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Abstract: A model of wound healing is presented to investigate the connection of the force of cell-
cell adhesion to the sensing radius of cells in their spatial environment. The model consists of a partial
differential equation with nonlocal advection and diffusion terms, describing the movement of cells in
a spatial environment. The model is applied to biological wound healing experiments to understand
incomplete wound closure. The analysis demonstrates that for each value of the force of adhesion
parameter, there is a critical value of the sensing radius above which complete wound healing does
not occur.

Keywords: nonlocal; advection; diffusion; adhesion; wound healing experiment

1. Introduction

The movement of cells in spatial micro-environments can be modeled by continuous variables for
the continuum density of the cells. The partial differential equations of these models incorporate two
components of cell movement: diffusion corresponding to random motion and nonlocal advection
corresponding to directed motion. In this work we employ nonlocal advection diffusion models to
describe the movement of biological cells in wound healing experiments. In these experiments, cells
have a directed motion corresponding to cell-cell adhesion. Cell-cell adhesion is a fundamental feature
of multi-cellular organisms, and is linked to maintenance of order in tissue formation, stability, and
breakdown.

There are several signaling pathways that control normal cell processes, such as cell proliferation,
cell division, cellular adhesion, and apoptosis. One of the most important signaling pathways is trans-
forming growth factor beta TGFβ, which regulates the proliferation, differentiation, adhesion, migra-
tion, and apoptosis of many cell types, including endothelial cells, hematopoietic cells, lymphocytes,
and ECM production.
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In wound healing experiments, cells lie in a viscous thin layer in a laboratory well, and are subjected
to experimental drug therapies. Cells in the layer are moving and proliferating. The velocity of a cell
is proportional to the net adhesive force acting on it, due to bonds formed with nearby cells. This
adhesive flux results, because cells sense their surroundings over a sensing radius via protrusions such
as filopodia, which interact with nearby cells to facilitate intercellular communication. The sensing
radius is considerable larger than the cell radius. The division of cells depends on a nutrient furnished to
the cell population. In the experiments, the layer of cells is scored laterally to form a narrow depression,
which then restores completely to the original level layer, or incompletely to a series of ridges.

In our references we have cited works that treat laboratory wound healing experiments [1–10].
In Figure 1, images from wound healing experiments in [4] are given. In these experiments, human
umbilical vein endothelial cells were plated on gelatin-coated plastic dishes and wounded with a pipette
tip, and then imaged by microscope over several hours.

Figure 1. Images of wound healing assays at three different time points for experiments in
a human umbilical vein endothelial cell monolayer in [4]. The bars are length 120 µm. The
experiment images are 15 minutes apart.

In [11], numerical simulations were given to investigate the dependence of wound closure on the
diffusion parameter α. In this work, our objective is to examine the relationship in (2.1), between
the sensing radius ρ and the adhesive force parameter λ in g(n) = n (λ − n). We will demonstrate
numerically, that this relationship depends on ρ and λ in such a way that for λ sufficiently large, there
is a critical value ρc(λ) of ρ such that n(x, t) converges to n̄(x) for ρ less than ρc(λ). For ρ greater
than ρc(λ), n(x, t) does not converge to n̄(x), and incomplete closure occurs, with a series of ridges
established above and below n̄(x). We will also examine the spacing ρs(λ) of the spatial ridges in the
case of incomplete wound closure, as a function of λ.

2. Nonlocal advection diffusion model applied to wound healing experiments

In our references we have cited works that treat laboratory wound healing experiments with math-
ematical models [2, 10–65]. We note in particular the nonlocal advection diffusion models of wound
healing experiments by Stephen Gourley [11, 25, 56]. In [11], the partial differential equation of the
nonlocal advection diffusion model for wound healing has the following form:
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∂n(x, t)
∂t

= α
∂2n(x, t)
∂x2︸      ︷︷      ︸

random motility

−
∂

∂x

(
n(x, t)

∫ ρ

−ρ

g(n(x + x̂, t)) h(x̂) dx̂
)

︸                                          ︷︷                                          ︸
cell−cell adhesion

+ f (n(x, t))︸    ︷︷    ︸
cell loss and gain

, n(x, 0) = n0(x), (2.1)

where x is spatial position, −∞ < x < ∞, and t is time, t ≥ 0.
The model in [17] for cell-cell adhesion has a direct representation of cell-cell contact using a non-

local spatial term in the model equation. This formulation was originally due to Armstrong, Painter,
and Sherratt [13], and subsequently applied to somite formation in early vertebrate development (Arm-
strong, Painter, and Sherratt [14]), to tumour growth (Gerisch and Chaplain [39]), and to cancer in-
vasion (Sherratt, Gourley, Armstrong, and Painter [56]). These authors considered basic properties
of the models, such as positivity, boundedness, and spatial pattern formation, which are important for
biological applications.

In (2.1), n(x, t) is the 1-dimensional continuum density of cells with respect to the lateral position
x across the wound at time t. The initial condition n(x, 0) = n0(x) corresponds to the wound depth
at spatial position x at time 0. The domain of n(x, t) is taken as (−∞,∞), since the boundary of the
laboratory well is not significant compared to the sensing radius. The interpretation of the model
outcomes relates to early or intermediate dynamics over time, which are not influenced by cells near
the boundary of the laboratory well.

In (2.1), α is the diffusion constant, g describes the advection force on a cell at position x due
to other cells within a sensing radius ρ centered at x, h describes variation of the advection force
over the sensing radius centered at x, and f describes the loss or gain of cells at position x. The
sensing radius quantifies the total forces attributable to bonds formed by cells at nearby locations due
to cell protrusions such as filopodia. The magnitude of these local forces depends on the number of
attachments made by cells within the experimentally specified sensing radius.

In (2.1),
∫ ρ
−ρ

g(n(x+ x̂, t) h(x̂) dx̂ represents the total adhesive force, attributable to cell-cell bonding,
on a cell at position x from cells at position x+ x̂, x̂ ∈ (x−ρ, x+ρ). The function g(n) is approximately
linear for small n, decreases for n above some threshold, and is effectively 0 above some critical value.
In our numerical simulations of (2.1), we will assume that g(n) = n(λ − n) with λ > 1. We will call λ
the cell-cell adhesion constant.

The function h(x̂) in (2.1) represents the magnitude and direction of the adhesive force over the
sensing radius of the cell as a function of x̂ ∈ (−ρ, ρ). This force diminishes with increasing separation
of cells. The adhesive force is directed towards cell centers. The force on a cell at x due to a cell at
x + ξ will tend to pull the cell at x to the right if ξ > 0, and to the left if ξ < 0. The direction of the
adhesive force, toward the cell at position x, requires h(x̂) to be an odd function, with x̂ ≥ 0 for x̂ ≥ 0.
In our numerical simulations, we will take h(x̂) = 0.1 arctan(0.2 x̂)/ arctan(0.2). The function f (n)
in (2.1) is of logistic type, so that at lower cell densities, there is increased cell division, and at higher
cell densities there is cell loss due to overcrowding. In our simulations, we will take f (n) = n(1 − n),
corresponding to a normalization of the density at the equilibrium value n̄(x) ≡ 1.

In [11], the existence, regularity, positivity, boundedness, and asymptotic behavior of the solutions
of (2.1) was investigated with the above assumptions. In [25], the model was extended to higher
dimensional spatial domains for the cell densities. In [30], the model was extended to include prolif-
erating cell age structure corresponding to the cell cycle. In [30], operator semigroup methods were
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used to establish suffucient conditions for the local asymptotic stability of the wound free equilib-
rium. In [11], the following sufficiency result was proven for the global asymptotic stability of the
equilibrium n̄(x) ≡ 1 in the model (2.1):

Theorem. Let h be an odd function such that h(ξ) ≥ 0 when ξ ≥ 0, let f (n) = n(1 − n), and let
g(n) = n(λ − n) with λ > 1. Suppose that δ < n0(x) ≤ λ for all x ∈ R, where δ > 0. Suppose

λ2

4α

(
max(1, λ − 1)

∫ ρ
−ρ
|h(ξ)| dξ

)2
< δ,

λ2

4

∫ ρ
−ρ
|h′(ξ)| dξ + h(ρ)λ2

2 < 1 − δ,

1 + λ
2

4

∫ ρ
−ρ
|h′(ξ)| dξ < λ.

Then, n(x, t) converges to 1 as t → ∞, exponentially in L2(R).

In general, the result is sufficient, but not necessary for complete would healing.

3. Numerical simulations of the wound healing experiments

In our numerical simulations we will view cells in the laboratory well as a culture grown to con-
fluence in nutrient medium, and then incubated in serum-free medium. Before the wound is imposed,
the cell density is constant at the normalized equilibrium value n̄(x) ≡ 1. The layer of cells is scraped
with a plastic pipette tip, and then replenished with serum-free medium. The healing of the wound can
be viewed as the lateral closure of the wound across the scoring. Dependent on model parameters, the
proliferating cells close the wound back to the equilibrium density n̄(x), or form an incomplete closure
consisting of a series of ridges above and below the equilibrium.

In our simulations, the diffusion parameter α = 1.0, the initial condition is taken as n0(x) =
1.0 − 0.75 e−(0.1x)6

, corresponding to the lateral depression of the cells forming the wound, centered
at x = 0 (Figure 2), and the adhesion force magnitude function is h(x̂) = 0.1 arctan(0.2 x̂)/ arctan(2.0).
Comparable results can be obtained for similar values of α, n0(x), and h(x̂).
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Figure 2. Left side: Graph of the initial density n0(x) of the wound at time 0. The graph
represents a lateral cross section of the scored cell layer before the nutrient medium is added
to promote wound healing. Right side: Graph of the intensity function h(ξ̂) in the force of
cell–cell adhesion.
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With the parameters and initial condition above, we will illustrate wound closure dependence on the
sensing radius ρ and the adhesion force parameter λ in the force of adhesion function g(n) = n (λ − n).
We will determine the critical value ρc(λ) distinguishing complete wound closure from incomplete
wound closure. We will examine the character of the spatial density function n(x, t) in the case of
incomplete wound closure with respect to the spacing of the oscillating spatial ridges of n(x, t). We
will provide three examples of λ to illustrate the critical sensing radius ρc(λ) as a function of λ: λ = 5.0,
λ = 6.0, and λ = 7.0.

Figure 3. λ = 5.0 and ρ = 16.9. Graph of n(x, t) for t = 0 to t = 300. The wound closes
completely as t advances.
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Figure 4. λ = 5.0 and ρ = 16.9. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 300). The vertical
axes are scaled closer to 0.0 at times 3, 10, 70, and 300, which means that the magnitude of
the oscillations are decreasing as time t advances. As t advances, the maxima (and minima)
of the oscillations in the x direction are spaced ≈ 38.5 units apart.

In the first simulation, λ = 5.0 and ρ = 16.9. The graph of n(x, t) is given for time from t = 0
to t = 300 in Figure 3. In Figure 4, the n(x, t) is graphed at t = 2, t = 10, t = 70, t = 300. As time
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advances, n(x, t) converges to the equilibrium n̄(x) ≡ 1.0, and the wound closes completely. At every
time level, the graph is concave up at x = 0.0.

In the second simulation, λ = 5.0 and ρ = 17.0. The graph of n(x, t) is given for t = 0 to t = 200
in Figure 5. In Figure 6, n(x, t) is graphed at t = 2, t = 10, t = 70, t = 200. As time advances, n(x, t)
does not converge to the equilibrium n̄(x) ≡ 1.0, and the wound does not close completely. In the early
dynamics, the wound stabilizes to a series of ridges with spacing ≈ 38.5. At every time level, the graph
of n(x, t) is concave up at x = 0.0. The critical value ρc(λ) for λ = 5.0 is ρc(5.0) ≈ 17.0. The three
sufficiency conditions above for limt→∞ n(x, t) = 1, require ρ < 1.72 with δ = 0.25 = n0(0).

Figure 5. λ = 5.0 and ρ = 17.0. Graph of n(x, t) for t = 0.0 to t = 200. The wound closes
incompletely as t advances.
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Figure 6. λ = 5.0 and ρ = 17.0. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 200). As t
advances, the maxima (and minima) of the oscillations in the x direction are spaced ≈ 38.5
units apart.

In the third simulation, λ = 6.0 and ρ = 10.9. The graph of n(x, t) is given for t = 0 to t = 300 in
Figure 7. In Figure 8, n(x, t) is graphed at t = 2.0, t = 10.0, t = 70.0, t = 300.0. As time advances,
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n(x, t) converges to the equilibrium n̄(x) ≡ 1.0, and the wound closes completely. At every positive
time level, the graph is concave down at x = 0.0.

Figure 7. λ = 6.0 and ρ = 10.9. Graph of n(x, t) for t = 0 to t = 300. The wound closes
completely as t advances.
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Figure 8. λ = 6.0 and ρ = 10.9. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 300). As t
advances, the maxima (and minima) of the oscillations in the x direction are spaced ≈ 27.8
units apart.

In the fourth simulation, λ = 6.0 and ρ = 11.0. The graph of n(x, t) is given for t = 0 to t = 300 in
Figure 9. In Figure 10, n(x, t) is graphed at t = 2.0, t = 10.0, t = 70.0, t = 300.0. As time advances,
n(x, t) does not converge to the equilibrium n̄(x) ≡ 1.0, and the wound does not close completely. In
the early dynamics, the wound stabilizes to a series of ridges with spacing ≈ 27.8. At every time level,
the graph is concave down at x = 0.0. The critical value ρc(λ) for λ = 6.0 is ρc(6.0) ≈ 11.0. The three
sufficiency conditions above for limt→∞ n(x, t) = 1, require ρ < 1.18 with δ = 0.25 = n0(0).
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Figure 9. λ = 6.0 and ρ = 11.0. Graph of n(x, t) for t = 0.0 to t = 300. The wound closes
incompletely as t advances
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Figure 10. λ = 6.0 and ρ = 11.0. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 300). As t
advances, the maxima (and minima) of the oscillations in the x direction are spaced ≈ 27.8
units apart.

In the fifth simulation, λ = 7.0 and ρ = 7.9. The graph of n(x, t) is given for time from t = 0 to
t = 100 in Figure 11. In Figure 12, n(x, t) is graphed at t = 2.0, t = 10.0, t = 70.0, t = 100.0. As time
advances, n(x, t) converges to the equilibrium n̄(x) ≡ 1.0, and the wound closes completely. At every
time level, the graph is concave down at x = 0.0.The critical value ρc(λ) for λ = 7.0 is ρc(7.0) ≈ 8.0.
The three sufficiency conditions above for limt→∞ n(x, t) = 1, require ρ < 1.9 with δ = 0.25 = n0(0).
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Figure 11. λ = 7.0 and ρ = 7.9. Graph of n(x, t) for t = 0.0 to t = 100. The wound closes
completely as t advances.
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Figure 12. λ = 7.0 and ρ = 7.9. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 100). As t
advances, the maxima (and minima) of the oscillations in the x direction are spaced ≈ 27.8
units apart.

In the sixth simulation, λ = 7.0 and ρ = 8.0. The graph of n(x, t) is given for time from t = 0 to
t = 100 in Figure 13. In Figure 14, n(x, t) is graphed at t = 2.0, t = 10.0, t = 70.0, t = 100.0. As
time advances, n(x, t) does not converge to the equilibrium n̄(x) ≡ 1.0, and the wound does not close
completely. In the early dynamics, the wound stabilizes to a series of ridges with spacing ≈ 20.0.
At every time level, the graph is concave down at x = 0.0. The critical value ρc(λ) for λ = 7.0 is
ρc(7.0) ≈ 8.0. The three sufficiency conditions above for limt→∞ n(x, t) = 1, require ρ < 0.86 with
δ = 0.25 = n0(0).
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Figure 13. λ = 7.0 and ρ = 8.0. Graph of n(x, t) for t = 0.0 to t = 100. The wound closes
incompletely as t advances.
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Figure 14. λ = 7.0 and ρ = 8.0. Graphs of n(x, 2), n(x, 10), n(x, 70), n(x, 100). As t
advances, the maxima (and minima) of the oscillations in the x direction are spaced ≈ 20.0
units apart.

In the Table below, we provide the values of the critical sensing radius ρc(λ) as a function of λ. We
also provide, as a function of λ, the spacing of the maxima (and minima) ρs(λ) of the density func-
tions as they oscillate, at the critical sensing radius values ρc(λ). Both ρc(λ) and ρs(λ) are decreasing
functions of the force of adhesion parameter λ. In Figure 15 we graph ρc(λ) and ρs(λ).

Table 1. Values of the critical sensing radius ρc(λ) as a function of λ, and values of the
spacing ρs(λ) in the cell density function at the critical value ρc(λ), as a function of λ.

λ 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
ρc(λ) 26.0 17.0 13.0 11.0 9.2 8.0 7.0 6.5 6.25 6.0 5.5 5.0
ρs(λ) 50.0 38.5 31.0 27.8 22.2 20.0 17.5 16.3 15.7 15.3 14.5 13.0
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Figure 15. Left side: Graph of the critical sensing radius ρc(λ); Right side: Graph of the
spacing of the oscillations ρs(λ) of the density function at the critical sensing radius.

4. Conclusions

A model of wound healing experiments has been investigated, based on the model (2.1) in [11].
A theoretical analysis was given in [11] for the existence, regularity, and boundedness of solutions
of (2.1). Additionally, a sufficient condition on the parameters was established, for the convergence of
solutions n(x, t) to the complete wound free equilibrium n̄(x) ≡ 1.0, as time advances.

In this work, the connection between the force of adhesion g(n) = n(λ − n) and the sensing radius
of cells ρ, is investigated for this model. Numerical simulations were given to connect the sensing
radius ρ to the force of adhesion parameter λ, with the model parameters α = 1.0 and initial condition
n0(x) = 1.0−0.75 e−(0.1x)6

. These numerical simulations demonstrate that for each λ ∈ [4.5, 10.0], there
is a critical value ρc(λ) of the sensing radius, such that complete wound closure occurs for ρ < ρc(λ)
and incomplete wound closure occurs for ρ > ρc(λ). This critical value ρc(λ) is graphed in Figure 15
and decreases as λ increases. For λ ≤ 4.0, the numerical simulations demonstrate that the wound closes
for every value of the sensing radius ρ.

The result in [11] providing sufficient conditions on the sensing radius ρ to yield complete wound
healing gives values considerably lower than the critical sensing radius ρc(λ) for the numerical simula-
tions for λ = 5.0, 6.0, 7.0. A complete theoretical establishment of necessary and sufficient conditions
for the asymptotic stability of the equilibrium n(x, t) ≡ 1, t ≥ 0, corresponding to complete wound
closure in (2.1), remains an open problem.

The simulations also demonstrate the character of the ridges formed in incomplete closure, as time
advances, with respect to their oscillation spacing. This oscillation spacing value ρs(λ) is also graphed
in Figure 15 and decreases as λ increases. These numerical simulations demonstrate the value of the
cell–cell adhesion model (2.1) for understanding the output of wound healing experiments, which are
of major importance in medical research of therapies for human diseases. The numerical simulations
were carried out using MATHEMATICA and are available upon request.
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