, the average execution times of FIFO, FAIR,
COSHH and RAOCU have little distinction, and they can all be stable at about 350 s. With increasing job
data, COSHH can achieve a lower average job execution delay than FIFO and FAIR. The average job
execution delay of the algorithm in this paper can show a lower trend than the other three algorithms. As
the scale of job data increases, some jobs have priority implemented, while some jobs are only part of the
execution jobs. For the jobs with priority execution, the Map task collects the job execution information
and classifies the jobs, and then the remaining job allocates resources according to the corresponding labels.
Because the RAOCU uses an improved Naive Bayes classification algorithm to classify the job, it can
effectively speed up the classification of job data and reduce the average job execution time.

9162

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

20 60 100 140
0

5

10

15

20

25

30

Jo
b

hi
t

ra
te

(%
)

Number of jobs

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 4. Comparison of job hit rates in different job numbers.

Figure 4 shows that with the increase in the number of tasks, the job hit rate of each algorithm also
increases. For example, under the number of 140 jobs, the job hit rate of RAOCU is about 46.3% higher
than that of 20 tasks, so the job hit rate of RAOCU is higher than those of the FIFO, FAIR and COSHH
algorithms. In the case of 140 jobs, the RAOCU hit rate is about 25.9% higher than FIFO, 12.96% higher
than FAIR and 11.1% higher than COSHH.

5.2.2. Influence of available storage space on algorithm performance under different resource
service nodes

Figure 5 describes the average execution times of jobs with available storage space under different
resource service nodes. Figure 6 illustrates the hit rates of job resources under different storage spaces.

20 30 40 50
0

20

40

60

80

100

A
v
er
a
ge

jo
b
 e
x
ec
u
ti
o
n
 t
i
me
/
s

Available storage space under resource service node

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 5. Comparison of average job execution time in different available storage spaces.

As shown in Figure 5, as the available storage space increases, the average job execution time for
each algorithm decreases. When the size of the storage space under the resource service node increases
from 20 to 50, the average job execution time of RAOCU is reduced by about 53.3%. Under the same
available storage space, the average job execution time of the algorithm in this paper shows a lower
trend than the other three algorithms. The resource location considered in RAOCU establishes the

9163

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

relationship between the task and the resource pool according to the similarity, which can be matched
by the task content and effectively reduce the average execution time of the job.

20 30 40 50
0

5

10

15

20

25

30

35

40

jo
b
 h

i
t

r
at

e
 (

%
)

Available storage space under resource service node

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 6. Comparison of job hit rates in different available storage spaces.

As shown in Figure 6, with the increase of storage space under the resource service node, the job
hit rate of each algorithm also rises. When the size of the storage space under the resource service node
changes from 20 to 50, the job hit rate of RAOCU increases by about 61.5%, which is higher than those
of the FIFO, FAIR and COSHH algorithms. When the available storage space is 50, RAOCU’s job hit
rate is about 31.2% higher than FIFO’s, 26% higher than FAIR’s and 14.3% higher than COSHH’s. With
the same available storage space, the job hit rates of the other three algorithms are lower than that of the
RAOCU algorithm. As the available storage space under the resource service node increases, the edge
nodes contain more content. In resource matching, RAOCU considers three factors: resource location,
task priority and network transmission cost, thus improving the hit rate of each algorithm.

5.2.3. Influence of the number of resource service nodes on algorithm performance

Figure 7 depicts the influence of the number of resource service nodes on the average job execution
times. Figure 8 manifests the influence of the number of resource service nodes on the job hit rates.

20 40 60 80 100
100000

150000

200000

250000

300000

350000

A
v
e
r
a
g
e
j
o
b

e
x
e
c
u
t
i
o
n

t
i
m
e
/
s

Number of resource service nodes

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 7. Comparison of average job execution times in different numbers of resource service nodes.

9164

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

As shown in Figure 7, when the number of resource service nodes is between 20 and 100, the
FIFO and FAIR algorithms fluctuate greatly. The average task execution delay of FIFO decreases first
and then increases with the increase of resource service nodes. FAIR’s average task execution delay
first decreases and gradually increases with the number of resource service nodes. COSHH’s
performance shows a trend of first declining and then stabilizing. When it is stable, RAOCU shows a
lower average job response time than COSHH. When the number of resource service nodes is about 52,
the average job response time of RAOCU is the lowest.

It can be seen from Figure 8 that with the increasing number of resource service nodes, the job
hit rates of FIFO and FAIR algorithms are in a relatively stable trend. Compared with FIFO and FAIR,
COSHH and RAOCU show a convex trend with the increase in the number of resource service nodes.
With the increase of resource service nodes, the job hit rates first show an upward trend and then
gradually decrease. RAOCU considers the classification of jobs and the classification of resource
service nodes. When the number of resource service nodes is too low, the matching between jobs and
corresponding resource service nodes cannot be well completed, so the job hit rate is low. When the
number of resource service nodes exceeds a specific number, the job will be matched to resource
service nodes of the same type. Hence, RAOCU improves the utilization rate of resource nodes to a
certain extent and has higher optimization performance than FIFO, FAIR and COSHH.

15 30 45 60 75 90 100
0

5

10

15

20

25

30

35

40

45

j
o
b

h
i
t
 r

a
t
e
 (

%
)

Number of resource service nodes

 FIFO
 FAIR
 COSHH
 RAOCU

Figure 8. Comparison of job hit rates in different numbers of resource service nodes.

5.3. Experiment summary

By analyzing the above three sets of experiments, the following conclusions can be drawn: 1) The
number of jobs impacts the resource optimization algorithm. As the number of jobs increases, the
average task execution delay and the job hit rate also increase. 2) The available storage space under
different resource service nodes will affect the resource allocation optimization algorithm. As the
available storage space increases, the average task execution delay decreases, and the job hit rate
gradually increases. 3) The number of resource service nodes influences the resource optimization
algorithm. As the number of resource service nodes increases, the average task execution time
increases steadily, while the job hit rate increases first and then gradually decreases.

9165

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

6. Conclusions and future work

This paper studies the resource allocation optimization method based on comprehensive utility in
multi-user and multiple MEC environments. The algorithm mainly includes job classification based
on an improved Naive Bayesian algorithm, resource service node classification based on resource
utilization rate and resource allocation based on comprehensive utility. Finally, the simulation results
show that the RAOCU algorithm can reduce the resource occupancy rate and improve the resource
utilization rate. At the same time, it has good performance in the average job execution delay and job
hit rate. However, when classifying the computing tasks requested by the mobile terminal, this work
does not consider the deadline and computing cost of the job. In the classification method of resource
service nodes, only the resource utilization rate of resource service nodes is considered for
classification. The network load of resource service node classification after job classification is not
considered, so the next key work will be about these aspects of research.

Acknowledgments

The work was supported by the National Natural Science Foundation (NSF) under grants
(No. 61802353), the Natural Science Foundation of Henan Province (No. 202300410505), the project
of Science and Technology of Henan Province (NO. 192102210270) and the Henan Provincial
Department of Science and Technology (NO. 192102210270).

Conflict of interest

The authors declared that they have no conflicts of interest to this work. We declare that we do
not have any commercial or associative interest that represents a conflict of interest in connection with
the work submitted.

References

1. J. H. Anajemba, T. Yue, C. Iwendi, P. Chatterjee, D. Ngabo, W. S. Alnumay, A secure multi-user
privacy technique for wireless IoT networks using stochastic privacy optimization, IEEE Int.
Things J., 9 (2021), 2566–2577. https://doi.org/10.1109/JIOT.2021.3050755

2. M. Othman, S. A. Madani, S. U. Khan, A survey of mobile cloud computing application models, IEEE
Commun. Surv. Tutorials, 16 (2014), 393–413. https://doi.org/10.1109/SURV.2013.062613.00160

3. B. Panchali, Edge computing-background and overview, in 2018 International Conference on
Smart Systems and Inventive Technology (ICSSIT), (2018), 580–582,
https://doi.org/10.1109/ICSSIT.2018.8748352

4. Taleb T, Samdanis K, Mada B, H. Flinck, S. Dutta, D Sabella, On multi-access edge computing:
A survey of the emerging 5g network edge cloud architecture and orchestration, IEEE Commun.
Surv. Tutorials, 19 (2017), 1657–1681. https://doi.org/10.1109/COMST.2017.2705720

5. K. LeDoux, P. Visser, D. Hulin, H. Nguyen, Starting large synchronous motors in weak power
systems, in Industry Applications Society 60th Annual Petroleum and Chemical Industry
Conference, (2013), 1–8. https://doi.org/10.1109/PCICon.2013.6666022

9166

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

6. N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile edge computing: A survey, IEEE Int. Things
J., 5 (2017), 450–465. https://doi.org/10.1109/JIOT.2017.2750180

7. J. B. Wang, H. Yang, M. Cheng, J. Y. Wang, M. Lin, J. Wang, Joint optimization of offloading and
resources allocation in secure mobile edge computing systems, IEEE Trans. Veh. Technol., 69
(2020), 8843–8854. https://doi.org/10.1109/TVT.2020.2996254

8. M. Aljarah, M. M. Shurman, S. H. Alnabelsi, Cooperative-hierarchical based edge-computing
approach for resources allocation of distributed mobile and IoT applications, Int. J. Electr. Comput.
Eng., 10 (2020), 296–307. https://doi.org/10.11591/ijece.v10i1.pp296-307

9. X. Li, X. Zhou, C. Sun, D. W. K. Ng, Online policies for throughput maximization of energy-
constrained wireless-powered communication systems, IEEE Trans. Wireless Commun., 18
(2019), 1463–1476. https://doi.org/10.1109/TWC.2018.2890030

10. T. X. Tran, D. Pompili, Joint task offloading and resource allocation for multi-server mobile-edge
computing networks, IEEE Trans. Veh. Technol., 68 (2019), 856–868.
https://doi.org/10.1109/TVT.2018.2881191

11. J. Xu, B. Palanisamy, H. Ludwig, Q. Wang, Zenith: Utility-aware resource allocation for edge
computing, in 2017 IEEE International Conference on Edge Computing (EDGE), (2017), 47–54.

12. B. Dab, N. Aitsaadi, R. Langar, Joint Optimization of Offloading and Resource Allocation Scheme
for Mobile Edge Computing, in 2019 IEEE Wireless Communications and Networking
Conference (WCNC), (2019), 1–7. https://doi.org/10.1109/WCNC.2019.8885537

13. J. Ren, G. Yu, Y. Cai, Y. He, Latency optimization for resource allocation in mobile-edge
computation offloading, IEEE Trans. Wireless Commun., 17 (2018), 5506–5519.
https://doi.org/10.1109/TWC.2018.2845360

14. C. You, K. Huang, H. Chae, B. H. Kim, Energy-efficient resource allocation for mobile-edge
computation offloading, IEEE Trans. Wireless Commun., 16 (2017), 1397–1411.
https://doi.org/10.1109/TWC.2016.2633522

15. S. Sardellitti, G. Scutari, S. Barbarossa, Joint optimization of radio and computational resources
for multicell mobile-edge computing, IEEE Trans. Signal Inf. Process. Networks, 1 (2015), 89–
103. https://doi.org/10.1109/TSIPN.2015.2448520

16. I. Ketykó, L. Kecskés, C. Nemes, L. Farkas, Multi-user computation offloading as multiple
knapsack problem for 5G mobile edge computing, in European Conference on Networks and
Communications, (2016), 225–229. https://doi.org/10.1109/EuCNC.2016.7561037

17. C. Wang, F. R. Yu, C. Liang, Q. Chen, L. Tang, Joint computation offloading and interference
management in wireless cellular networks with mobile edge computing, IEEE Trans. Veh.
Technol., 66 (2017), 7432–7445. https://doi.org/10.1109/TVT.2017.2672701

18. C. Lemaréchal, S. Boyd, L. Vandenberghe, Convex optimization, Cambridge University Press,
2004 hardback, Eur. J. Oper. Res., 170 (2016), 326–327.
https://doi.org/10.1016/j.ejor.2005.02.002

19. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical
learning via the alternating direction method of multipliers, Found. Trends Mach. Learn., 3 (2010),
1–122. https://doi.org/10.1561/2200000016

20. P. Liu, J. Li, H. Li, Y. Meng, Convex optimisation-based joint channel and power allocation
scheme for orthogonal frequency division multiple access networks, IET Commun., 9 (2014), 28–
32. https://doi.org/10.1049/iet-com.2014.0409

9167

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9147–9167.

21. S. Jabeen, P. H. Ho, A Benchmark for joint channel allocation and user scheduling in flexible
heterogeneous networks, IEEE Trans. Veh. Technol., 68 (2019), 9233–9244.
https://doi.org/10.1109/TVT.2019.2930884

22. M. Avgeris, D. Spatharakis, D. Dechouniotis, A. Leivadeas, V. Karyotis, S. Papavassiliou,
ENERDGE: Distributed energy-aware resource allocation at the edge, Sensors, 22 (2022), 660.
https://doi.org/10.3390/s22020660

23. Y. Zuo, Y. Liu, User selection aware joint radio-and-computing resource allocation for federated
edge learning, in 2020 International Conference on Wireless Communications and Signal
Processing (WCSP), (2020), 292–297. https://doi.org/10.1109/WCSP49889.2020.9299802

24. Y. Fan, L. Wang, W. Wu, D. Du, Cloud/edge computing resource allocation and pricing for mobile
blockchain: An iterative greedy and search approach, IEEE Trans. Comput. Social Syst., 8 (2021),
451–463. https://doi.org/10.1109/TCSS.2021.3049152

25. I. AlQerm, J. Pan, Enhanced online Q-learning scheme for resource allocation with maximum
utility and fairness in edge-IoT networks, IEEE Trans. Network Sci. Eng., 7 (2020), 3074–3086.
https://doi.org/10.1109/TNSE.2020.3015689

26. B. Huang, Z. Li, Y. Xu, L. Pan, S. Wang, H. Hu, et al., Deep reinforcement learning for
performance-aware adaptive resource allocation in mobile edge computing, Wireless Commun.
Mob. Comput., (2020), 1–17. https://doi.org/10.1155/2020/2765491

27. X. Lin, J. Shao, R. Liu, W. Sun, W. Hu, Performance and cost of upstream resource allocation for
inter-edge-datacenter bulk transfers, in 2020 IEEE/CIC International Conference on Communications
in China (ICCC), (2020), 634–639. https://doi.org/10.1109/ICCC49849.2020.9238818

28. X. Zhu, L. Yang, Resource allocation for virtualized wireless networks with mobile edge
computing, in 2020 IEEE/CIC International Conference on Communications in China (ICCC
Workshops), (2020), 139–144. https://doi.org/10.1109/ICCCWorkshops49972.2020.9209941

29. M. Shabbir, A. Shabbir, C. Iwendi, A. R. Javed, M. Rizwan, N. Herencsar, et al., Enhancing
security of health information using modular encryption standard in mobile cloud computing,
IEEE Access, 9 (2021), 8820–8834. https://doi.org/10.1109/ACCESS.2021.3049564

30. J. Leskovec, Stanford Large Network Dataset Collection, 2022. Available from:
http://snap.stanford.edu/data/index.html.

31. S. Huang, J. Huang, J. Dai, T. Xie, B. Huang, The HiBench benchmark suite: Characterization of
the MapReduce-based data analysis, in New Frontiers in Information and Software as Services,
Springer, (2011), 209–228. https://doi.org/10.1007/978-3-642-19294-4_9

32. B. T. Rao, L. S. S. Reddy, Survey on improved scheduling in Hadoop MapReduce in cloud
environments, preprint, arXiv:1207.0780.

33. M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker, I. Stoica, Job Scheduling for
Multi-user Mapreduce Clusters, Technical Report UCB/EECS-2009-55, EECS Department,
University of California, Berkeley, (2009), 213–217.

34. A. Rasooli, D. G. Down, COSHH: A classification and optimization based scheduler for
heterogeneous Hadoop systems, Future Gener. Comput. Syst., 36 (2014), 1–15.
https://doi.org/10.1016/j.future.2014.01.002

©2022 the Author(s), licensee AIMS Press. This is an open access
article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0).

