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Abstract: Influenza is a respiratory infection caused influenza virus. To evaluate the effect of en-
vironment noise on the transmission of influenza, our study focuses on a stochastic influenza virus
model with disease resistance. We first prove the existence and uniqueness of the global solution to the
model. Then we obtain the existence of a stationary distribution to the positive solutions by stochastic
Lyapunov function method. Moreover, certain sufficient conditions are provided for the extinction of
the influenza virus flu. Finally, several numerical simulations are revealed to illustrate our theoretical
results. Conclusively, according to the results of numerical models, increasing disease resistance is
favorable to disease control. Furthermore, a simple example demonstrates that white noise is favorable
to the disease’s extinction.
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1. Introduction

Influenza, usually known as the flu, is a virus-borne illness that mostly affects the throat, nose
and lungs. It can be transferred from person to person by sneezes, contaminated air, or coughing, as
well as through direct contact with infected people. Many authors have considered the mathematical
models of the influenza virus [1–5]. In real life, there is an exposed time following infection transfer
from susceptible to possibly infective person. However, these potentially infective people without any
acquired symptoms are capable of spreading the flu. In 2016, Khanh [6] proposed a novel human
virus transmission SEIR model with disease resistance. Briefly, the model, reports the recovery of
an infected group without any prior therapy. Depending on the treatment, the other groups can be
returned to the susceptible group. It describes the susceptible (S ), the exposed (E), the infected (I) and
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the recovered (R) as four unique epidemiological subgroups of persons in the overall population. A set
of ordinary differential equations provides the model as

dS
dt = Λ −

βS (E+I)
N + cE + bI + αR − µS ,

dE
dt =

βS (E+I)
N − (c + ϵ + µ)E,

dI
dt = ϵE − (γ + b + µ)I,
dR
dt = γI − (α + µ)R,
N = S + E + I + R,

(1.1)

where Λ is the susceptible recruitment rate; α is the susceptibility constant rate for recovered individ-
uals; the contact transmission rates of the virus is denoted by β; the susceptibility rate of individual
exposed and infected people is expressed as c and b; γ is the persistent pace of recovery; ϵ is the con-
tinuous infectious proportion of the exposed population and µ is the population’s natural mortality rate.
Positive values are expected for all parameters. In System (1.1), R0 =

β(γ+b+µ+ϵ)
(γ+b+µ)(c+ϵ+µ) represents the basic

reproduction number. Importantly, infection persists in the population when R0 > 1 but finally dies off
when R0 ≤ 1.

Epidemic models are powerful tools to understand the dynamics of the tramission of an infectious
disease. There is a large number of researchers who pay attention to the study of epidemic models.
For example, Allegretti et al. [7] derived an SIR model to describe the evolution in time of the in-
fectious disease by Sars-Cov-2; Kumar and Erturk [8] considered a cholera epidemic model from the
perspective of generalized Liouville-Caputo fractional derivatives; Özks̈e and Yavuz [9] established
a fractional-order pandemic model to discuss interactions between COVID-19 and diabetes by using
real data from Türkiye; Naik et al. [10] proposed and analyzed a fractional-order epidemic model
with a classic Caputo operator and the Atangana-Balenu-Caputo operator for the transmisson during
the COVID-19 epidemic; Yavuz and Özdemir [11] used an SIR model to simulate the transmission
dynamics of diseases where individuals acquire permanent immunity. Besides, there are also several
works devoted to population systems, such as [12–14] and their references.

The population system for the actual world is unavoidably influenced by ambient white noise. The
population size may be changed greatly in a short time due to fuctuations in the environment, such
as earthquakes and tsunamis. Hence, the parameters of the system may not be absolute constant, and
they may fluctuate around some constants. Thus, incorporating environmental noise into the epidemic
models seems to be a good way to describe these phenomena. Additionally, in population dynamics,
stochastic differential equation model is one of the significant types models because they offer a more
realistic description than deterministic models. Biological and epidemiological stochastic models have
been examined by many researchers [15–19]. Therefore, in the current research, Imhof and Walcher’s
technique is followed under the assumption that ambient white noise is a function of S (t), R(t), E(t) and
I(t). For sufficiently small ∆t, one can model X = (S , E, I,R)T as a Markov process with the following
specifications

E[S (t + ∆t) − S (t)|X = x] ≈
[
Λ −
βS (E + I)

N
+ cE + bI + αR − µS

]
∆t,

E[E(t + ∆t) − E(t)|X = x] ≈
[βS (E + I)

N
− (c + ϵ + µ)E

]
∆t,

E[I(t + ∆t) − I(t)|X = x] ≈ [ϵE − (γ + b + µ)I]∆t,
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E[R(t + ∆t) − R(t)|X = x] ≈ [γI − (α + µ)R]∆t,

and

Var[S (t + ∆t) − S (t)|X = x] ≈ σ2
1S 2∆t,Var[E(t + ∆t) − E(t)|X = x] ≈ σ2

2E2∆t,

Var[I(t + ∆t) − I(t)|X = x] ≈ σ2
3I2∆t,Var[R(t + ∆t) − R(t)|X = x] ≈ σ2

4R2∆t.

Following is the outline of the model,

dS =
[
Λ −

βS (E+I)
N + cE + bI + αR − µS

]
dt + σ1S dB1(t),

dE =
[
βS (E+I)

N − (c + ϵ + µ)E
]
dt + σ2EdB2(t),

dI = [ϵE − (γ + b + µ)I]dt + σ3IdB3(t),
dR = [γI − (α + µ)R]dt + σ4RdB4(t),
N = S + E + I + R,

(1.2)

where σ2
i > 0(i = 1, 2, 3, 4) signifies the intensity of the white noise. Brownian movements

Bi(t)(i = 1, 2, 3, 4) are defined on a complete probability space (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0

that meets the standard criteria of mutually independent i.e., while F0 includes all P-null sets, it is
increasing and right continuous. Comparatively, the parameters of Systems (1.1) and (1.2) imply the
same meaning. And R4

+ = {x = (x1, x2, x3, x4) ∈ R4; xi > 0, i = 1, 2, 3, 4} in this paper. We also need to
assume that these variables Λ, β, c, b, α, µ, ϵ and γ should be positive constants.

We should ponit out that Ikram et al. [20] considered a stochastic epidemic model consisting of
four human classes, i.e., susceptible, infected, vaccinated and removed. They established the global
dynamcis of the model in terms of the stochastic basic reproduction number Rs

0 and used a stochastic
Runge-Kutta method to implement the numerical simulations. In real life, there is an exposed period
after the transmission of infection from susceptible to potentially infective members but before these
potential infectives develop symptoms and can transmit infection. Due to this reason, the method
in [20] cannot be applied to System (1.2). Thus, we need to construct a new auxiliary function to
consider this system. On the other hand, a stochastic model may not have the positive equilibrium
state. Therefore, we hope to study the existence and stability of “stochastic positive equilibrium” and
the existence of a stationary distribution, for this stochastic influenza virus model. As we all know,
there are no results about this system. Since the model described by System (1.2) consists of four
equations, it is very difficult to construct the Lyapunov function if we consider the existence of an
ergodic distribution. Thus, we need to construct a new Lyapunov function and a rectangular set. We
also should note that the conditions for extinction of the influenza virus have a close relationship with
the basic reproduction ratio R0 in System (1.1).

The structure of the paper is outlined below. In Section 2, we show that there exists a unique
global positive solution of System (1.2) with initial value (S 0, E0, I0,R0) ∈ R4

+. The existence of
ergodic stationary distribution of System (1.2) is established in Section 3. These conclusions can be
generated by constructing a suitable stochastic Lyapunov function and a rectangular set. Furthermore,
the sufficient condition for the extinction of disease can be found in Section 4. In Section 5, numerical
simulations involving Milstein’s order method are introduced to illustrate our theoretical results. To
wrap up the article, certain conclusions are offered.
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2. Existence and uniqueness of the positive solution

Investigating an epidemic model’s dynamic behavior begins with determining whether or not the
solution is both positive and global. In this section, inspired by the methods presented in [21], we
demonstrate that there exsits a solution for System (1.2) that is a unique, global positive one.

Focus on a stochastic differential equation with an initial value of z(0) = z0 ∈ R
l in an l-dimensional,

i.e.,

dz(t) = f (z(t), t)dt + g(z(t), t)dB(t) on t ≥ t0, (2.1)

where f ∈ L1(Rl × R+,R
l) and g ∈ L1(Rl × R+,R

l×m). Equation (2.1) is connected with a differential
operator L, which is defined as follows

L =
∂

∂t
+

l∑
i=1

fi(z, t)
∂

∂zi
+

1
2

l∑
i, j=1

[gT (z, t)g(z, t)]i j
∂2

∂zi∂z j
.

Theorem 2.1. There exists a unique solution (I(t), E(t),R(t), S (t)) to System (1.2) for each given initial
value (S 0, E0, I0,R0) ∈ R4

+, and this solution will persist with a probablity of 1, i.e., the solution will
remain in R4

+ almost surely (a.s.).

Proof. Because the local Lipschitz condition is met by the coefficients of System (1.2), there exists a
unique local solution (S (t), E(t), I(t),R(t)) on t ∈ [0, τe) for every initial value (S 0, E0, I0,R0) ∈ R4

+,
while τe is the explosion time. To show that this solution is global, we only need to verify τe = ∞ a.s..
To begin, we demonstrate that S (t), E(t), I(t) and R(t) do not explode to infinity in a limited period.
Assume that S (0), R(0), E(0) and I(0) all fall inside the interval [ 1

k0
, k0] when k ≥ k0. For each integer

value k ≥ k0, we determine the stopping time to be

τk = inf{t ∈ [0, τe) : min{(S (t), E(t), I(t),R(t)} ≤
1
k

or max{S (t), E(t), I(t),R(t)} ≥ k}.

We have specified inf ∅ = ∞ throughout this work (as is customary, ∅ signifies an empty set). Clearly,
as a result, when k → ∞, τk is increasing. Denote τ∞ = limk→∞ τk a.s. There exist two constants T > 0
and ϵ ∈ (0, 1) such that if this assumption is false, P{τ∞ ≥ T } > ϵ. Hence, there exists an integer k1 ≥ k0

satisfying
P{τk ≤ T } ≥ ϵ, ∀ k ≥ k1. (2.2)

Let a C2-function V : R4
+ → R+ be defined by

V(S , E, I,R) = (S − 1 − ln S ) + (E − 1 − ln E) + (I − 1 − ln I) + (R − 1 − ln R).

For any u > 0, this function’s nonnegativity may be determined by using u − 1 − ln u ≥ 0. It does not
matter what number is in k ≥ k0 and T > 0. Itô’s formula may be applied to V(S , E, I,R); then

dV(S , E, I,R) = LV(S , E, I,R)dt + σ1(S − 1)dB1(t) + σ2(E − 1)dB2(t)
+ σ3(I − 1)dB3(t) + σ4(R − 1)dB4(t),
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where LV : R4
+ → R and

LV(S , E, I,R) =(1 −
1
S

)[A −
βS (E + I)

N
+ cE + bI + αR − µS ] +

1
2
σ2

1

+ (1 −
1
E

)[
βS (E + I)

N
− (c + ϵ + µ)E] +

1
2
σ2

2

+ (1 −
1
I

)[ϵE − (γ + b + µ)I] +
1
2
σ2

3

+ (1 −
1
R

)[γI − (α + µ)R] +
1
2
σ2

4

= Λ −
Λ

S
− µS −

cE
S
−

bI
S
−
αaR

S
+ β

S (E + I)
N

− µE

−
βS
NE

(E + I) − µI −
ϵE
I
− µR −

γI
R

+ c + ϵ + γ + b + α + 4µ +
1
2
σ2

1 +
1
2
σ2

2 +
1
2
σ2

3 +
1
2
σ2

4.

Then
LV(S , E, I,R) ≤ Λ + c + ϵ + γ + b + α + 4µ +

1
2
σ2

1 +
1
2
σ2

2 +
1
2
σ2

3 +
1
2
σ2

4 := K,

where K is a positive constant in this equation. As a result, we can get

dV(S , E, I,R) ≤ Kdt + σ2
1S dB1(t) + σ2

2EdB2(t) + σ2
3IdB3(t) + σ2

4RdB4(t). (2.3)

Integrating Eq (2.3) from 0 to τk ∧ T , we apply the mathematical expectation

EV(S (τk ∧ T ), E(τk ∧ T ), I(τk ∧ T ),R(τk ∧ T )) ≤ V(S 0, E0, I0,R0) + KE(τk ∧ T ).

Thus,
EV(S (τk ∧ T ), E(τk ∧ T ), I(τk ∧ T ),R(τk ∧ T )) ≤ V(S 0, E0, I0,R0) + KT. (2.4)

Setting Ωk = {τk ≤ T } for k ≥ k1 and by virtue of Eq (2.2), we get P(Ωk) ≥ ϵ. It is worth noting that
for each ω ∈ Ωk , there exists S (τk, ω), I(τk, ω), E(τk, ω) or R(τk, ω) that is equal to either 1

k or k. As a
result, either k−1−ln k or 1

k−1−ln 1
k =

1
k−1+ln k is no more than V(S (τk, ω), E(τk, ω), I(τk, ω),R(τk, ω)).

As a result, we may acquire

(S (τk, ω), E(τk, ω), I(τk, ω),R(τk, ω)) ≤ [k − 1 − ln k] ∧ [
1
k
− 1 + ln k].

It then follows from Eq (2.4) that

V(S 0, E0, I0,R0) + KT ≥ E[IΩk(ω)V(S (τk, ω), E(τk, ω), I(τk, ω),R(τk, ω))]

≥ ϵ[k − 1 − ln k] ∧ [
1
k
− 1 + ln k],

where the indicator function ofΩk , i.e., IΩk , is inconsistent with what we have allowed. Letting k → ∞,

∞ > V(S 0, E0, I0,R0)) + KT = ∞.

Thus, we have a contradiction. Finally, we have τ∞ = ∞, and S (t), I(t),R(t) and E(t) do not seem to be
exploding in a limited period.

□
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3. Stationary distribution

Eventually, it becomes important to know when an epidemic dynamical system will continue and
propagate through a population. Using deterministic models, this issue may be resolved by considering
evidence indicating that the model’s global attractor or globally asymptotically stable endemic equi-
librium exists. On the other hand, System (1.2) may not have an endemic equilibrium. Considering
the hypothesis of Khasminskii [22], we demonstrate that the disease is likely to persist in the mean
that there is a stationary distribution. We shall go over a theory introduced in [22] on stationary distri-
butions. The following stochastic differential equation in D-dimensional Euclidean space defines X(t)
as a Markov homogeneous process in D-dimensional Euclidean space Ed (Ed denotes d-dimensional
Euclidean space)

dX(t) = b(X)dt +
k∑

r=1

gr(X)dBr(t),

where b ∈ L1(Rd,Rd) and gr ∈ L2(Rd,Rd), r = 1, 2, · · · , k. And, following is the definition of the
diffusion matrix,

A(x) = (ai, j(x))n×n, ai, j(x) =
k∑

r=1

gi
r(x)g j

r(x).

Lemma 3.1. [22, Chapter 4.3] The Markov process X(t) has a unique ergodic stationary distribution
µ if there is a bound open set D ⊂ Ed that has a regular boundary Γ and the following conditions:
(1) there exists a positive number M s.t.

∑d
i, j=1 ai, j(x)ξiξ j ≥ M∥ξ∥2, x ∈ D, ξ ∈ Rd.

(2) for any Ed\D, there is a nonnegative C2-function V s.t. LV is negative.
Let f be an integrable function that is integrable with respect to the measure µ(·); then,

Px{ lim
T→+∞

1
T

∫ T

0
f (X(t))dt =

∫
Ed

f (x)µ(dx)} = 1.

We will give a definition of the parameter R̂s
0,

R̂s
0 =

βµ(γ + µ + b + ϵ + σ
2
3

2 )

(µ + σ
2
1

2 )(γ + µ + b + σ
2
3

2 )(c + ϵ + µ + σ
2
2

2 )
.

Theorem 3.2. Consider that R̂s
0 > 1 and (S 0, E0, I0,R0) ∈ R4

+, there exists a unique stationary distribu-
tion µ(·) for System (1.2) that has the ergodic property.

Proof. It then follows from Theorem 2.1 that there exists a unique global solution
(S (t), E(t), I(t),R(t)) ∈ R4

+ with the initial value of (S 0, E0, I0,R0) ∈ R4
+. We simply need to

confirm Conditions (1) and (2) in Lemma 3.1 to prove this theorem. Now, we shall verify the situation
given by Condition (1). The diffusion matrix of System (1.2) is provided by

Hx =


σ2

1S 2 0 0 0
0 σ2

2E2 0 0
0 0 σ2

3I2 0
0 0 0 σ2

4R2

 . (3.1)
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Selecting M = min
(S ,E,I,R)∈Dk⊂R

4
+

{σ2
1S 2, σ2

2E2, σ2
3I2, σ2

4R2}, we get

4∑
i, j=1

ai j(S , E, I,R)ξiξ j = σ
2
1S 2ξ2

1 + σ
2
2E2ξ2

2 + σ
2
3I2ξ2

3 + σ
2
4R2ξ2

4 ≥ M∥ξ∥2,

∀(S , E, I,R) ∈ Dδ, ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4,

where Dk = [k, 1
k ] × [k, 1

k ] × [k, 1
k ] × [k, 1

k ]. Then, Condition (1) of Lemma 3.1 is satisfied.
Create a C2-function Q : R4

+ → R as follows:

Q(S , E, I,R) = M[(−c1 ln S − c2 ln E − c3 ln I + c4(S + E + I + R) − c5 ln S

+ c6(S + E + I + R)] − ln S − ln E − ln I − ln R + (S + E + I + R)

+
1
θ + 1

(S + E + I + R)(θ+1),

where 0 < θ < 2µ
σ2

1∨σ
2
2∨σ

2
3∨σ

2
4
,

c1 =
βϵµΛ

(µ + σ
2
1

2 )2(µ + γ + ϵ + σ
2
2

2 )
, c2 = Λ, c3 =

βϵµΛ

(µ + σ
2
1

2 )(µ + γ + ϵ + σ
2
2

2 )2
,

c4 =
βϵµ

(µ + σ
2
1

2 )(µ + γ + ϵ + σ
2
2

2 )2
, c5 =

βµΛ

(µ + σ
2
1

2 )2
, c6 =

βµ

µ +
σ2

1
2

.

Furthermore, selecting M > 0 fulfills the following requirement

−MΛ(µ + γ + ϵ +
σ2

3

2
)(Rs

0 − 1) +G < −2, (3.2)

where

G = 2β + 4µ + c + ϵ + b + γ + α +
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B + Λ.

It is simple to verify this

lim inf
k→∞,(S ,E,I,R)∈R4

+\Uk

Q(S , E, I,R) = ∞,

where Uk = ( 1
k , k)×(1

k , k)×(1
k , k)×(1

k , k). Additionally, Q(S , E, I,R) is a continuous function. This means
that just a minimum point (S 0, E0, I0,R0) which is in the interior of R4

+ is essential for Q(S , E, I,R).
Thus a nonnegative C2-function V : R4

+ → R
4
+ is defined by

V(S , E, I,R) = Q(S , E, I,R) − Q(S 0, E0, I0,R0).
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If V1(S , E, I,R) = −c1 ln S − c2 ln E − c3 ln I + c4(S + E + I + R) − c5 ln S + c6(S + E + I + R), it holds

LV1(S , E, I,R) = −
c1Λ

S
− c2
βS I
NE
− c3ϵ

E
I
− c4µN + c1

(
µ +
σ2

1

2

)
+ c2

(
µ + ϵ + c +

σ2
2

2

)
+ c3

(
µ + γ + b +

σ2
3

2

)
+ c4Λ − c5

Λ

S

− c2
βS
N
− c6µN + c5

(
µ +
σ2

1

2

)
+ c6Λ + β(c1 + c5)

(E + I)
N

− c1c
E
S
− c1b

I
S
− c1α

R
S

≤ −4
(
c1Λc2βc3c4µϵ

) 1
4
− 3
(
c2c5Λβc6µ

) 1
3
+ c1

(
µ +
σ2

1

2

)
+ c2

(
µ + ϵ + c +

σ2
2

2

)
+ c3

(
µ + γ + b +

σ2
3

2

)
+ c4Λ + c5

(
µ +
σ2

1

2

)
+ c6Λ + (c1 + c5)

β(E + I)
N

= −Λ
(
µ + γ + b +

σ2
3

2

)
(Rs

0 − 1) + (c1 + c5)
β(E + I)

N
.

If V2(S , E, I,R) = − ln S − ln E − ln I − ln R, it holds that

LV2(S , E, I,R) = −
Λ

S
+ β

E + I
N
− c

E
S
− b

I
S
− α

R
S
+ µ +

σ2
1

2
−
βS (E + I)

EN

+ c + µ + ϵ +
σ2

2

2
− ϵ

E
I
+ γ + b + µ +

σ2
3

2
− γ

I
R
+ α + µ +

σ2
4

2

≤ −
Λ

S
−
βS (E + I)

EN
− ϵ

E
I
− γ

I
R
+ 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
.

If V3(S , E, I,R) = S + E + I + R, it holds that

LV3(S , E, I,R) = Λ − µ(S + E + I + R).

If V4(S , E, I,R) = 1
θ+1 (S + E + I + R)θ+1, it holds that

LV4(S , E, I,R) = (S + E + I + R)θ[Λ − µ(S + E + I + R)]

+
1
2
θ(S + E + I + R)(θ−1) × (σ2

1S 2 + σ2
2E2 + σ2

3I2 + σ2
4R2)

≤ (S + E + I + R)θ[Λ − µ(S + E + I + R)]

+
1
2
θ(S + E + I + R)θ+1(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)

= Λ(S + E + I + R)θ − [µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S + E + I + R)θ+1

≤ B −
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S + E + I + R)θ+1

≤ B −
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1),
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where

B = sup
(S ,E,I,R)∈R4

+

{Λ(S + E + I + R)θ

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)(S + E + I + R)θ+1]} < ∞.

Hence, we have

LV(S , E, I,R) ≤ −M[Λ(µ + γ + b +
σ2

3

2
)(Rs

0 − 1)] + M(c1 + c5)
β(E + I)

N

−
Λ

S
−
βS (E + I)

EN
− ϵ

E
I
− γ

I
R
+ 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ Λ − µ(S + E + I + R) + B

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −MΛ(µ + d + r +
σ2

3

2
)(Rs

0 − 1) + β[M(c1 + c5) + 1]
E + I

N

− 2(
µβS (E + I)

E
)

1
2 −
Λ

S
− ϵ

E
I
− γ

I
R
+ 2β + 4µ + c + ϵ + b + γ

+ α +
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ Λ + B

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1).

Now, we will prove the Condition (2) holds. Set

F = sup
(S ,E,I,R)∈R4

+

{β[M(c1 + c5) + 1]
I
N
+ µ +

σ2
1

2
+ 3µ + k + Λ +

σ2
2

2
+
σ2

4

2
+ B

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)} < ∞,

L = sup
(S ,E,I,R)∈R4

+

{β[M(c1 + c5) + 1]
I
N
+ µ +

σ2
1

2
+ 3µ + k + Λ +

σ2
2

2
+
σ2

4

2
+ B}.

Let
D = {ϵ1 ≤ S ≤

1
ϵ1
, ϵ2 ≤ I ≤

1
ϵ2
, ϵ3 ≤ E ≤

1
ϵ3
, ϵ4 ≤ R ≤

1
ϵ4
},

To make it easier, we’ve divided R4
+\D into eight domains

D1 = {(S , E, I,R) ∈ R4
+ : 0 < S < ϵ1}, D2 = {(S , E, I,R) ∈ R4

+ : 0 < I < ϵ2, S ≥ ϵ1},

D3 = {(S , E, I,R) ∈ R4
+ : S ≥ ϵ1, I ≥ ϵ2, 0 < E < ϵ3},

D4 = {(S , E, I,R) ∈ R4
+ : 0 < R < ϵ4, I ≥ ϵ2},

D5 = {(S , E, I,R) ∈ R4
+ : S >

1
ϵ1
}, D6 = {(S , E, I,R) ∈ R4

+ : I >
1
ϵ2
},

D7 = {(S , E, I,R) ∈ R4
+ : E >

1
ϵ3
}, D8 = {(S , E, I,R) ∈ R4

+ : R >
1
ϵ4
},
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where ϵi(i = 1, 2, 3, 4) are sufficiently small positive constant factors that fulfill the following condi-
tions:

−
Λ

ϵ1
+ F ≤ −1, (3.3)

ϵ2 = ϵ
2
1 ,
β[M(c1 + c3) + 1]

ϵ1
−
ϵ

ϵ2
< 0, (3.4)

−MΛ(µ + d + r +
σ2

3

2
)(Rs

0 − 1) + β[M(c1 + c3) + 1]ϵ1 +G < −1, (3.5)

ϵ3 = ϵ
4
1 , −2(

µβ

ϵ1
) + F < −1, (3.6)

ϵ4 = ϵ
3
1 , −γ

1
ϵ1
+ F < −1, (3.7)

−
1
4

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1
ϵθ+1

1

+ L < −1, (3.8)

−
1
4

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1

ϵ2(θ+1)
1

+ L < −1, (3.9)

−
1
4

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1

ϵ3(θ+1)
1

+ L < −1, (3.10)

−
1
4

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)]

1

ϵ4(θ+1)
1

+ L < −1. (3.11)

Then, we show that ∀(S , E, I,R) ∈ R4
+\D, LV(S , E, I,R) ≤ −1, which is comparable to demonstrat-

ing it on the above eight domains.
Case 1. If (S , E, I,R) ∈ D1, then one has

LV(S , E, I,R) ≤ −
Λ

S
+ β[M(c1 + c5) + 1]

E + I
N
+ 2β + 4µ + c + ϵ + b + γ

+ α +
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ Λ + B

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −
Λ

S
+ F ≤ −

Λ

ϵ1
+ F.

From Eq (3.3), ∀(S , E, I,R) ∈ D1andLV(S , E, I,R) ≤ −1.
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Case 2. If (S , E, I,R) ∈ D2, then one has

LV(S , E, I,R) ≤ −MΛ(µ + d + r +
σ2

3

2
)(Rs

0 − 1) + β[M(c1 + c5) + 1]
E + I

N
+ Λ

− ϵ
E
I
+ 2β + 4µ + c + ϵ + b + γ + α +

σ2
1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B

−
1
2

[µ −
1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)](S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −MΛ(µ + d + r +
σ2

3

2
)(Rs

0 − 1) + β[M(c1 + c3) + 1]
ϵ2
ϵ1
+G

+
{β[M(c1 + c3) + 1]

ϵ1
−
ϵ

ϵ2

}
E.

Based on Eqs (3.4) and (3.5), we have

LV(S , E, I,R) ≤ −M(Rs
0 − 1) + β[M(c1 + c3) + 1]ϵ2 +G ≤ −1,∀(S , E, I,R) ∈ D2.

Case 3. If (S , E, I,R) ∈ D3, then one has

LV(S , E, I,R) ≤ −2
(µβS I

E

) 1
2
+ β[M(c1 + c5) + 1]

E + I
N
+ Λ

+ 2β + 4µ + c + ϵ + b + γ + α +
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B

−
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

≤ −2
(µβS I

E

) 1
2
+ F ≤ −2

(µβϵ1ϵ2
ϵ3

) 1
2
+ F.

From Eq (3.6), LV(S , E, I,R) ≤ −2
(
µβ

ϵ1

) 1
2
+ F < −1,∀(S , E, I,R) ∈ D3.

Case 4. If (S , E, I,R) ∈ D4, then one has

LV(S , E, I,R) ≤ −γ +
I
R
+ β[M(c1 + c5) + 1]

E + I
N
− 2
(µβS I

E

) 1
2

−
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
(S θ+1 + Eθ+1 + Iθ+1 + Rθ+1)

+
σ2

1

2
+ 3µ + c + ϵ + Λ + α +

σ2
2

2
+
σ2

4

2
+ B

≤ −γ
I
R
+ F ≤ −γ

ϵ2
ϵ4
+ F.

It then follows from Eq (3.7) that LV(S , E, I,R) ≤ − γ
ϵ1
+ F < −1,∀(S , E, I,R) ∈ D4.
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Case 5. If (S , E, I,R) ∈ D5, then one has

LV(S , E, I,R) ≤ β[M(c1 + c5) + 1]
E + I

N
+ Λ + 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B −

1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
S θ+1

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
S θ+1 + L

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1
ϵθ+1

1

+ L.

It then follows from Eq (3.8) that LV(S , E, I,R) < −1,∀(S , E, I,R) ∈ D5.

Case 6. If (S , E, I,R) ∈ D6, then one has

LV(S , E, I,R) ≤ β[M(c1 + c5) + 1]
E + I

N
+ Λ + 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B −

1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Eθ+1

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Eθ+1 + L

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ϵ2(θ+1)
1

+ L.

According to Eq (3.9), LV(S , E, I,R) < −1,∀(S , E, I,R) ∈ D6.

Case 7. If (S , E, I,R) ∈ D7, then one has

LV(S , E, I,R) ≤ β[M(c1 + c5) + 1]
E + I

N
+ Λ + 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B −

1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Iθ+1

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Iθ+1 + L

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ϵ4(θ+1)
1

+ L.

From Eq (3.11), LV(S , E, I,R) < −1,∀(S , E, I,R) ∈ D7.

Case 8. If (S , E, I,R) ∈ D8, then one has

LV(S , E, I,R) ≤ β[M(c1 + c5) + 1]
E + I

N
+ Λ + 2β + 4µ + c + ϵ + b + γ + α

+
σ2

1

2
+
σ2

2

2
+
σ2

3

2
+
σ2

4

2
+ B −

1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Rθ+1

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
]
Rθ+1 + L

≤ −
1
2

[
µ −

1
2
θ(σ2

1 ∨ σ
2
2 ∨ σ

2
3 ∨ σ

2
4)
] 1

ϵ3(θ+1)
1

+ L.
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From Eq (3.10), LV(S , E, I,R) < −1,∀(S , E, I,R) ∈ D8.

As a result, for sufficiently small values ϵi, i = 1, 2, 3, 4, we can demonstrate that

LV(S , E, I,R) ≤ −1,∀(S , E, I,R) ∈ R4
+\D.

And, as a consequence, the Condition (2) of Lemma 3.1 is satisfied. It follows from Lemma 3.1 that
System (1.2) has a unique ergodic stationary distribution. □

Remark 3.3. Theorem 3.2 states that if R̂s
0 =

βµ(γ+µ+b+ϵ+
σ2

3
2 )

(µ+
σ2

1
2 )(γ+µ+b+

σ2
3

2 )(c+ϵ+µ+
σ2

2
2 )
> 1, then System (1.2) has a

unique ergodic stationary distribution µ(·). If we ignore the white noise, the expression R̂s
0 is equal

to the threshold for the deterministic autonomous system System (1.1). This demonstrates that the
deterministic system’s results may be generalized.

4. Extinction of the disease

We shall focus on the disease extinction in this section. Defining the following notations for ease of
use and simplicity in the following analysis, we have

R̂0 =
β(γ + b + µ + ϵ)

(c + ϵ + µ)(γ + b + µ)
−

1
2 min{ c+ϵ+µ

γ+b+µ+ϵ , 1}(γ + b + µ)(σ−2
2 + σ

−2
3 )
,

and

⟨ f ⟩t =
1
t

∫ t

0
f (s)ds

where f is an integrable function on [0,∞).

Lemma 4.1. If (S (t), E(t), I(t),R(t)) is the solution of System (1.2) satisfying any initial value
(S 0, E0, I0,R0) ∈ R4

+, then

lim
t→∞

S (t)
t
= 0, lim

t→∞

E(t)
t
= 0, lim

t→∞

I(t)
t
= 0, lim

t→∞

R(t)
t
= 0 a.s.

lim
t→∞

1
t

∫ t

0
S (u)dB1(u) = 0, lim

t→∞

1
t

∫ t

0
E(u)dB2(u) = 0 a.s.

lim
t→∞

1
t

∫ t

0
I(u)dB3(u) = 0, lim

t→∞

1
t

∫ t

0
R(u)dB4(u) = 0 a.s.

The proof is omitted since it is comparable to [24, Lemma 3.1].

Lemma 4.2. [21, Theorem 1.3.4] Denote M = {Mt}t≤0 as a real-valued continuous local martingale
vanishing at t = 0. It holds that

lim
t→∞
⟨M,M⟩t = ∞ a.s.⇒ lim

t→∞

Mt

⟨M,M⟩t
= 0 a.s.

and
lim sup

⟨M,M⟩t
t

< ∞ a.s.⇒ lim
t→∞

Mt

t
= 0 a.s.
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Theorem 4.3. Assuming that System (1.2) has the solution (S (t), E(t), I(t),R(t)) with any initial value
(S 0, E0, I0,R0) ∈ R4

+. If R̂0 < 1, the solution (S (t), E(t), I(t),R(t)) of the System (1.2) satisfies

lim sup
t→∞

ln(γ+b+µ+ϵ
c+ϵ+µ E(t) + I(t))

t
≤ min{

c + ϵ + µ
γ + b + µ + ϵ

, 1}(γ + b + µ)(R̂0 − 1) < 0 a.s.

lim
t→∞

R(t) = 0 a.s. , lim
t→∞
⟨S (t)⟩ =

A
µ

a.s.

Proof. By System (1.2), we have

dQ(t) = Λ − µQ(t) + σ1S (t)dB1(t) + σ2E(t)dB2(t) + σ3I(t)dB3(t) + σ4R(t)dB4(t), (4.1)

where Q(t) = S (t) + E(t) + I(t) + R(t). Integrating both sides of Eq (4.1) from 0 to t and then dividing
by t, it follows that

Q(t)
t
−

S 0 + E0 + I0 + R0

t
= Λ −

∫ t

0
µQ(s)ds

t
+

∫ t

0
σ1S (s)dB1(s)

t
+

∫ t

0
σ2E(s)dB2(s)

t

+

∫ t

0
σ3I(s)dB3(s)

t
+

∫ t

0
σ4R(s)dB4(s)

t
.

It then follows from Lemma 4.1 that

lim
t→∞
⟨Q⟩t =

Λ

µ
a.s. (4.2)

Let C(t) = γ+b+µ+ϵ
c+ϵ+µ E(t) + I(t). Note that

C2 =
(
σ2 ·
γ + b + µ + ϵ

c + ϵ + µ
E
σ2
+

I
σ3

)2
≤
(
σ2

2(
γ + b + µ + ϵ

c + ϵ + µ
)2E2 + σ2

3I2
)( 1
σ2

2

+
1
σ2

3

)
. (4.3)

Using Itô’s formula, it holds that

d ln C(t) =
{β · γ+b+µ+ϵ

c+ϵ+µ
S (E+I)

N − (γ + b + µ)E − (γ + b + µ)I

C(t)

+
σ2

2(γ+b+µ+ϵ
c+ϵ+µ )2E2 + σ2

3I2

2C2(t)

}
dt +

σ2
γ+b+µ+ϵ

c+ϵ+µ E

C(t)
dB2(t) +

σ3I
C(t)

dB3(t)

≤
{

min{
c + ϵ + µ
γ + b + µ + ϵ

, 1}
[
β ·
γ + b + µ + ϵ

c + ϵ + µ
− (γ + b + µ)

]
− (2(σ−2

2 + σ
−2
3 ))−1

}
dt +

σ2
γ+b+µ+ϵ

c+ϵ+µ E

C(t)
dB2(t) +

σ3I
C(t)

dB3(t)

≤ min{
c + ϵ + µ
γ + b + µ + ϵ

, 1}(γ + b + µ)(R̂0 − 1)dt

+
σ2
γ+b+µ+ϵ

c+ϵ+µ E

C(t)
dB2(t) +

σ3I
C(t)

dB3(t).

(4.4)
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Integrating both sides of Eq (4.4) from 0 to t and then dividing by t, we have

ln C(t)
t
−

ln(C0)
t
≤ min{

c + ϵ + µ
γ + b + µ + ϵ

, 1}(γ + b + µ)(R̂0 − 1)

+
1
t

∫ t

0

σ2
γ+b+µ+ϵ

c+ϵ+µ E

C(s)
dB2(t) +

1
t

∫ t

0

σ3I
C(s)

dB3(t).

(4.5)

Let M(t) =
∫ t

0

γ+b+µ+ϵ
c+ϵ+µ E(s)

C(s) dB2(s). It is clear that,

lim sup
t→∞

⟨M,M⟩t
t

= lim sup
t→∞

∫ t

0

( γ+b+µ+ϵ
c+ϵ+µ E(s))2

(C(s))2 ds

t
≤ 1 a.s.

According to Lemma 4.2, we have

lim
t→∞

∫ t

0

σ2·
γ+b+µ+ϵ

c+ϵ+µ E(s)

C(s) dB2(s)

t
= 0. (4.6)

Similarly, we get

lim
t→∞

∫ t

0
σ3I(s)

E(s)+I(s)dB3(s)

t
= 0. (4.7)

Based on Eqs (4.5)–(4.7), it holds that

lim sup
t→∞

ln C(t)
t
≤ min{

c + ϵ + µ
γ + b + µ + ϵ

, 1}(γ + b + µ)(R̂0 − 1). (4.8)

Since R̂0 < 1, we can get
lim
t→∞

E(t) = 0 a.s. , lim
t→∞

I(t) = 0 a.s. ,

based on Eq (4.8).
From System (1.2), we conclude that limt→∞ R(t) = 0 a.s. when limt→∞ I(t) = 0 a.s. According to

Eq (4.2), limt→∞⟨S ⟩t = A
µ

a.s. This completes the proof. □

Remark 4.4. If R0 =
β(γ+b+µ+ϵ)

(c+ϵ+µ)(γ+b+µ) > 1 in the determined model, the infection will continue to exist.
However, we can come to this conclusion based on the expression of R̂0 at the beginning of this section
which indicates that if the density of the noise is sufficiently large, the disease may die out.

5. Numerical simulations

Several examples are presented in this section to exemplify the theoretical findings. Our results
are presented as a result of using Milstein’s higher method suggested in [23]. Consider the following

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9125–9146.



9140

discretization equation

S j+1 = S j +
[
Λ − β

S j(E j + I j)
S j + E j + Ii + R j

+ cE j + bI j + αR j − µS j

]
∆t

+ σ1S j

√
∆tϵ1, j +

σ2
1S j

2
(ϵ21, j − 1)∆t,

E j+1 = E j +
[
β

S j(E j + I j)
S j + E j + Ii + R j

− (c + ϵ + µ)E j

]
∆t

+ σ2E j

√
∆tϵ2, j +

σ2
2E j

2
(ϵ22, j − 1)∆t,

I j+1 = I j + [ϵE j − (γ + b + µ)I j]∆t + σ3I j

√
∆tϵ3, j +

σ2
3I j

2
(ϵ23, j − 1)∆t,

R j+1 = R j + [γI j − (α + µ)R j]∆t + σ4R j

√
∆tϵ4, j +

σ2
4R j

2
(ϵ24, j − 1)∆t,

where the intensities of white noise are represented by the time increment ∆t > 0, σ2
i > 0(i = 1, 2, 3, 4)

and Gaussian random variables ϵi, j ∼ N(0, 1)(i = 1, 2, 3, 4). We subdivide the time interval into 1000
equidistant time steps. Moreover, (S j, E j, I j,R j)T is the value of the ith iteration of the discretized
equation.

Figure 1. (Left) Red lines depict the solution of System (1.2 and green lines depict the so-
lution of the undisturbed system System (1.1). (Right) Histograms of the probability density
functions of S(t), E(t), I(t) and R(t).

For the parameters and initial values, refer to the data in [6]. We chose β = 0.34, c = 0.25, b =
0.2, ϵ = 0.15, α = 0.2, γ = 0.1,Λ = 0.015, µ = 0.01, σ2

1 = 0.002, σ2
2 = 0.02, σ2

3 = 0.04 and
σ2

4 = 0.005. In this example, numerical simulations were used to show the trajectory images and
distribution function graphs of E(t) and I(t), as shown in Figure 1 . In the figure, one can find that the
number of people making up the infectious population fluctuates around a nonzero value, which means
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that both will persist in the community. According to Theorem 3.2, R̂s
0 = 1.05785, and there exists a

unique stationary distribution of System (1.2) in this circumstance. The results are supported by the
results of numerical simulations.

Now, we will examine the influences of the contact transmission rate, susceptibility rate of exposed
individuals and infected people.

a b

c

Figure 2. Effects of β, b and c.

Let β vary in [0, 1] and keep the other parameters as shown in Figure 1. Figure 2(a) shows that
R0, R̂s

0 and R̂0 are increasing functions. If we lower the viral transmission contact rate β to 0.278 and
keep the other parameters the same as in Figure 1, we get the following results. In this situation, the
simulations using the initial value (S 0, E0, I0,R0) = (0.5, 0.1, 0.1, 0.1) show that E(t) and I(t) of the
solutions of System (1.2) tend to 0 as t → +∞. This indicates that the disease is no longer present
(see Figure 3). In this case, we may compute R̂0 = 0.9751143 < 1. The disease will die out with a
probability of 1 based on Theorem 4.3. The results are supported by numerical simulations. We may
deduce that the disease will be eradicated if the rate of infection is reduced.

Following that, let b vary in [0, 1] and keep the other parameters as shown in Figure 1. Figure
2(b) shows that R0, R̂s

0 and R̂0 are decreasing functions. We raise the amount of b to 0.55, as well as
the other parameters as shown in Figure 1. The simulations with the initial value (S 0, E0, I0,R0) =
(0.5, 0.1, 0.1, 0.1) show that when t approaches +∞, E(t) and I(t) of solutions of System (1.2) tend to
0. This indicates that the disease is no longer present (see Figure 4). In this case, R̂0 = 0.96 < 1. Hence
the disease will die out with a probability of 1 based on Theorem 4.3. The results are supported by the
numerical simulations.

Let c vary in [0, 1] and keep the other parameters as shown in Figure 1. Figure 2(c) shows that R0, R̂s
0

and R̂0 are decreasing functions. Then, we increase the value of c to 0.3 and keep the other parameters
the same as in Figure 1. In this situation, the simulations using the initial value (S 0, E0, I0,R0) =
(0.5, 0.1, 0.1, 0.1) show that when t approaches +∞, E(t) and I(t) of the solutions of System (1.2)

Mathematical Biosciences and Engineering Volume 19, Issue 9, 9125–9146.



9142

Figure 3. (Left) Red lines depict the solution of System (1.2) and green lines depict the so-
lution of the undisturbed system System (1.1). (Right) Histograms of the probability density
functions of S(t), E(t), I(t) and R(t).

Figure 4. (Left) Red lines depict the solution of System(1.2 and green lines depict the solu-
tion of the undisturbed system System (1.1). (Right) Histograms of the probability density
functions of S(t), E(t), I(t) and R(t).
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Figure 5. (Left) Red lines depict the solution of System(1.2 and green lines depict the solu-
tion of the undisturbed system System (1.1). (Right) Histograms of the probability density
functions of S(t), E(t), I(t) and R(t).

Figure 6. (Left) Red lines depict the solution of System(1.2 and green lines depict the solu-
tion of the undisturbed system System (1.1). (Right) Histograms of the probability density
functions of S(t), E(t), I(t) and R(t).
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tend 0 as t → +∞. This indicates that the disease is no longer present (see Figure 5). In this case,
R̂0 = 0.67 < 1. According to Theorem 4.3, the disease will die out with a probability of 1. There is a
good correlation between the numerical simulations and the results. In conclusion, the disease will die
out by enhancing disease resistance.

From Figures 3–5, one can find that the components E(t) and I(t) of the stochastic epidemic model
will approach 0 as t → +∞. We should also point out that the components E(t) and I(t) of the
deterministic epidemic model will tend toward positive values as t → +∞. This fact shows that white
noise is beneficial for disease extinction. On the other hand, Figure 2 shows that, no matter how we
change the values of β, b and c, we have R0 > R̂0 > R̂s

0. This result also shows that white noise is
beneficial for disease extinction.

Consequently, we chose σ2
2 = 0.2, σ2

3 = 0.3, and the values shown in Figure 1 for the
other variables. In this case, we observed that the (S (t), E(t), I(t),R(t)) of System (1.1) tended to
(1.2190, 0.1693, 0.0793, 0.0378) as t → +∞, whereas the I(t) of System (1.2) gradually decreased to 0
as t approached ∞ (see Figure 6). Ultimately, it could be concluded that white noise is beneficial for
disease extinction.

6. Conclusions

Briefly, the current study yielded a stochastic influenza virus model with disease resistance. Ac-
cording to mathematical approaches, in reality, the circumstances required for the disease to die out
are rough to some extent. In this study, we focused on a stochastic influenza virus model with disease
resistance. First, we obtained the existence of one unique global positive solution satisfying the initial
value of (S 0, E0, I0,R0) ∈ R4

+. Second, we get the existence of a stationary distribution for the positive
solutions by using a stochastic Lyapunov function method. Third, we established the sufficient condi-
tions for extinction of the disease. Finally, we conducted some numerical simulations. The results of
the numerical simulations indicate that enhancing disease resistance is beneficial for the control of the
disease. In addition, a simple example showed that the white noise is beneficial for the extinction of
the disease.

Furthermore, there is a parametric region between the extinction conditions and a stationary distri-
bution for positive solution values. As a result, it is only logical to wonder about the dynamics in this
region. We shall address these incidents in future works.
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