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Abstract: Traditional back propagation neural networks (BPNNs) for ultrawideband (UWB) indoor 
localization can effectively improve localization accuracy, although there is high likelihood of 
becoming trapped in nearby minima. To solve this problem, the random weights and thresholds of the 
BPNN are optimized using the Harris Hawks optimization algorithm (HHO) to obtain the optimal 
global solution to enhance the UWB indoor positioning accuracy and NLOS resistance. The results 
show that the predicted trajectory of the HHO and BPNN hybrid algorithm (HHO-BP) matches the 
actual position in the two-dimensional localization scenario with four base stations; the optimized 
average positioning error is effectively reduced in both indoor LOS and NLOS environments. In the 
LOS environment, the total mean error of the traditional BPNN algorithm is 6.52 cm, which is 26.99% 
better than the UWB measurement error; in the NLOS environment, the total mean error of the 
conventional BPNN is 14.82 cm, which is 50.08% better than the UWB measurement error. The HHO–
BP algorithm is further optimized on this basis, and the total mean error in the LOS environment is 
4.50 cm, which is 22.57% better than the conventional BPNN algorithm; in the NLOS environment, 
the total mean error is 9.56 cm, which is 17.54% better than the conventional BPNN algorithm. The 
experimental findings suggest that the approach has greater calibration accuracy and stability than 
BPNN, making it a viable choice for scenarios requiring high positional precision. 

Keywords: UWB; BPNN; Harris hawks optimization algorithm; line-of-sight; non-line-of-sight 
indoor positioning 
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1. Introduction 

With the rapid development of innovations in communication technology and the notoriety of 
remote systems, the desire for enhanced indoor positioning continues to expand [1]. However, when 
facing complex indoor environments, such as with the real-time positioning of personnel, equipment 
and materials in office buildings, factories and construction sites [2], real-time care and management 
of the elderly [3], precise electronic positioning guidance inside hospitals [4] and precise location 
trajectories of supervised persons in prisons [5], there is an expanding requirement for high-precision 
situating innovation. Thus, strategies for advancing the exactness of indoor situating tasks have 
become of increasing interest to a range of researchers. 

Indoor positioning technology is developing rapidly today and is classified as building-dependent 
or building-independent, depending on the sensors used for positioning [6]. The most common 
building-independent indoor positioning techniques are pedestrian dead reckoning (PDR) systems [7] 
and image-based techniques that use cameras [8]. Although the noise is small and stable in the short 
term when using PDR systems, such approaches cannot be used for long times due to the accumulation 
of errors, and toward solving this problem, the mainstream research direction is currently the fusion 
algorithm. Various fusion algorithms are proposed in [9–11], such as fusion algorithms with Wi-Fi, 
Bluetooth, RSS fingerprinting, etc., which effectively reduce positioning error and improve robustness. 
The four aspects of a typical inertial measurement unit(IMU)-based PDR system framework are 
direction updating, step detection, step estimation and map matching [12]. Navigation systems include 
techniques such as orientation updating and map matching, whereas step detection and estimation are 
specialized to human motion since they exploit the constraint of pedestrian steps. The camera is used 
for positioning in image-based indoor positioning tasks. The camera used in such applications can be 
monocular [13], stereo [14] or RGB-D [15]. Because it is difficult to obtain accurate positioning results 
with a single method, a hybrid positioning method in such a positioning system is introduced as the 
reliable option. The existing techniques for IMU-based positioning, camera-based positioning and 
various existing hybrid methods for indoor positioning are discussed in [16], and a hybrid indoor 
positioning system that uses IMU sensors and smartphone cameras is proposed, which effectively 
improves indoor positioning accuracy. 

Building-independent positioning technologies, of which there are many types, fall into two main 
categories: namely, those that utilize the existing building infrastructure and those that require 
dedicated infrastructure. The former category includes Wi-Fi, cellular and Bluetooth. Most Wi-Fi-
based positioning systems can be used as RSS-based measurement systems. Various Wi-Fi restrictions 
must also be considered: for example, signal attenuation in static contexts such as walls and floors, as 
well as changes in interior environments [17]. Although the cellular network has a wide coverage area, 
it still suffers from low positioning accuracy. One of the disadvantages of employing Bluetooth 
technology for localization is that it performs the device discovery operation for each location finding 
event; as a result, the localization latency (10–30 s) and consumption are greatly increased. As a result, 
the latency of a Bluetooth device is inadequate for real-time positioning applications. However, for the 
previously described Wi-Fi localization, a hybrid deep learning model (HDLM)-based indoor 
localization system was developed in [18]. Instead of raw RSSI signals from APs, the proposed 
HDLM-based localization system uses RSSI heatmaps. As a result, the Wi-Fi-RSSI signal-based 
localization system’s localization performance is improved. For the latter, the main positioning 
technologies are RFID, UWB, infrared, ultrasonic, ZigBee, VLC, acoustic, etc. RFID technology 
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requires a large number of tags, which do not meet the requirements of real-time positioning, and its 
positioning accuracy is related to the deployment density of tags [19]. Indoor positioning systems 
based on infrared possess several drawbacks, such as security and privacy concerns. The position 
determination of infrared signals is limited due to interference from fluorescent light and sunlight. In 
addition, the hardware and maintenance expenses of IR-based indoor systems are high [20]. Reflected 
waves propagated by other sources can cause severe interference for ultrasound devices (e.g., metal 
collisions) [21]. The ZigBee positioning accuracy is low, as is its data transfer rate [22]. 

UWB is a remote correspondence innovation that transfers a bandwidth of more than 1 GHz. Due 
to its strong anti-interference performance, resistance to multipath interference, high transmission rate, 
low transmission power and increased penetration capability, UWB positioning technology is widely 
used for positioning in indoor environments. UWB can provide high positioning accuracy [23–25]. 
Currently, the various UWB ranging methods can be classified into time of arrival (TOA), received 
signal strength (RSS) and time difference of arrival (TDOA) [26]. However, in complex indoor 
environments, where walls or other signals block objects, the signal transmission distance increases, 
and the transmission time lengthens, significantly reducing UWB positioning accuracy. A single indoor 
positioning method can no longer meet the growing requirements for localization accuracy. Therefore, 
mixed localization algorithms are becoming increasingly attractive [27]. 

The localization equation is usually a nonlinear equation based on TOA or TDOA; as a result, the 
equation must be converted into a linear equation for solving [28]. Currently, nonlinear problems are 
mainly solved by the least-squares estimation (LSE) algorithm, Fang algorithm, Chan algorithm and 
Taylor algorithm. The weighting matrix of the LSE algorithm should be decided according to the 
precision of the measurement data; in practical applications, the selection of the weighting matrix is 
difficult. The best estimation performance of the algorithms developed by Chan and Fang is achieved 
when the time difference measurement error is small, although the performance of both algorithms is 
seriously affected by the large time difference measurement error in the real channel environment [29]. 
In recent years, deep learning approaches have been commonly employed for indoor positioning 
because of their excellent nonlinear mapping capabilities and self-adaptive and self-learning abilities 
[30]. For example, Zhuo et al. suggested a UWB locating technique based on BPNN that is applied to 
automatic parking, showing good real-time performance and accuracy [31]. In [32], a long short-term 
memory (LSTM) network is proposed to reduce the position error in UWB systems; this network 
solves the LOS problem associated with UWB systems and improves the positioning accuracy. Shuai 
et al. applied the 60 GHz pulsed-IR algorithm to a BPNN, which was used to improve the ability of 
conventional algorithms to accurately estimate signal fading due to the complexity of indoor channels, 
thus improving localization accuracy [33]. Lian et al. proposed an optimized K-means clustering 
BPNN UWB positioning approach, which enhances the original data in the UWB positioning system 
and preprocesses the K-means clustering algorithm to filter the data with a significant positional 
deviation, and the experimental measurement accuracy can reach 26 cm with good stability [34]. Zhang 
and Jin proposed a BP neural network indoor positioning algorithm based on VLC. Through simulation 
experiments, the authors showed that the algorithm has a lower relative positioning error and better 
indoor positioning accuracy than the MDS-MAP and MDS-MAP(P) algorithms [35]. 

However, the BPNN is sensitive to random weights and thresholds, which enhances the likelihood 
of being trapped in nearby minima, thus generating significant localization errors [36]. Therefore, 
numerous optimization algorithms have been proposed to reduce the downsides of the BPNN. Among 
them, population intelligence optimization algorithms are the most widely applied algorithms toward 
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solving the inherent defects of traditional training algorithms [37]. For example, a location fusion 
method of genetic algorithm (GA) optimization of the BP neural network that effectively reduces the 
localization error was proposed by Yang et al. [38]. Li et al. [39] proposed a mixed model that combines 
the cuckoo search optimization algorithm (CS) with the BPNN, where the random weights and 
thresholds of the BPNN are optimally trained, and the measured time differences are corrected after 
training. Finally, the Chan algorithm is used for localization calculation according to the corrected time 
difference values. In addition to these studies, the current swarm intelligence algorithm is developing 
rapidly, and better results have been demonstrated [40–44]. Previous literature has investigated indoor 
localization methods using the particle swarm optimization algorithm and BPNN hybrid algorithm 
(PSO-BP) combined with RFID using artificial intelligence techniques [45] and UWB indoor 
localization methods using the immune algorithm and BPNN hybrid algorithm (IA-BP) [46]. The 
above research shows that artificial intelligence techniques show strong capability in UWB positioning. 
It is essential to study new artificial intelligence techniques and prediction models to improve UWB 
positioning accuracy [47]. 

As indicated by the no free lunch (NFL) theorem [48], theoretically, a certain algorithm cannot 
be treated as a generic global optimal optimization algorithm. Therefore, although a range of 
algorithms is used to optimize UWB indoor positioning, the presented algorithms are far from 
being able to solve all problems or be applied to all indoor environments. To the authors’ best 
knowledge, UWB indoor localization has not yet been attempted using a combination of the HHO 
algorithm and BPNN. 

This study proposes a new hybrid algorithm, called HHO-BP, to improve UWB indoor positioning 
accuracy and resistance to non-line-of-sight ranges. The algorithm uses the HHO algorithm to optimize 
the BPNN to find a set of optimal weights and thresholds, thereby improving the positioning accuracy. 
Finally, the optimization performance of the HHO-BP algorithm and the conventional BPNN are 
compared and analysed through experimental validation. 

The major contribution of this paper is to propose a new hybrid algorithm, HHO-BP, for 
optimizing ultrawideband indoor positioning, outlined as follows: 

(1) A new algorithm for hybrid localization, namely, HHO-BP, is proposed. 
(2) Combining the BP neural network with an intelligent population algorithm, the structure of 

the BP neural network is optimized, thus solving the local optimal solution problem. 
(3) The algorithm greatly improves the accuracy and anti-jamming capability of ultrawideband 

indoor positioning, with centimetre-level accuracy for both line-of-sight and non-line-of-sight 
positioning. 

The structure of the paper is as follows: First, the principles of UWB localization and BPNN are 
explained in Section 2. Section 3 introduces the principle of the proposed swarm intelligence algorithm 
(HHO), as well as the constructed new model. Section 4 offers the findings as well as a discussion and 
analysis. Finally, in Section 5, the study’s findings are presented. 
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2. Model building 

2.1. UWB position principle 

The principle of the trilateral positioning algorithm is as follows: The three base stations are 
located at A0(x1,y1), A1(x2,y2) and A2(x3,y3), and it is known that the distance values of the tag to be 
measured, Tn(x0,y0), to the 3 base stations are d1, d2 and d3, as displayed in Figure 1. 

A0(x1,y1)

A2(x3,y3)

A1(x2,y2)

Tn(x0,y0)

d1

d2

d3

 

Figure 1. Trilateral positioning algorithm. 

In the case of two-dimensional positioning, according to the Pythagorean theorem, the formula 
for calculating the position of the tag, Tn, and the focus are attained using Eq (1). 

2 2
1 1 0 1 0

2 2
2 2 0 2 0

2 2
3 3 0 3 0

( ) ( )

( ) ( )

( ) ( )

d x x y y

d x x y y

d x x y y

   

   

   

                                                       (1) 

Under ideal circumstances, the distance values of tag Tn to base Stations A0, A1 and A2 are accurate; 
tag Tn has only one correct solution, as shown by the red dot in Figure 2. 

A0(x1,y1)

A2(x3,y3)A1(x2,y2)

 

Figure 2. Ideal circumstances. 
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Under actual circumstances, real distance measurement is subject to error; the reasons for the 
error include the error of the range itself and the error of the actual scene, such as obstruction or metal, 
which affects the penetration and transmission of electromagnetic waves. In a line-of-sight 
environment, the measured value fluctuates above and below the actual value; however, in a non-line-
of-sight environment, the distance measured is theoretically higher than the actual value due to the 
presence of occlusion between the base station and the tag, resulting in the effect shown below, where 
the solved Tn coordinate is no longer a point. Nevertheless, it is a region, so we need to find an optimal 
solution in the red area, as shown in Figure 3. 

A0(x1,y1)

A2(x3,y3)A1(x2,y2)

 

Figure 3. Actual circumstances. 

2.2. BPNN model 

There are many models of artificial neural networks, but the foremost broadly utilized, natural 
and simple-to-understand is the backpropagation algorithm, called BPNN [49]. Training is performed 
through signal forward propagation and error backward propagation. 

The network generally has a multilayer structure, including an input layer for data input, an output 
layer for result output and several hidden layers, and each hidden layer contains one or more neurons. 
The topological diagram of the BPNN is shown in Figure 4. 

x2

xm

y1

y2

yn

Input layer Hidden layer Output layer

Wij Wjk

x1

 

Figure 4. The topology of BPNN. 
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In the structure, x1, x2, …, xm are inputs, and y1, y2, …, yn are outputs. A hidden layer contains 
s neurons, the output function of the hidden layer is jb , and the threshold values for the hidden and 

output layers are j  and k , respectively. The most frequently used activation function is the sigmoid 

function, which is set to ( )S x  here. 1f  and 2f  are the transfer functions of the hidden and output 

layers, respectively. The output of the model is set to ky , and the expected output is kt  [50]. The above 

can be modelled as follows. 
The output of the Jth neuron of the hidden layer is [50] 

1
1

 ( 1,2,..., ; 1, 2,..., )
m

j ij i j
i

b f w x i m j s


     
 
 .                              (2) 

a. Calculate the output ky  of the output layer as in Eq (3) [50]: 

2
1

y   ( 1,2,..., ; 1, 2,..., )
s

k jk j k
i

f w b j s k n


     
 
 .                         (3) 

b. Define the error function by the actual output of the network as in Eq (4) [50]: 

2

1

( )
n

k k
k

e t y


  .                                                                      (4) 

c. The sigmoid activation function is given as Eq (5) [50]: 

1
( )

1 x
S x

e


.                                                                         (5) 

3. The proposed hybrid positioning method 

3.1. Harris hawks optimization (HHO) algorithm 

A new bionic intelligent optimization approach, the Harris hawks optimization (HHO) algorithm, 
was developed in 2019. The method is a metaheuristic approach that combines Lévy flights to solve 
large multidimensional problems by simulating the collaborative group behaviour of Harris hawks 
while hunting. Compared with previous algorithms, this algorithm has a higher search capability, 
acceptable development and exploration and thus has been successfully applied to many practical 
engineering problems [51,52]. 

As a result, since BPNN is more sensitive to initial weights and thresholds, this research proposes 
the Harris hawks optimization method for BPNN random weights and threshold optimization. 

The whole optimization process includes a global exploration phase, a transition phase and a local 
exploitation phase [52]. 

1) Exploration phase: 
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In HHO, the Harris hawks perch randomly on some locations in a waiting form, monitoring the 
area [lb, ub] to search for prey. The prey is simultaneously searched at random locations according to 
two different strategies, and the location update is performed with probability q during the iteration. 
The mathematical formula for the Harris hawks’s location, which is closest to the prey, is the following: 

   
2

3 4

( 1)
( ) ( ) , 0.

( ) , 0.5

5

rand rand

rabbit b

X t X t X t q

X
X t

X t r lb r ub lb qt

  
    





 

 

1（）- r （）-2 r

（）
.                             (6) 

In Eq (6), ( 1)X t   is the hawk’s location in the following iteration, t . The location of the rabbit 

is rabbitX t（） , and the current position of the hawk is (t)X  . 1r  , 2r  , 3r  , 4r   and q   are all random 

numbers ranging from 0 to 1. The upper and lower bounds of the variables are represented by ub and 
lb, respectively, while randX t（） is the hawk chosen at random from the population, which is updated 

in each iteration. ( )bX t  is the current hawk average location in Eq (7). 

1

1
( ) ( )

N

b i
i

X t X t
N 

                                                           (7) 

where N  is the number of hawk, and in iteration t , ( )iX t  shows the location of each hawk. 

2) Transition phase: 
The HHO algorithm moves from exploration to exploitation and then between multiple 

exploitation behaviours depending on the energy, E , of prey escape, as shown below in Eq (8): 

02 (1 )
t

E E
T

                                                               (8) 

where 0E  is the energy starting stage, and T  is the highest number of iterations [52]. 

3) Exploitation phase: 
Four distinct tactics are employed to recreate the assault in this phase, depending on how the prey 

flees and how the Harris hawk pursues it, combined with Lévy flights, representing the prey’s chance 
of escaping [52]. 

a)  

0.5 & 0.5r E   

In this case, the rabbit still has enough energy, and the hawk aim to exhaust its energy before 
launching the assault. The modelling rules given in Eqs (9) and (10) [52]: 

( ( ( )1) ) rabbitXX t X tt E X tJ    （） ,                                                (9) 

( )( t) rabbitX tX t X  （） .                                                        (10) 

To replicate the nature of the rabbit’s movements, the J  value varies randomly in each iteration, and 
the rabbit’s random hop intensity throughout the escape phase is denoted by 52(1 )J r   . 

5r  is a 

number in the range from 0 to 1. The disparities between the rabbit’s prior location vector and the 
current position vector are ( )X t . 
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b)  

0.5& 0.5r E   

Under this condition, the rabbit is fatigued, and the hawk can launch a surprise assault. Equation 
(11) expresses how the model updates the rabbit’s position [52]: 

( 1 ( )) rabbitX t EX t X t  （） .                                                  (11) 

c)  

0.5& 0.5r E   

The rabbit has enough energy in this situation to effectively flee while still constructing a soft 
envelope before the attack. The following rule, given in Eq (12), can be used to update the Harris 
hawks’ positions [52]: 

( )rabbit rabbitX t X tY E J X t  （） （） .                                                (12) 

The hawk will dive utilizing the following rule, Eq (13), using LF-based patterns: 

( )Z Y S LF D                                                             (13) 

where D  is the dimension, S  is a one-dimensional random vector, and LF  is the Levy flight function 
and is based on the equation below (Eq (14)). 

1

1 1
( )

2

(1 ) sin( )
2( ) 0.01 ,

1
( ) 2

2

LF x






  
 



 
   

    
    

 

                                (14) 

Here,   is 1.5, and  and   are random numbers between 0 and 1. 

By calculation, Eq (15) can execute the ultimate plan to update the locations of the hawks: 

( )Y       F(Y)<F(H )
( 1)

Z       F(Z)<F ((H ))
X t

t

t


  


.                                            (15) 

d)  

0.5& 0.5r E   

In this situation, the rabbit is unable to flee due to a lack of energy, so the hawks set up a hard 
siege. The modelling rules are given in Eqs (16) and (17) [52]: 
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)Y (rabbit rabbit bX t XE J t X t （） （） ,                                         (16) 

( )Z Y S LF D   .                                                          (17) 

Here, Y  references Eq (15). 

3.2. HHO-BP model 

Harris Hawks Optimization Algorithm
Input: Population size

       Maximum number of iteration T

Output: Fitness curve and Xrabbit

Steps:

Initiation of random position

While t<T

   Fitness value calculation of Harris Hawks

   for each Harris Hawks

         if |E|>1 then

               Exploration phase

         end

         if |E|<1  then

               if |E|≥0.5 & r≥0.5  then

                     Soft besiege

              elseif  |E|≥0.5 & r<0.5  then

                    Hard besiege

              elseif  |E|<0.5 & r≥0.5  then

                    Soft besiege with progressive rapid dives

              elseif  |E|<0.5 & r<0.5   then   

                    Hard besiege with progressive rapid dives

              end

        end  

Xrabbit 

Training Datasets

Testing Datasets

S
ta

r
t

End

Performance
Evaluation

BP neural network model 
Development

Mean error
Visual result

 

Figure 5. A method for creating a Harris hawk optimization-BP neural network (HHO-BP) 
model is described. 

Figure 5 depicts the development path of the HHO-BP model. First, the obtained database is 
divided into training and test datasets. The BP neural network is first set to random weights and 
thresholds, and then the training set data are input for training, where the Harris hawk optimization 
algorithm develops the final BP model by searching for the best combination of weights and thresholds 
in the BP model in a preset number of iterations. Finally, the test set data are fed into the final 
constructed BP neural network for predicting the UWB localization results. Performance metrics such 
as the mean error and position comparison can be used to evaluate the optimized BP model, and the 
actual and measured coordinates of the test set and the prediction results are used to test its performance 
and calculate the prediction error. 
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The computational complexity of HHO in this approach is determined using three key processes: 
initial optimization, fitness evaluation and candidate update. The computing complexity of the 
initialization process is ( )O N  for all N . The update mechanism has a computational complexity of 

( ) ( )O T N O T N D     , which comprises updating the search agent location and finding the 

optimal solution, where T  is the maximum number of iterations, set to 200 to assure convergence, 
and D   is the problem’s dimensionality. As a result, HHO’s computational complexity is 

  1O N T TD    [52]. 

4. Performance evaluation and analysis 

4.1. Experimental scenario configuration 

Through the following site environment and hardware equipment, UWB measurement data are 
acquired. Then, they are compared with the actual position, and visualized positioning points and error 
curves are plotted to see if the algorithm pair is effective and accurate. 

4.1.1. Test environment and trajectory 

To test the accuracy of UWB localization and the algorithm’s efficiency, a combination of offline 
data acquisition and MATLAB simulation is adopted. For the acquisition, an LOS environment and an 
NLOS environment were created, and the experimental sites are shown in Figures 6 and 7. 

LOS environment: To create an indoor positioning scenario, four UWB anchors with heights of 
2.2 m and positions of (0, 0), (0, 6.45), (5.58, 0) and (5.58, 6.45) were placed in the region illustrated 
in Figure 6. UWB anchor 0 is connected via Wi-Fi to a computer with the developed interactive 
interface installed, and the real-time position of the UWB tag is obtained through the host computer 
software to obtain indoor positioning data for the LOS environment. 

NLOS environment: Because of the indoor environment's complexity, the height of the four 
UWB anchors was reduced to 1.4 m, and the positioning test points were built around the table using 
the shelter of the table to build a non-line-of-sight testing environment, as shown in Figure 7. 

4.1.2. Major hardware equipment 

The DWM1000 UWB module used in the range circuit is made by DECAWAVE. The Wi-Fi is 
used to communicate with the PC to obtain UWB measurement data. Figure 8 depicts the system 
structure and hardware circuit diagram [53]. 
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Measurement 
track

UWB anchor

UWB Tag

(a)      (b)  

Figure 6. The UWB test field has a size of 6.45 × 5.58 m2. The height of the UWB anchors 
is 2.2 m. The coordinate’s origin is set to A0. (a) LOS distance actual view. (b) LOS 
distance plan and measurement trajectory. 

Measurement track

UWB anchor

UWB Tag

(a) (b)
 

Figure 7. NLOS experimental scene diagram. The height of the UWB anchors is 1.4 m. (a) 
NLOS distance actual view. (b) NLOS distance plan and measurement trajectory. 



9110 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9098–9124. 

(a) (b)
 

Figure 8. The UWB ranging system. (a) System structure diagram. (b) Hardware circuit 
diagram. 

4.2. Results presentation and analysis 

4.2.1. LOS environment experiment 

The positioning data were collected separately at the same height at the site. Four label heights 
were tested (1.3, 1.55, 1.7 and 1.95 m) to ensure the feasibility of experimental rigor. The actual 
locations and the measured locations were used to form the sample set, which was divided into the 
training and test sets. 

In Figure 9, the four panels a–d represent the total dataset of the four altitude UWB measurements 
and the actual coordinate positions. The black asterisks represent the actual coordinate positions 
measured with the metric ruler; the red diamonds represent the upper computer positioning software 
data. The data in the graph are all shifted by different magnitudes. To verify the effectiveness and 
accuracy of the algorithm, the simulation results were subsequently compared with the redraw data. 
Additionally, to better analyse the error of the original UWB positioning, the error curve is plotted 
using MATLAB 2020 software, as shown in Figure 10. 

As seen from Figure 10, for different altitudes, there are positioning anomalies, and some points 
do not achieve centimetre-level positioning accuracy. In contrast, some positions are more volatile in 
comparison. In other words, conventional UWB positioning either has large fluctuations or large 
deviations. For this purpose, from the aforementioned sample set, a training dataset and a testing 
dataset are constructed, which are fed into the BPNN and the HHO-BP neural network, which predicts 
the localization sites. Finally, the error analysis is performed with the actual coordinate points. To 
analyse the effect of the algorithm, we choose nonidentical locus points as the test set. 
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The black points in Figure 11 are the actual locations (i.e., the metric measurement data). The red 
points are the original UWB positioning measurement data. As the figure shows, the initial UWB 
positioning is not ideal, and there are significant errors. 

In Figure 12, the black points are the actual coordinates (measured in metres), the blue triangles 
are the unoptimized BP neural network (random weight threshold) localization points, and the red 
circles are the HHO-BP neural network localization points. 

When comparing Figures 11 and 12, the findings reveal that both the BPNN and the HHO-BP 
have greatly increased accuracy. To more accurately evaluate the difference in effectiveness between 
the BPNN and the optimized HHO-BP, each test point was compared with the actual location, and 
three sets of error data were obtained. The initial UWB measurement error, the BPNN prediction 
result error, and the HHO-BP prediction result error were all identified, as demonstrated in Figures 
13 and 14. 

In Figure 13, the black line segment indicates the original UWB error, the blue line segment shows 
the BP neural network optimization error, and the red line segment indicates the HHO-BP neural 
network optimization error. 

The experimental findings in Figures 13 and 14 reveal that the HHO-BP algorithm has a superior 
optimization impact relative to the BP neural algorithm at all four heights of the LOS environment, 
which effectively reduces the error of UWB indoor positioning and achieves centimetre-level accuracy. 
At the same time, HHO-BP can effectively decrease outliers and reduce accuracy variation to a certain 
amount. 

(a) (b)

(c) (d)  

Figure 9. The LOS environment has four total altitude test positioning points and actual 
coordinate points. (a) 1.3 m. (b) 1.55 m. (c) 1.7 m. (d) 1.95 m. 
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(a) (b)

(c) (d)  

Figure 10. The original error between the actual position and the test position for each 
point at four different heights. (a) 1.3 m. (b) 1.55 m. (c) 1.7 m. (d) 1.95 m. 

(a) (b)

(c) (d)  

Figure 11. The test set actual position and measured position. (a) 1.3 m. (b) 1.55 m. (c) 1.7 
m. (d) 1.95 m. 
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(a) (b)

(c) (d)  

Figure 12. The test set actual position and optimized points. (a) 1.3 m. (b) 1.55 m. (c) 1.7 
m. (d) 1.95 m. 

 (a)

 (c)

 (b)

 (d)
 

Figure 13. The test set original error and optimized error. (a) 1.3 m. (b) 1.55 m. (c) 1.7 m. 
(d) 1.95 m. 



9114 

Mathematical Biosciences and Engineering  Volume 19, Issue 9, 9098–9124. 

 (a)  (b)

 (c)  (d)  

Figure 14. Test set average error and optimized error. (a) 1.3 m. (b) 1.55 m. (c) 1.7 m. (d) 
1.95 m. 

4.2.2.  NLOS environment experiment 

In this environment, to achieve the NLOS environmental conditions, four UWB anchors were 
adjusted to a height of 1.4 m, and the test points were located around the table with the table positioned 
as an occluder. The localization coordinates of the UWB tag heights of 0.24, 0.4, 0.55 and 0.67 m were 
measured separately as the sample set for this environment. From the aforementioned sample set, a 
training dataset and a testing dataset were constructed. 

From Figure 15, from sample sets of different heights, it can be found that in the NLOS 
environment, the outliers of sample points increase significantly. Because of the shielding effect of the 
table, the signal's arrival time increases, such that the measured coordinates deviate from the shielding 
object. As the height of the UWB tag decreases gradually, the complexity of the NLOS environment 
increases, and the location deviation becomes more chaotic, causing the optimization task of this 
environment to be more difficult. 

Figure 16 shows the error curves of the sample set for each altitude measurement versus the actual 
coordinates, indicating a significant increase in error in the NLOS environment, along with greater 
volatility. Figure 16 shows that UWB positioning has a large error in the NLOS environment, with 
some test points even showing an error of more than 1.5 m. Therefore, optimization for this situation 
is essential. 
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 (a)  (b)

 (c)  (d)
 

Figure 15. NLOS environment with four total altitude test positioning points and actual 
coordinate points. (a). 0.24 m. (b). 0.4 m. (c). 0.55 m. (d). 0.67 m. 

(a) (b)

(c) (d)  

Figure 16. The original error between the actual position and the test position for each 
point at four different heights. (a). 0.24 m. (b). 0.4 m. (c). 0.55 m. (d). 0.67 m. 
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 (a)  (b)

 (c)  (d)
 

Figure 17. The training set actual position and measured position. (a). 0.24 m. (b). 0.4 m. 
(c). 0.55 m. (d). 0.67 m. 

 (a)  (b)

 (c)  (d)
 

Figure 18. The test set actual position and measured position. (a). 0.24 m. (b). 0.4 m. (c). 
0.55 m. (d). 0.67 m. 
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 (a)  (b)

 (c)  (d)  

Figure 19. The test set original error and optimized error. (a). 0.24 m. (b). 0.4 m. (c). 0.55 
m. (d). 0.67 m. 

 (a)  (b)

 (c)  (d)  

Figure 20. The test set average error and optimized error. (a). 0.24 m. (b). 0.4 m. (c). 0.55 
m. (d). 0.67 m. 
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Comparing Figures 17 and 18, the results reveal that under the NLOS setting, the accuracy of the 
BPNN and the HHO-BP has improved significantly. To more accurately evaluate the difference in 
effectiveness between the BPNN and the optimized HHO-BP, the UWB measurement error is 
compared to the error of each point in the testing dataset, as shown in Figures 19 and 20. 

Figures 19 and 20 show that HHO-BP effectively reduces errors and improves positioning 
accuracy at all altitudes in the complex NLOS environment. 

Table 1. Results of the algorithm. 

  BP HHO-BP 

Environment H Max E Min E ME Max E Min E ME 

LOS 130 17.63 0.97 8.63 11.78 0.21 5.31 

155 14.77 2.99 7.39 10.38 0.50 4.94 

170 9.22 2.68 5.15 7.72 1.74 4.18 

195 11.14 4.77 4.89 6.78 2.05 3.56 

NLOS 24 48.60 4.25 18.19 28.82 3.46 13.75 

40 30.12 3.45 11.65 19.57 1.47 6.65 

55 71.08 3.90 20.41 61.10 2.24 12.45 

67 19.35 1.53 9.04 13.25 0.87 5.41 

Note: H: Height, Max E: Maximum Error, Min E: Minimum Error, ME: Mean Error. 

Table 1 indicates the maximum errors, minimum errors and mean errors of all test data. These 
details are obtained from the graph above. Here, the mean error is counted separately for each height 
result. According to experimental data, the optimization of typical BP neural networks is not ideal, 
especially in nonvisual range environments, and rarely has centimetre-level accuracy. 

Table 2. Results of promoting. 

  UWB BP HHO-BP 
Environment H ME ME O P ME O P 
LOS 130 9.15 8.63 5.70 5.31 41.99 

155 8.13 7.39 9.08 4.94 39.23 
170 8.22 5.15 37.29 4.18 49.07 
195 11.11 4.89 55.91 3.56 67.95 

NLOS 24 27.68 18.19 34.28 13.75 50.33 
40 34.80 11.65 66.52 6.65 80.90 
55 38.05 20.41 46.36 12.45 67.28 
67 19.30 9.04 53.15 5.41 71.97 

Note: H: Height (cm), ME: Mean Error (cm); O P: Optimization percentage (%). 

Table 2 uses the statistical mean error for each height and further calculates the optimization 
percentages of the conventional BPNN and the HHO-BP algorithm. The mathematical formula is as 
follows in Eq (18): 
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( ) 100%

( ) 100%

HP U H U

BP U B U

Y Y Y Y

Y Y Y Y

   

   
                                                       (18) 

where 
HPY  is the optimization percentage of the HHO-BP algorithm, 

BPY  is the optimization percentage 

of the conventional BPNN, 
UY  is the mean error of the UWB measurement, 

HY  is the mean error of the 

HHO-BP algorithm, and 
BY  is the mean error of the conventional BPNN. 

According to Table 2, the HHO-BP algorithm outperforms the optimization results of the 
conventional BPNN at every height, both for the LOS and NLOS distances. In addition, for the HHO-
BP algorithm in non-line-of-sight distance conditions, compared with UWB measurement data, the 
degree of optimization is more than 50%, and the effect is better than the line-of-sight distance 
environment. For 130 cm data, the conventional BP neural network is only optimized by 5.70%, while 
HHO-BP performs 36.29% better than the conventional BP neural network. 

Table 3. Total data comparison. 

 UWB BP HHO-BP HHO-BP greater 
than BP 

Environment MTE MTE O P MTE O P O P 
LOS 9.15 6.52 26.99 4.50 49.56 22.57 
NLOS 29.96 14.82 50.08 9.56 67.62 17.54 

Note: MTE: Mean total error (cm), O P: Optimization percentage (%). 

Table 3 shows the total mean errors for LOS and NLOS and the optimization percentages. Here, 
the mean errors in Tables 1 and 2 are averaged to obtain the total mean error of the corresponding 
environment. According to the data in Table 3, the HHO-BP algorithm achieves centimetre-level 
positioning accuracy in both LOS and NLOS environments. Under line-of-sight conditions, the HHO-
BP algorithm improves the localization accuracy by 22.57% compared to the conventional BP 
algorithm; under non-line-of-sight conditions, the HHO-BP algorithm improves the localization 
accuracy by 17.54% in comparison to the conventional BPNN. 

5. Conclusions 

In this study, an intelligent group algorithm (HHO) combined with a BP neural network is 
proposed to calibrate UWB indoor locations. First, the original and UWB coordinates are collected to 
obtain the actual errors. Next, BPNN training is used to generate the relevant weights and thresholds. 
Then, the HHO method optimizes the weights and thresholds of the BPNN until the minimum error is 
achieved. Finally, a new BPNN is constructed to calibrate the UWB measurement coordinates. The 
original BPNN and HHO-BP errors are compared. The experimental results show that, to some extent, 
BPNN calibration of the UWB indoor location will fall into the optimal local solution and that the 
HHO-BP method has higher accuracy. Finally, the proposed HHO-BP method is applied to indoor 
NLOS environments for calibrating indoor positioning environments with larger errors. The findings 
demonstrate that the HHO-BP algorithm’s overall positioning error in an LOS environment is 
approximately 4.5 cm, which is 22.57% higher than the conventional BPNN, and for 130 cm data, the 
maximum improvement is 36.29% compared to the conventional BPNN. In an NLOS scenario, the 
HHO-BP algorithm has a positioning error of approximately 9.6 cm, which is 17.54% better than the 
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conventional BPNN method. Experiments have confirmed the accuracy and efficacy of the suggested 
indoor positioning technique, indicating that it has greater calibration precision and stability, as well 
as strong future application possibilities. 
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