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Abstract: The coupling between functional and structural brain networks is difficult to clarify due to 
the complicated alterations in gray matter and white matter for the development of Alzheimer’s 
disease (AD). A cohort of 112 participants [normal control group (NC, 62 cases), mild cognitive 
impairment group (MCI, 31 cases) and AD group (19 cases)], was recruited in our study. The brain 
networks of rsfMRI functional connectivity (rsfMRI-FC) and diffusion tensor imaging structural 
connectivity (DTI-SC) across the three groups were constructed, and their correlations were 
evaluated by Pearson’s correlation analyses and multiple comparison with Bonferroni correction. 
Furthermore, the correlations between rsfMRI-SC/DTI-FC coupling and four neuropsychological 
scores of mini-mental state examination (MMSE), clinical dementia rating-sum of boxes (CDR-SB), 
functional activities questionnaire (FAQ) and montreal cognitive assessment (MoCA) were inferred 
by partial correlation analyses, respectively. The results demonstrated that there existed significant 
correlation between rsfMRI-FC and DTI-SC (p < 0.05), and the coupling of rsfMRI-FC/DTI-SC 
showed negative correlation with MMSE score (p < 0.05), positive correlations with CDR-SB and 
FAQ scores (p < 0.05), and no correlation with MoCA score (p > 0.05). It was concluded that there 
existed FC/SC coupling and varied network characteristics for rsfMRI and DTI, and this would 
provide the clues to understand the underlying mechanisms of cognitive deficits of AD. 
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1. Introduction  

Alzheimer’s disease (AD) is one kind of neurodegenerative disease, which is clinically 
accompanied by typical progressive cognitive decline and behavioral impairments. It not only affects 
the daily life of patients but also brings a heavy burden on families, public healthcare systems and 
society. The AD affected more than 15% of people aged 65 years and older and its annual healthcare 
cost had reached more than $ 300 billion worldwide [1]. 

Alzheimer’s changes typically begin in the human brain with the slow accumulation of 
abnormal structures, namely plaques and tangles, which was suspected to be the prime contributor to 
the damage and death of nerve cells in the human brain. The plaques in extracellular β-amyloid 
protein and tangles in intracellular twisted fibers of tau protein somehow played an important role in 
blocking the communication among nerve cells and disrupting processes needed for cell survival [2]. 
Previous studies confirmed that these pathological changes started decades ago before the first signs 
of memory loss [3].  

Besides the structural MRI, the diffusion tensor imaging (DTI) and resting-state functional MRI 
(rsfMRI) had been proposed to evaluate the brain morphological and functional changes. Recently, 
the DTI and rsfMRI brain networks based on graph theory had been applied in the AD studies. 
According to the structural connectivity (SC) and functional connectivity (FC), the human brain was 
assumed as one assembly of highly interconnected networks or connectomes. The brain networks of 
SC were reconstructed by abundant cortical-cortical and subcortical WM axonal pathways, while the 
brain FC networks in vivo mapped the statistical connections between the cortical nodes in the 
complex neural systems, i.e., functional connectome [4,5]. The graph-based network analyses 
promised to reliably quantify brain SC and FC with a cluster of neurobiologically meaningful and 
easily computable brain network measures. Therefore, the relevant studies revealed that the 
capability of information transmission across brain networks could be assessed by common network 
characteristics of path length (Lp), clustering coefficient (Cp), global efficiency (Eg), local efficiency (El) 
and small-worldness (σ) [6–8]. 

DTI-SC networks demonstrated unique values in the evaluation of AD [9]. The global DTI-SC 
demonstrated that there were increased Lp and reduced Eg for AD [10]. Moreover, the DTI-SC within 
the intra-occipital lobe gradually became weakened during the progression of AD [11]. Another 
study found that the hemispheric asymmetry of brain networks could be taken as a potential 
biomarker for AD [12]. Again, WM seeded networks had approximately more than 400 connections 
and presented stronger connections than GM seeded networks for both AD and control groups [13]. 
Accordingly, the network of rsfMRI-FC showed specific characteristics of random network topology 
with powerless connections at anterior, posterior, and prefrontal brain regions. Nevertheless, the FC 
at the occipital and frontal lobes did not change with significant large-scale SC alterations during the 
transition from mild cognitive impairment (MCI) to AD [14–18]. Related studies verified that the 
cognitive and memory impairments were strongly correlated with the decreased σ, increased Lp and 
Cp for AD [19]. 

Till now, the analysis of FC-SC coupling based on the graph theory has become a hot spot of 
brain studies. Since the default mode network (DMN) had been highlighted as a large-scale network 
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of brain regions that were highly correlated with each other in terms of neural activity and the 
changes within this network had been described in healthy aging as well as in AD [20]. It was proved 
that the core regions of the DMN were associated with brain regions having memory function [21]. 
At the mode of DMN, the coupling strength between DTI-SC and rsfMRI-FC was significantly 
correlated, and the comparison of brain FC and SC networks for healthy participants indicated that 
pairs of nodes had stronger SCs and FCs [22]. The decreased coupling of FC-SC might indicate more 
stringent and less dynamic brain function for AD [23]. The coupling between rsfMRI-FC and 
DTI-SC was obviously increased for the connections of DMN in AD [24]. It was evident that the 
correlations between FC and SC could provide more comprehensive and sensitive biomarkers, and 
helped to reveal the variations of network connectivity and functional interactivity of AD [25,26]. 

In our study, an optimized scheme for brain network coupling was proposed with the aim to 
investigate the coupling correlation between DTI-SC and rsfMRI-FC. Via the measured brain 
network characteristics, the coupling of rsfMRI-FC/DTI-SC was evaluated by Pearson’s correlation 
analyses and multiple comparison with Bonferroni correction. Furthermore, the correlations between 
the rsfMRI-FC/DTI-SC coupling and four neuropsychological scores, including mini-mental state 
examination (MMSE), clinical dementia rating-sum of boxes (CDR-SB), functional activities 
questionnaire (FAQ) and montreal cognitive assessment (MoCA), were inferred by partial correlation 
analyses, respectively. This study would provide new insights to explore the changes in FC-SC 
coupling during AD progression.  

2. Materials and methods 

2.1. Participant population 

A cohort of 112 participants enrolled from the the Alzheimer’s disease neuroimaging initiative 
(ADNI) database was divided into three groups: NC (62 cases), MCI (31 cases) and AD (19 cases). 
The demographic and neuropsychological information of the participants is shown in Table 1. The 
inclusion criteria were listed as follows: (1) age between 55 and 90 years, (2) visual and auditory 
acuity sufficient for neuropsychological testing, (3) good general health and no diseases that could 
interfere with testing, (4) at least sixth-grade education or good work history (excluding mental 
retardation), (5) no contraindications to MRI, and (6) all participants who were willing and able to 
take part in relevant follow-up studies, including blood collection for genomic analysis and 
biomarker testing, cerebrospinal fluid collection and neuropsychological testing. 

2.2. Imaging acquisition 

Three MR protocols of rsfMRI, DTI and T1-weighted imaging (T1WI) were conducted by 
Siemens 3.0T MR scanners. The rsfMRI scans were acquired using echo planar imaging sequence 
with the following parameters: flip angle (FA) = 90°; time of repetition (TR) = 3000 ms; time of echo 
(TE) = 30 ms; slice thickness = 3.4 mm; pixel spacing = 3.4 × 3.4 mm2; matrix size = 448 × 448; and 
time points = 197. The imaging parameters for DTI were listed as follows: gradient directions = 54 (94 
cases) and 30 (18 cases); FA = 90°; TR = 7200/12,400 ms; TE = 56/95 ms; slice thickness = 2.0 mm; 
pixel size = 2.0 × 2.0 mm2; and matrix size = 1044 × 1044. The main imaging parameters for T1WI 
were: FA = 90°; TR = 2300 ms; TE = 3 ms; slice thickness = 1.0 mm; voxel size = 1.0 × 1.0 mm2; 
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and matrix size = 240 × 256. 

2.3. Overview of brain network coupling 

The pipeline of brain network coupling of rsfMRI-FC/DTI-SC mainly involved four steps: data 
preprocessing, construction of brain networks, coupling analysis of brain networks and measurement 
of network characteristics, as shown in Figure 1. 

 

Figure 1. Overview of the scheme of brain network coupling. 

2.3.1. Data preprocessing 

For the construction of rsfMRI and DTI-SC networks, the data preprocessing of rsfMRI and T1WI 
was performed by the package of data processing assistant for resting-state fMRI (DPARSF) [27]; and 
the preprocessing of DTI and T1WI was conducted via the software of pipeline for analyzing brain 
diffusion images (PANDA) [28], respectively. 

The preprocessing of rsfMRI data included: removal of the first 10 time points, time correction, 
correction of head movement, regression of interference signal, normalization of voxel size to 3 × 3 × 3 
mm3, spatial smoothing with a kernel of 4 × 4 × 4 mm3 and high-pass filtering (0.01–0.1 Hz). 
Participants were excluded in cases of head translation greater than 3 mm and head rotation greater 
than 3°. At the preprocessing of DTI data, it consisted of format conversion [(digital imaging and 
communications in medicine) DICOM to (neuroimaging informatics technology initiative) NIFTI], 
resampling, removal of brain tissues, segmentation, local diffusion homogeneity, eddy current 
calibration, standardization, smoothing and deterministic fiber tracking (DFT). During the DFT, the 
tracking termination criteria were set as: FA < 0.2 or tracking angle > 45° [29]. 

2.3.2. Construction of brain networks 

The construction of brain networks of rsfMRI-FC and DTI-SC mainly composed of three steps: 
brain parcellation, definition of brain nodes and edges, and connection of brain nodes via edges. 
Firstly, the brain MR images were parcellated into 90 cerebral regions by the atlas of anatomical 
automatic labeling (AAL) from montreal neurological institute (MNI) [30]. Secondly, the nodes and 
edges of the rsfMRI-FC network were defined by extracting the time series of the 90 cerebral regions 
and the normalized correlation matrix with Fisher Z-transformation was constructed by Pearson’s 
correlation coefficients [31]. Similarly, the nodes and edges of the DTI-SC network were defined as 
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mentioned above. The T1WI images registered to the original B0 image were mapped to the MNI 
space by nonlinear transformation. Then, the AAL template was inverted from the MNI space to the 
original DTI space with the implementation of nearest neighbor interpolation. Here, the product of 
fractional anisotropy (FA) matrix and fiber number (FN) matrix was used to define the nodes and 
edges. To reduce the effect of pseudo-junctions during whole-brain fiber tracking, only the nodes 
connected with fiber bundles (edges) having more than three fibers were regarded as effective 
connections. Thirdly, the non-directional and weighted brain networks were delineated by defined 
nodes and edges. 

2.3.3. Coupling analysis of brain networks 

At the DMN, 32 common brain regions of rsfMRI-FC and DTI-SC were selected as interested 
nodes to reconstruct the functional and structural connection matrices. The two FC and SC matrices 
were quantitatively evaluated by the metric of coupling strength. 

2.3.4. Measurement of network characteristics 

Five brain network characteristics, including path length (Lp), clustering coefficient (Cp), global 
efficiency (Eg), local efficiency (El) and small-worldness (σ), were measured for evaluating the two 
brain networks across there groups. The definition of network characteristics was summarized as 
follows: (1) σ reflected the transmission efficiency of human brain network, (2) Eg quantified the 
efficiency of parallel information transfer for global brain network, (3) El denoted the mean value of 
the sums of neighboring sub-networks from Eg, (4) Lp represented the shortest path length between brain 
neighboring nodes, and (5) Cp indicated the degree of node clustering. The network characteristics of 
rsfMRI-FC and DTI-SC were measured by GRETNA (https://www.nitrc.org/projec-ts/gretna/) [32] at 
the sparsity threshold of 0.05–0.4 with stable step size of 0.01.  

2.4. Statistical analyses 

The statistical analyses were performed in four parts: demographic evaluation, brain network 
characteristic analyses, coupling analysis of brain networks and evaluation of network coupling with 
neuropsychological scores. The statistical analyses were performed using the software of SPSS [33]. 
The independent-sample t tests were performed to assess the statistical difference for any two groups 
among NC, MCI and AD. The p value < 0.05 indicated statistically significant difference for all tests. 

Firstly, the differences of demographic and clinical variables were evaluated. The chi-square 
tests were used for the gender variable, and the variance analyses were used for other variables. 
Secondly, the brain network characteristics of rsfMRI-FC and DTI-SC were also compared. The 
network characteristics of rsfMRI-FC and DTI-SC were evaluated by variance analyses. If the results 
were significantly different between two groups, the Bonferroni tests would be further used to 
evaluate the differences. Thirdly, the coupling strength between rsfMRI-FC and DTI-SC were 
evaluated by Pearson’s correlation analyses and multiple comparison with Bonferroni correction. 
Especially, the area under the curves (AUC) derived from receiving operating characteristic curves 
were used for the intergroup comparison of rsfMRI-FCs because of the sensitivity for detecting 
topological differences in brain FC networks [34]. Finally, the correlations between the coupling of 
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rsfMRI-FC/DTI-SC and neuropsychological scores (MMSE, CDR-SB, FAQ and MoCA) were 
assessed by the partial correlation analyses, respectively. 

3. Results 

3.1. Evaluation of demographics and clinical variables 

It was clear that there were no significant differences for age and gender ratio, and significant 
differences for the education level among the three groups. Furthermore, the scores of MMSE, 
CDR-SB, FAQ and MoCA presented significant differences across the three groups (Table 1). 

Table 1. Demographics and neuropsychological scores of enrolled participants. 

Variables NC (n = 62) MCI (n = 31) AD (n = 19) p value 

Age (year) 71.75 ± 6.47 70.71 ± 7.77 74.8 ± 8.49 0.154 

Gender (M/F) 24/38 16/15 10/9 0.371 
Education (year) 16.77 ± 2.29 15.65 ± 2.81 15.21 ± 2.50 0.024 
MMSE 28.74 ± 1.23 28.04 ± 1.43 22.04 ± 2.46 < 0.050 
CDR-SB 0.11 ± 0.23 1.29 ± 0.85 5.01 ± 1.58 < 0.050 
FAQ 0.15 ± 0.35 4.13 ± 3.97 15.28 ± 7.04 < 0.050 
MoCA 25.78 ± 2.61 22.82 ± 2.87 15.96 ± 4.45 < 0.050 

Abbreviations: MMSE: mini-mental state exam; CDR-SB: clinical dementia rating-sum of boxes; FAQ: functional 

activities questionnaire; MoCA: montreal cognitive assessment. 

3.2. Comparison of global brain network characteristics 

In Table 2, the brain network characteristics of rsfMRI-FC demonstrated that the σ and Eg of NC 
group were greater than those of MCI and AD groups, but the Lp of NC group was significantly 
lower than those of MCI and AD groups. Moreover, there existed significant differences for Lp and 
Eg between NC and AD groups and between NC and MCI groups, and no statistically significant 
differences were observed for all network characteristics between MCI and AD groups. 

Table 2. Global brain network characteristics of rsfMRI. 

Network 
characteristics NC MCI AD 

p value 
NC:MCI MCI:AD NC:AD

Lp 0.761 ± 0.026 0.775 ± 0.030 0.791 ± 0.037 0.021* 0.103 0.003* 

Cp 0.198 ± 0.009 0.199 ± 0.009 0.201 ± 0.009 0.886 0.310 0.230 

Eg 0.180 ± 0.004 0.178 ± 0.004 0.178 ± 0.006 0.006* 1.000 0.035* 

El 0.256 ± 0.007 0.254 ± 0.007 0.256 ± 0.007 0.189 0.178 0.681 

σ 0.699 ± 0.085 0.648 ± 0.099 0.689 ± 0.101 0.012* 0.173 0.664 
*Note: *p < 0.05.  
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Accordingly, the brain network characteristics of DTI-SC were shown in Table 3. There were no 
significant differences for σ, El and Cp; the Lp of AD group was higher than those of MCI and NC 
groups, and the Eg of AD group was lower than those of other two groups. No significant differences 
were found for El between any two of the three groups. However, there were significant differences 
for Lp and Eg between MCI and AD groups, Cp and σ between MCI and NC groups, and Lp and Eg 
between MCI and AD groups. 

Table 3. Global brain network characteristics of DTI. 

Network 
characteristics 

NC MCI AD 
p value 

NC:MCI MCI:AD NC:AD

Lp 0.270 ± 0.060 0.275 ± 0.062 0.331 ± 0.066 0.862 0.003* 0.000* 

Cp 0.020 ± 0.900 0.024 ± 0.009 0.020 ± 0.006 0.042* 0.126 0.660 

Eg 3.895 ± 0.900 3.818 ± 0.809 3.152 ± 0.660 0.811 0.003* 0.001* 

El 5.718 ± 1.324 5.661 ± 1.175 5.055 ± 1.025 0.992 0.054 0.051 

σ 3.471 ± 0.388 3.709 ± 0.454 3.632 ± 0.628 0.020* 0.722 0.187 
*Note: *p < 0.05.  

3.3. Coupling analysis of FC and SC  

It was demonstrated that the rsfMRI-FC was positively correlated with DTI-SC and there were 
significant differences for FC-SC coupling across the three groups and the coupling strength in AD group 
was greater than those of NC and MCI. With the coupling analysis, the coupling strengths (mean ± 
variance) were obtained with the NC of 0.272 ± 0.062, MCI of 0.297 ± 0.050 and AD of 0.328 ± 0.075, 
respectively. There were significant differences among the three groups for FC-SC coupling at the 
p-value of 0.003.  

3.4. Correlations between FC-SC coupling and neuropsychological scores 

The correlations between FC-SC coupling and MMSE, CDR-SB, FAQ and MoCA scores were 
shown in Figure 2. The coupling of rsfMRI-FC/DTI-SC was negatively correlated with MMSE score, 
positively correlated with CDR-SB and FAQ scores, and no correlation with MoCA score, respectively. 

 

Figure 2. Correlations between rsfMRI-FC/DTI-SC and MMSE, CDR-SB, FAQ and MoCA scores. 
*Note: r: partial correlation coefficient; *p< 0.05. 
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4. Discussion 

In this study, the network coupling of FC-SC based on graph theory was evaluated via the three 
aspects of network characteristics, coupling analysis and correlations with the neuropsychological 
scores. The results showed that the coupling strength varied across three groups and this network 
coupling was proved to be correlated with neuropsychological scores in different trends.  

According to the graph theory of regular and random networks, any small-world networks could 
facilitate the efficiency of information transmission and processing at lower processing cost and 
capacity consumption [35]. The inconsistency change of Cp among groups may be related to the 
differences in sample size, network node and threshold selection. During the AD progression, 
increased Lp and decreased Eg suggested that the information transmission rate and integration 
capacity were obviously reduced, and this would in turn lead to the observed impairments in 
cognitive and executive functions [36]. Indeed, the structural core of the brain played a great role in 
integrating information across functionally segregated brain regions [37,38]. The changes of the 
damaged FC and SC networks provided not only the critical imaging markers but also the potential 
clues to understand the underlying mechanism of cognitive deficits of AD [39].  

For the rsfMRI-FC, the NC had larger σ and smaller Lp, while the AD had larger Lp. It was 
consistent with the previous neuroscientific findings [19]. In addition, the efficiency of the 
rsfMRI-FC decreased along with the smaller Eg in AD. It was indicated that the topology of damaged 
brain FC would certainly lead to the decrease of global network processing efficiency in AD [10]. 
Similarly for the DTI-SC network, there were no significant difference for the σ among the three 
groups. It was hinted that the human brain might maintain the optimal network topology to achieve 
the most efficient information transmission for the most efficient information transmission during 
progressive neurodegeneration. While the increased Lp and decreased Eg reflected the impairment of 
global connectivity of DTI-SC in AD [36]. 

With the coupling analysis, there were significant correlations for rsfMRI-FC/DTI-SC. The 
correlations between FC-SC coupling and neuropsychological scores (MMSE, CDR-SB, FAQ and 
MoCA) provided further support for the assumption that these changes in network coupling 
contributed to the cognitive decline in AD. It was reported that the coupling strength of 
rsfMRI-FC/DTI-SC was increased with the known greater severity of cognitive deficits in AD [40,41]. 
It might be explained by the reasons that the loss of plasticity within pathways connecting different 
brain regions (nodes) for constrained brain network dynamics [42]. The integrity of SC might reflect 
the ability of the cerebral cortex to maintain functional diversity and neural activity interactions [43]. 
Therefore, the increased coupling indicated that AD would produce more direct functional 
interactions related to anatomical connections, which implied that brain function became more rigid, 
less dynamic and adaptable. Moreover, it reduced the restructuring capacity of functional network 
and mitigated the effects of brain regional degeneration [44,45].  

This study had several limitations. First, the gender effect of participants was not considered 
due to the limited sample size. Second, DTI-SC was certainly underestimated for the missed 
information of crossover fibers during DFT. More accurate SC would be achieved by the betterment 
of fiber tracking algorithms on higher resolution data sets. Finally, multiple modalities of brain 
networks should be involved for convincing results, such as the metabolism connectivity of positron 
emission tomography (PET) and FC of electroencephalography. It would be of further interest to 
investigate disease-related changes in these dynamic properties and their relationship to cognitive 
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decline on more larger data samples. 

5. Conclusions 

It was concluded that there existed FC/SC coupling and varied network characteristics for 
rsfMRI and DTI, and this would provide the clues to understand the underlying mechanisms of 
cognitive deficits of AD. 
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