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Abstract: This article deals with common due-window assignment and single-machine scheduling
with proportional-linear shortening processing times. Objective cost is a type of minmax, that is, the
maximal cost among all processed jobs is minimized. Our goal is to determine an optimal schedule, the
optimal starting time, and size of due-window that minimize the worst cost, which consist of four parts:
earliness, tardiness, starting time and length of the due-window. Optimal properties of the problem are
given, and then an optimal polynomial algorithm is proposed to solve the problem.
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1. Introduction

In practice, the processing times of the jobs are often variable with the change of their starting time,
this is the time-dependent processing times [1–3]. In recent years, more and more experts and scholars
have studied time-related deterioration. Huang [4] studied a single machine bicriterion problem in
which the processing time and group setup time is a linear function of its starting time can be solved
optimally. Li and Lu [5] studied single-machine parallel-batch scheduling with deterioration effects.
Under total rejection costs which cannot exceed a given constant, they showed that the problem of
minimizing the the total weighted completion time (makespan) is NP-hard. Liang et al. [6] showed
the weighted sum of makespan and resource cost minimization with deterioration effect and group
technology remains polynomially solvable. Huang et al. [7] studied common due-window assignment
problem in which the processing time is a proportional linear function. They proved that two different
non-regular problems are polynomial solvable.

On the other hand, many scholars have conducted research on minmax scheduling problems on due-
date or due-window assignment, i.e., minmax means that the maximal cost is minimized. Mosheiov [8]
considered minmax scheduling with a common due-date assignment on parallel identical machines.
The goal was to find the job schedule and due-date assignment with minimum cost of the worst
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scheduled job, and they proposed an efficient heuristic algorithm. Mosheiov and Sarig [9] studied
due-window assignment scheduling problems, where the objection function is a minmax type. The
objective function contains earliness, tardiness, the starting time, and size of the due-window. They
proved that the problem remains polynomially solvable when the processing time of jobs are constants.
Gerstl and Mosheiov [10] investigated single-machine scheduling with the due-date assignment. They
demonstrated that the minmax minimization can be solved in polynomial time. Mosheiov [11] studied
due-window assignment problems on a type of minmax. The earliness penalties, tardiness penalties,
the cost of position, and the size of due-window were considered. The researcher offered evidence
that the scheduling problems can be solved in polynomial time on a single-machine and provided an
LPT-based heuristic (the LPT rule means processing with the largest processing time) on parallel iden-
tical machines which is NP-hard. Mor [12] considered minmax minimization with position-dependent
processing time. For the common due-date and the common due-window, the researcher elucidates
that these two problems are polynomially solvable by transforming them into assignment problems.
Numerical simulation or numerical examples are given for all the problems. Mosheiov et al. [13]
studied due-window assignment problems with position-dependent processing time and rejection jobs
on a flow shop, and they illustrated that it remains polynomially solvable. More of scheduling with
due-window (due-date) assignment can be seen in [14–20].

In the actual processing environment, the processing time of the jobs is often changes with time. In
this paper, we study minmax scheduling problems with proportional-linear shortening processing times
(denoted by PLS PT ). The objective function of this study has four components: earliness, tardiness,
the starting time, and the size of the due window. The contributions of this article are demonstrated as
follows: Firstly, considering the position and size of the due-window are known, the optimal scheduling
sequence and the optimal value can be found. Then, the optimal scheduling and the optimal objective
function can be found when the size or position of the due-window is known. According to the previous
analysis, the optimal ordering is discussed when the size and position of the due-window are unknown.
We prove that these problems with PLS PT remain polynomially solvable, i.e., the complexity is O(n),
this is identical to that of the classical version (without any PLS PT ), where n is the number of jobs.

The rest of this study is organized as follows: Section 2 introduces the problem. Section 3 considers
the scheduling problem on a single machine, which is discussed in four cases that center on whether
or not the location and the size of the due-window are known. Computational experiments are given in
Section 4. The last section is conclusion.

2. Problem definition

We investigate a set of n jobs Q̆ = {J1, J2, ...Jn} to be processed on a single-machine that cannot be
interrupted. All the jobs are available for processing at time s (s ≥ 0). The general linear shortening
model is as follows: the actual processing time of job J j is p j = a j − b js j, where a j, b j, s j represent the
normal processing time (the processing time without any linear shortening), shortening rate (the de-
creasing rate) and starting time of job J j, respectively. It is assumed that shortening rates b j satisfy the

following condition: 0 ≤ b j < 1 and b j

(
s +

n∑
i=1

ai − a j

)
< a j (see [21,22]). In this article, a special case

(i.e., bi = θai, for some θ > 0) will be studied; that is, p j = a j

(
1 − θs j

)
, where θ

(
s +

n∑
j=1

a j − amin

)
< 1
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(amin = min
{
a j

}
, j = 1, 2, ..., n).

We suppose that all of the jobs have a common due-window [d̂1, d̂2], where d1, d2, D = d̂2 − d̂1

represent the starting time, finishing time and size of the due-window. Let C j be completion time
of J j, and E j = max

{
d̂1 −C j, 0

}
(T j = max

{
C j − d̂2, 0

}
) represent earliness (tardiness) of J j. In

this article, we consider the scheduling of minimizing maximum cost function (including earliness
penalties, tardiness penalties, the cost for the starting time, and size of the due-window), i.e., the
objective is to minimize the maximum cost of all jobs:

Y = max
1≤ j≤n

{
max

{
λE j + γd̂1 + δD, βT j + γd̂1 + δD

}}
= max

1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
(1)

where λ, β, γ, δ represent unit penalty costs of earliness, tardiness, starting time and size of the due-
window. As in Gawiejnowicz [3], we denote the scheduling problem as

1|CONW, PLS PT |max
1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
(2)

where CONW is the common due-window.

3. Main results

Lemma 1. Let [ξ] be the job scheduled at ξth position, if the first job’s starting time is s, then

C[ξ] =

(
s −

1
θ

) ξ∏
i=1

(
1−θa[i]

)
+

1
θ
. (3)

Proof. By induction.
C[1] = s + a[1] − b[1]s =

(
s − 1

θ

)
(1 − θa[1]) + 1

θ
.

Suppose Lemma 1 holds for job J[ξ], ξ ≥ 2, i.e.,

C[ξ] =
(
s − 1

θ

) ξ∏
i=1

(
1−θa[i]

)
+ 1

θ
.

Consider job J[ξ+1].

C[ξ+1] =
(
s − 1

θ

) ξ∏
i=1

(
1−θa[i]

)
+ 1

θ
+ a[ξ+1]

{
1 − θ

[(
s − 1

θ

) ξ∏
i=1

(
1−θa[i]

)
+ 1

θ

]}
=

(
s − 1

θ

) ξ+1∏
i=1

(
1−θa[i]

)
+ 1

θ
.

Hence, Lemma 1 holds.

From Lemma 1, if s = 0, C[ξ] = 1
θ
− 1

θ

ξ∏
i=1

(
1−θa[i]

)
.
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3.1. The d̂1 and D are known

When d̂1 and D (thus d̂2) are known, obviously, the maximum earliness max E j (tardiness max T j)
can be determined by the first (final) processed job, hence

Y = max
{
λ
[
d̂1 −C[1]

]
, β

(
C[n] − d̂2

)}
+ γd̂1 + δD

= max

λ(d̂1 − s − a1 + θa[1]s), β

(s −
1
θ

) n∏
i=1

(
1 − θa[i]

)
+

1
θ
− d̂2




+ γd̂1 + δD.

(4)

Lemma 2. In the case that d̂1 and D (thus d̂2) are known, the optimal schedule is to process the job
with the largest normal processing time first, and the the order of the remaining jobs is arbitrary.

Proof. Let amax = max
{
a j

}
(1 ≤ j ≤ n). It is obvious that the actual and normal processing time of any

job are non-negative, so we obtain θs − 1 < 0. From (4), we have

max
{
λ[d̂1 − s + amax(θs − 1)], β

[(
s − 1

θ

) n∏
i=1

(1 − θai) + 1
θ
− d̂2

]}
+ γd̂1 + δD

≤ max
{
λ
(
d̂1 − s − a[1] + θa[1]s

)
, β

[(
s − 1

θ

) n∏
i=1

(
1 − θa[i]

)
+ 1

θ
− d̂2

]}
+ γd̂1 + δD.

Let λ[d̂1 − s + amax(θs − 1)]=β
[(

s − 1
θ

) n∏
i=1

(1 − θai) + 1
θ
− d̂2

]
, we have

s =
λd̂1 + βd̂2 −

1
θ

(λ + β)

β
n∏

i=1
(1 − θai) + λ (1 − θamax)

+
1
θ

(5)

and

Y = β

(s −
1
θ

) n∏
i=1

(1 − θai) +
1
θ
− d̂2

 + γd̂1 + δD. (6)

Algorithm 1

Step 1. Find the job with the largest normal processing time (i.e., amax = max
{
a j| j = 1, 2, . . . , n

}
) and

process it to the first position (the remaining jobs are scheduled in any order).

Step 2. From (5), calculate s =
λd̂1+βd̂2−

1
θ (λ+β)

β
n∏

i=1
(1−θai)+λ(1−θamax)

+ 1
θ
, set the optimal starting time of the job scheduled

at the first position s∗ = max{s, 0} and its maximum Y∗ can be calculated from (6).

Theorem 1. If d̂1 and D are given constants, then Algorithm 1 solves

1|CONW, PLS PT |max
1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
in O(n) time.
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Proof. Step 1 needs O(n) time; Step 2 runs in constant time; hence, the total computational complexity
is O(n).

Numerical Example 1.

Consider a 8-job problem, where θ = 0.03, λ = 3, β = 5, γ = 2, δ = 4, a1 = 5, a2 = 16, a3 =

18, a4 = 8, a5 = 10, a6 = 23, a7 = 12, a8 = 21, d̂1 = 16 and D = 8.
Solution According to Algorithm 1, the job with the largest normal processing time is J6 (i.e., amax =

a6 = 23) and process it to the first position (the remaining jobs are scheduled in any order). From
(5) and (6), we have s = −70.61, the optimal starting time is s∗ = max{s, 0} = 0 and the maximum
Y∗ = 110.03.

3.2. The D is known

If D is known, we first determined s of the due-window, and then determine the optimal schedule
and optimal value of the jobs. Without loss of generality, all the jobs begin processing at time 0.

According to Lemma 2, the job with the largest normal processing time has priority in processing,
so C[1] = amax. For any given schedule, the maximum completion time of n jobs is constant, so C[n] is

a constant, i.e., C[n] = −1
θ

n∏
i=1

(1 − θai) + 1
θ
.

This minmax minimization can be formulated as the following linear program (LP).

Min Y

s.t.


Y ≥ λE[1] + γd̂1 + δD = (λ + γ) d̂1 − λC[1] + δD,
Y ≥ βT[n] + γd̂1 + δD = βC[n] + (δ − β) D + (γ − β) d̂1,

d̂1 ≥ 0.
(7)

To facilitate a discussion on the optimal location of the due-window, suppose the D is known.
Because λC[1], δD, βC[n] and (δ − β) D are constants, we should discuss the relationship between γ and
β. In most cases, it is more realistic to discuss the case of D ≤ C[n].
Case 1: If γ > β, we have γ − β > 0. In this case, d̂1 takes its minimum value, i.e., d̂∗1 = 0.
Case 2: If γ ≤ β, we have γ − β ≤ 0. Moreover, if C[n] − C[1] < D ≤ C[n], we have 0 ≤ d̂1 < C[1]. In
this case, d̂1 takes its maximum value, i.e. d̂∗1 = C[1] and this situation may result in tardiness costs due
to tardiness jobs, in which the maximum cost is Y∗(D) = βC[n] + (δ − β) D + (γ − β) C[1].

If D ≤ C[n] −C[1], we have d̂1 ≥ C[1], so in this case, there may be jobs that are completed before or
after the due-window. Let

λE[1] = βT[n],
i.e.,

λ
(
d̂1 −C[1]

)
= β

(
C[n] − D − d̂1

)
,

we have
d̂∗1 =

λC[1]+βC[n]−βD
λ+β

,

and its maximum cost Y∗(D) =
λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n] +
(
δ − β(λ+γ)

λ+β

)
D.
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Algorithm 2

Step 1. Find the job with the largest normal processing time (i.e., amax = max
{
a j| j = 1, 2, . . . , n

}
) and

process it to the first position (the remaining jobs are scheduled in any order).
Step 2. If γ > β, setting d̂∗1 = 0 and Y∗(D) = βC[n] + (δ − β) D.

Otherwise, if C[n] −C[1] < D ≤ C[n], set d̂∗1 = C[1] and Y∗(D) = βC[n] + (δ − β) D + (γ − β) C[1].
Otherwise, set d̂∗1 =

λC[1]+βC[n]−βD
λ+β

and Y∗(D) =
λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n] +
(
δ − β(λ+γ)

λ+β

)
D.

Theorem 2. If D is a given constant, Algorithm 2 solves

1|CONW, PLS PT |max
1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
in O(n) time.

Numerical Example 2.

Consider a 8-job problem, where s = 0, D = 8, θ = 0.03, λ = 3, β = 5, γ = 2, δ = 4, a1 = 5, a2 =

16, a3 = 18, a4 = 8, a5 = 10, a6 = 23, a7 = 12, a8 = 21.
Solution According to Algorithm 2, the job with the largest normal processing time is J6 and process
it to the first position (the remaining jobs are scheduled in any order). Since γ < β, we have C[1] = 23,
C[n] = 33.21. In addition, D = 8 < 23 = C[1], we have d̂∗1 =

λC[1]+βC[n]−βD
λ+β

= 24.38 and maximum

Y∗(D) =
λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n] +
(
δ − β(λ+γ)

λ+β

)
D = 84.89.

3.3. The d̂1 is known

In the case where d̂1 is known, we first determine the size of the due-window, and then determine
the optimal schedule of jobs, assuming that all jobs are arrived at time 0. Without loss of generality, all
jobs begin processing at time 0.

According to Lemma 2, the jobs with the largest normal processing time have priority in processing,

so C[1] = amax and C[n] = 1
θ
− 1

θ

n∏
i=1

(1 − θai) is a constant.

This minmax minimization can be formulated as:

Min Y

s.t.


Y ≥ λE[1] + γd̂1 + δD = (λ + γ) d̂1 − λC[1] + δD
Y ≥ βT[n] + γd̂1 + δD = βC[n] + (δ − β) D + (γ − β) d̂1

D ≥ 0.
(8)

Suppose that d1 is known, we should determine the optimal D. Because λC[1], (λ + γ) d̂1, βC[n] and
(γ − β) d̂1 are constants, we should discuss the relationship between δ and β.
Case 1: If δ ≥ β, we have δ − β ≥ 0. Because δD > 0 and (δ − β) D ≥ 0, it is optimal to make D∗ = 0.
In this case, the maximum consumption function is Y∗(d1) = βC[n] + (γ − β) d̂1.
Case 2: If δ < β, we have δ − β < 0. Because δD > 0 and (δ − β) D < 0, it is optimal to make the
earliness penalty of the job with largest normal processing time equal to tardiness penalty of the last
job, i.e.,

λE[1] = βT[n],
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and we have
D∗ =

λC[1]+βC[n]−(β+λ)d̂1

β
.

In this case, the maximum consumption function is Y∗(d̂1) =
λ(δ−β)
β

C[1] + δC[n] +
(
λ + γ − δ − δλ

β

)
d̂1.

Algorithm 3

Step 1. Find the job with the largest normal processing time (i.e., amax = max
{
a j| j = 1, 2, . . . , n

}
) and

process it to the first position (the remaining jobs are scheduled in any order).
Step 2. If δ > β, setting D∗ = 0 and Y∗(d̂1) = βC[n] + (γ − β) d̂1.

Otherwise, set D∗ =
λC[1]+βC[n]−(β+λ)d̂1

β
and Y∗(d̂1) =

λ(δ−β)
β

C[1] + δC[n] +
(
λ + γ − δ − δλ

β

)
d̂1.

Theorem 3. If d1 is a given constant, Algorithm 3 solves

1|CONW, PLS PT |max
1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
in O(n) time.

Numerical Example 3.

Consider a 8-job problem, where s = 0, d̂1 = 16, θ = 0.03, λ = 3, β = 5, γ = 2, δ = 4,
a1 = 5, a2 = 16, a3 = 18, a4 = 8, a5 = 10, a6 = 23, a7 = 12, a8 = 21.
Solution According to Algorithm 3, the job with the largest normal processing time is J6 and pro-
cess it to the first position (the remaining jobs are scheduled in any order). Since δ < β, we have
C[1] = 23, C[n] = 33.21, D∗ =

λC[1]+βC[n]−(β+λ)d̂1

β
= 24.61 and maximum Y∗(d̂1) =

λ(δ−β)
β

C[1] + δC[n] +(
λ + γ − δ − δλ

β

)
d̂1 = 96.62.

3.4. The d̂1 and D are unknown

In this case, d1 and D are unknown, and we should find the optimal the starting time, size of the
due-window and the job schedule such that max

1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
is minimized. Assume

that all jobs are arrived at time 0. Without loss of generality, all jobs begin processing at time 0,
similarly, we have the following LP.

Min Y

s.t.


Z ≥ λE[1] + γd̂1 + δD = (λ + γ) d̂1 − λC[1] + δD
Z ≥ βT[n] + γd̂1 + δD = βC[n] + (δ − β) D + (γ − β) d̂1

d̂1,D ≥ 0.
(9)

Similar to Subsection 3.2, we only consider the case D ≤ C[n] and d̂2 ≤ C[n].
Case 1: If γ > β, we have γ − β > 0. Assuming that D is known, we first find the optimal the position
of the due-window (i.e., d̂1). Since −λC[1] + δD and βC[n] + (δ − β) D are constants, (λ + γ) d̂1 and
(γ − β) d̂1 are both greater than 0; hence, we have d̂∗1 = 0. At this time, there is no early job but only
tardy jobs, yielding Y∗(D) = βT[n] + γd̂1 + δD = βC[n] + (δ − β) D.

If δ ≥ β, we have δ − β ≥ 0. Because βC[n] is a constant and independent of D, it is necessary to
take the minimum value of D, i.e., d̂∗1 = 0. In this case, yielding d̂∗1 = d̂∗2 = D∗ = 0, and Y∗ = βC[n].
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If δ < β, we have δ − β < 0. Similarly, it is necessary to take the maximum value of the size of the
due-window, i.e., D∗ = C[n]. In this case, yielding d̂∗1 = 0, d̂∗2 = C[n], D∗ = C[n], and Y∗ = δC[n].
Case 2: If γ ≤ β, we have γ − β ≤ 0. Moreover, if C[n] − C[1] < D ≤ C[n], we have 0 ≤ d̂1 < C[1]. In
this case, there is no early job but only tardy jobs. Assuming that d̂2 does not change, find the optimal
position of the due-window and let its optimal cost function be βT[n] + γd̂1 + δD = βC[n] + (δ − β) d̂2 +

(γ − δ) d̂1. Because βC[n] + (δ − β) d̂2 is a constant. Then, according to the size relationship between γ
and δ, the optimal value of d̂1 can be obtained.

If γ ≥ δ, we have γ − δ ≥ 0. It is optimal to take the minimum value of the starting time of d̂1, i.e.,
d̂∗1 = 0. Because there is no early job, in order to minimize the objective function, the tardiness penalty
is minimized. In other words, we have d̂∗2 = C[n]. In this case, d̂∗1 = 0, d̂∗2 = C[n], D∗ = C[n], and the
optimal cost function is Y∗ = δC[n].

If γ < δ, we have γ − δ < 0. It is optimal to take the maximum value of the starting time of d̂1, i.e.
d̂∗1 = C[1]. Similarly, we have d̂∗2 = C[n].

For the case of D ≤ C[n] − C[1], there may be both earliness and tardiness penalties, so set the
earliness and tardiness penalties equal to each other, we have

λ
(
d̂1 −C[1]

)
= β

(
C[n] − D − d̂1

)
,

we have
d̂∗1 =

λC[1]+βC[n]−βD
λ+β

,

the cost function

Y∗(D) =
λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n] +
(
δ − β(λ+γ)

λ+β

)
D.

Because λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n] is a constant, we should discuss the optimal value of D. If δ ≥ β(λ+γ)
λ+β

,
we have δ − β(λ+γ)

λ+β
≥ 0, so we take the minimum value of D, i.e., D∗ = 0; then, the starting time and

end time of the due-window are both equal to λC[1]+βC[n]

λ+β
and the cost function is λ(γ−β)

λ+β
C[1] +

β(λ+γ)
λ+β

C[n];
if δ < β(λ+γ)

λ+β
, we have δ − β(λ+γ)

λ+β
< 0, so we take the maximum value of D, i.e., D = C[n] − C[1]; then

d̂∗1 = C[1] and d̂∗2 = C[n]; and the cost function is (γ − δ) C[1] + δC[n].

Algorithm 4
Step 1. Find the job with the largest normal processing time (i.e., amax = max

{
a j| j = 1, 2, . . . , n

}
) and

process it to the first position (the remaining jobs are scheduled in any order).
Step 2. If γ > β;

If δ ≥ β, setting d̂∗1 = d̂∗2 = D∗ = 0, Y∗ = βC[n].
Otherwise, set d̂∗1 = 0, d̂∗2 = C[n], D∗ = C[n], and Y∗ = δC[n].

If γ ≤ β;
If γ < δ, setting d̂∗1 = 0, d̂∗2 = C[n], D∗ = C[n] and Y∗ = δC[n];

Otherwise, if δ ≥ β(λ+γ)
λ+β

, setting d̂∗1 = d̂∗2 =
λC[1]+βC[n]

λ+β
and Y∗ =

λ(γ−β)
λ+β

C[1] +
β(λ+γ)
λ+β

C[n].

Otherwise, set d̂∗1 = C[1], d̂∗2 = C[n] and Y∗ = (γ − δ) C[1] + δC[n].

Theorem 4. Algorithm 4 solves

1|CONW, PLS PT |max
1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
in O(n) time.
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Numerical Example 4.

Consider a 8-job problem, where s = 0, θ = 0.03, λ = 3, β = 5, γ = 2, δ = 4, a1 = 5, a2 = 16, a3 =

18, a4 = 8, a5 = 10, a6 = 23, a7 = 12, a8 = 21.

Solution According to Algorithm 4, the job with the largest normal processing time is J6 and process
it to the first position (the remaining jobs are scheduled in any order). Since γ < β and γ < δ, we have
C[1] = 23, C[n] = 33.21, d̂∗1 = 0, D∗ = C[n] = 33.21 and maximum Y∗ = δC[n] = 132.82

4. Computational experiments

In order to verify the effectiveness of Algorithms 1–4 for problem, problem instances are generated
randomly. Visual Studio 2022 was used to code the Algorithm 1–4. For each problem size, 20 instances
were generated and solved on a PC with an Intel(R) Core (TM) I7-10750H 2.6 GHz CPU memory of
16.00 GB RAM. The characteristics of the instances are as follows:

1) n = 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000;
2) θ = 0.00001;

3) a j is a uniformly distributed over [1, 100] such that θ
(
s +

n∑
j=1

a j − amin

)
< 1 (amin = min

{
a j

}
, j =

1, 2, ..., n);

4-1) If d̂1 and D are known, d̂1 = 1
2 [ 1

θ
− 1

θ

n∏
i=1

(1 − θai)] and D = 1
4 [ 1

θ
− 1

θ

n∏
i=1

(1 − θai)] (see Algorithm 1);

4-2) If D is known, D = 1
4 [1

θ
− 1

θ

n∏
i=1

(1 − θai)] (see Algorithm 2);

4-3) If d̂1 is known, d̂1 = 1
2 [ 1

θ
− 1

θ

n∏
i=1

(1 − θai)] (see Algorithm 3);

5) The coefficients λ, β, γ and δ are uniformly distributed over [1,10].

The computational experiments of Algorithms 1–4 are summarized as follows. The maximum and
average CPU time (ms) required to find the optimal solutions are given in Table 1. From Table 1,
we can observe that Algorithms 1–4 are very efficient and fast, and the CPU time of Algorithms 1–4
increases steady as n increases from 100 to 1000.

5. Conclusions

In this article, we investigated the minmax minimization with CONW assignment and PLS PT . The
aim was to minimize max

1≤ j≤n

{
max

{
λE j, βT j

}
+ γd̂1 + δD

}
. A polynomial algorithm was proposed for

scenarios in which d1 and D are known or not. Future research may focus on minmax scheduling with
resource allocation, investigate the problems with general deterioration effects, or study the minmax
scheduling with learning effects (see [23–27].

Mathematical Biosciences and Engineering Volume 19, Issue 9, 8923–8934.



8932

Table 1. CPU time of Algorithms 1–4 (ms).

Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
jobs (n) Max Mean Max Mean Max Mean Max Mean
100 1 0.65 1 0.45 2 0.25 1 0.15
150 1 0.25 0 0 3 0.15 0 0
200 1 0.25 1 0.05 0 0 1 0.05
250 0 0 1 0.05 0 0 3 0.2
300 1 0.1 1 0.05 3 0.2 0 0
350 1 0.05 1 0.15 1 0.05 1 0.45
400 1 0.1 1 0.35 3 0.45 4 1.55
450 3 0.6 3 0.65 1 0.45 7 2.1
500 6 1.45 4 1.2 4 1.25 4 1.55
550 4 1.6 5 1.55 3 1.15 5 1.6
600 7 1.6 3 1.1 5 1.7 5 1.6
650 3 1.45 4 1 2 1.15 4 1.8
700 5 1.25 6 1.3 3 1.25 5 1.65
750 4 1.55 3 1.1 3 1.2 5 2
800 3 1.3 2 1.05 3 1.1 4 1.4
850 5 1.95 6 1.85 3 1.75 5 1.7
900 3 1.4 5 1.95 4 1.55 4 1.4
950 8 2.25 6 1.45 4 1.45 5 1.9
1000 2 1.11 3 1.2 4 1.1 3 1.1
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