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Abstract: According to the difference of the initial energy, we consider three cases about the global
existence and blow-up of the solutions for a class of coupled parabolic systems with logarithmic non-
linearity. The three cases are the low initial energy, critical initial energy and high initial energy,
respectively. For the low initial energy and critical initial energy J(u0, v0) ≤ d, we prove the existence
of global solutions with I(u0, v0) ≥ 0 and blow up of solutions at finite time T < +∞ with I(u0, v0) < 0,
where I is Nehari functional. On the other hand, we give sufficient conditions for global existence and
blow up of solutions in the case of high initial energy J(u0, v0) > d.
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1. Introduction

In this paper, we consider the following initial-boundary value problem for a class of coupled
parabolic systems with logarithmic nonlinearity.

ut − ∆u = |v|p|u|p−2u log(|uv|), x ∈ Ω, t > 0,
vt − ∆v = |u|p|v|p−2v log(|uv|), x ∈ Ω, t > 0,
u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ],

(1.1)

where (u0, v0) ∈ H1
0(Ω) × H1

0(Ω), T ∈ (0,+∞), Ω ⊂ Rn(n ≥ 2) is a bounded domain with smooth
boundary ∂Ω and p satisfies the following assumptions:

2 < p < 2∗ :=
{
∞, if n = 2,
2n

n−2 , if n ≥ 3.
(1.2)
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Among the fields of mathematical physics, biosciences and engineering, problem (1.1) is one of
the most important reaction-diffusion coupled systems with logarithmic nonlinearity. It can be used
not only to predict the time evolution of various population density distributions, but also to describe
the thermal propagation of a two-component combustible mixture [1–3]. In recent years, this kind of
systematic research has attracted many mathematicians and has made remarkable progress [4–8]. In
order to overcome the special difficulties brought by nonlinear terms, many new ideas and tools have
been developed, which greatly enrich the theory of partial differential equations [9–14].

In the past years, many authors made efforts to the investigation of the existence and blow up of
solutions for such kinds of systems. Galaktionov et al. [15, 16] investigated the following semilinear
reaction-diffusion system {

ut − ∆u = vp,

vt − ∆v = uq.
(1.3)

They proved the local and global existence of solutions for the initial boundary value problem of (1.3).
Subsequently, Escobedo and Herrero [17] considered the initial boundary value problem of (1.3) for a
bounded open domain on Rn with smooth boundary. They obtained global solution under the condition
0 < pq ≤ 1, meanwhile global solution and blow up in finite time depending on sufficient small or large
initial value and pq > 1. For more studies on problem (1.3) we refer the interested reader to [18–20]
and references therein.

Recently, Xu et al. [21] considered the following nonlinear reaction-diffusion systems

ut − ∆u =
(
|u|2p + |v|p+1|u|p−1

)
u, x ∈ Ω, t > 0,

vt − ∆v =
(
|v|2p + |u|p+1|v|p−1

)
v, x ∈ Ω, t > 0,

u(x, 0) = u0(x), x ∈ Ω,

v(x, 0) = v0(x), x ∈ Ω,

u(x, t) = v(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ].

(1.4)

When initial energy J(u0, v0) ≤ d, by virtue of Galerkin method [22] and concave function method [23],
global existence and finite time blow-up of the solutions for the problem (1.4) were obtained. When
initial energy J(u0, v0) > d, they discussed global existence, finite time blow-up of solutions and tried
to find out the corresponding initial data with arbitrarily high initial energy. What’s more, by using
comparison principle and the ideas in [24,25], they described the structures of the initial data and gave
some sufficient conditions of the initial data which ensured the finite time blow up and global existence
of the solutions, respectively.

Inspired by the above works, we aim to use the Galerkin method, logarithmic inequalities [26],
and concave function method to prove the global existence, decay, finite time blow-up of solutions for
problem (1.1) with initial energy J(u0, v0) ≤ d. When high initial energy J(u0, v0) > d, by constructing
two sets Φα and Ψα defined as (5.1) and (5.2), we prove that the weak solution will blow up in finite or
infinite time if the initial value belongs to Ψα, while the weak solution will exist globally and tends to
zero as time t → +∞ when the initial value belongs to Φα.

The organization of the remaining part of this paper is as follows. In Section 2, we introduce
some preliminaries and lemmas of this paper. In Sections 3–5, we will give our main results and the
corresponding proofs.
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2. Preliminary

Throughout this paper, we denote by ‖u‖γ the norm of Lγ(Ω) for 1 ≤ γ ≤ +∞ and by ‖u‖H1
0 (Ω) the

norm of H1
0(Ω). For u ∈ Lγ(Ω),

‖u‖γ =


(∫

Ω
|u(x)|γdx

) 1
γ
, if 1 ≤ γ < +∞,

ess supx∈Ω |u(x)|, if γ = +∞,

and for u ∈ H1
0(Ω),

‖u‖2H1
0 (Ω) = ‖u‖22 + ‖∇u‖22.

By virtue of Poincaré inequality, we know that ‖u‖2
H1

0 (Ω)
and ‖∇u‖22 are equivalent norms to each

other, i.e., there exist C1 and C2 such that

C1‖∇u‖22 ≤ ‖u‖
2
H1

0 (Ω) ≤ C2‖∇u‖22,

which is denoted by ‖u‖2
H1

0 (Ω)
' ‖∇u‖22. In addition, we denoted by (·, ·) the inner product in L2(Ω) and

c is an arbitrary positive number which may be different from line to line.
For (u, v) ∈ H1

0(Ω) × H1
0(Ω), we define the Nehari functional I and energy functional J as follows:

I(u, v) =

∫
Ω

|∇u|2dx +

∫
Ω

|∇v|2dx − 2
∫

Ω

|uv|p| log(|uv|)dx

' ‖u‖2H1
0 (Ω) + ‖v‖2H1

0 (Ω) − 2
∫

Ω

|uv|p log(|uv|)dx,
(2.1)

J(u, v) =
1
2

∫
Ω

|∇u|2dx +
1
2

∫
Ω

|∇v|2dx +
1
p2

∫
Ω

|uv|pdx −
1
p

∫
Ω

|uv|p log(|uv|)dx

'
1
2
‖u‖2H1

0 (Ω) +
1
2
‖v‖2H1

0 (Ω) +
1
p2 ‖uv‖p

p −
1
p

∫
Ω

|uv|p log(|uv|)dx.
(2.2)

From (2.1) and (2.2), we have

J(u, v) '
1

2p
I(u, v) +

p − 1
2p

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

1
p2 ‖uv‖p

p. (2.3)

Let
N :=

{
(u, v) ∈ H1

0(Ω) × H1
0(Ω)\ {(0, 0)}| I(u, v) = 0

}
be the Nehari manifold. Furthermore, the potential well W and its corresponding set V are defined
respectively by

W =
{
(u, v) ∈ H1

0(Ω) × H1
0(Ω) | I(u, v) > 0, J(u, v) < d

}
∪ {(0, 0)},

V =
{
(u, v) ∈ H1

0(Ω) × H1
0(Ω) | I(u, v) < 0, J(u, v) < d

}
,
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where
d := inf

(u,v)∈H1
0 (Ω)×H1

0 (Ω)\{(0,0)}
sup

s1,s2>0
J(s1u, s2v) = inf

(u,v)∈N
J(u, v) (2.4)

is the depth of the potential well W.
To consider the weak solution with high energy level, we need to introduce some new notions.

Jα = {(u, v) ∈ H1
0(Ω) × H1

0(Ω)|J(u, v) < α},

Nα = N ∩ Jα =
{
(u, v) ∈ N|

p − 1
2p

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

1
p2 ‖uv‖p

p < α
}
,

and

λα = inf
{1
2

(
‖u‖22 + ‖v‖22

)
|(u, v) ∈ Nα

}
, Λα = sup

{1
2

(
‖u‖22 + ‖v‖22

)
|(u, v) ∈ Nα

}
for all α > d,

Clearly, λα is nonincreasing, and Λα is nondecreasing with respect to α, respectively.
Now, we give the definitions of the weak solution, maximal existence time and finite time blow up

of the problem (1.1) as follows.

Definition 1. (Weak solution) We say that (u, v)=(u(x, t), v(x, t)) ∈ L∞([0,T ),H1
0(Ω) × H1

0(Ω)) with
(ut, vt) ∈ L2([0,T ), L2(Ω) × L2(Ω)) is a weak solution of problem (1.1) on Ω × [0,T ), if it satisfies the
initial condition u(x, 0) = u0(x), v(x, 0) = v0(x) in H1

0(Ω),

(ut,w1) + (∇u,∇w1) = (|v|p|u|p−2u log(|uv|),w1)

and
(vt,w2) + (∇v,∇w2) = (|u|p|v|p−2v log(|uv|),w2)

for all w1,w2 ∈ H1
0(Ω) and t ∈ (0,T ). Moreover, for all t ∈ (0,T ), we have∫ t

0
‖uτ‖22 + ‖vτ‖22dτ + J(u, v) ≤ J(u0, v0). (2.5)

Remark 1. For the global weak solution (u(t), v(t)) = (u(x, t), v(x, t)) of problem (1.1), we define the
ω-limit set of (u0, v0) by

ω(u0, v0) :=
⋂
t≥0

{u(s), v(s) : s ≥ t}.

Definition 2. (Maximal existence time) Let (u, v) = (u(x, t), v(x, t)) be a weak solution of problem (1.1).
We define the maximal existence time of (u, v) as follows
(i) If (u, v) exists for all t ∈ [0,+∞), then T = +∞.
(ii) If there exists a t0 ∈ (0,+∞) such that (u, v) exists for 0 ≤ t < t0, but it does not exist at t = t0, then
T = t0.

Definition 3. (Finite time blow-up) Let (u(t), v(t)) = (u(x, t), v(x, t)) be a weak solution of problem
(1.1). We say (u(t), v(t)) blows up in finite time if the maximal existence time T is finite and

lim
t→T
‖u(t)‖22 + ‖v(t)‖22 = +∞.
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Lemma 1. Let (u, v) ∈ H1
0(Ω) × H1

0(Ω)\{(0, 0)}, then the following hold
(i) limλ→0 J(λu, λv) = 0, limλ→+∞ J(λu, λv) = −∞.
(ii) There exists a unique λ∗ > 0 such that d

dλ J(λu, λv)
∣∣∣
λ=λ∗

= 0.
(iii) J(λu, λv) is increasing on (0, λ∗), decreasing on (λ∗,+∞), and attains the maximum at λ = λ∗.
(iv) I(λu, λv) > 0 for 0 < λ < λ∗, I(λu, λv) < 0 for λ∗ < λ < +∞, and I(λ∗u, λ∗v) = 0.

Proof. (i) By definition of J(u, v) and λ > 0, we have

J(λu, λv) =
λ2

2
‖u‖2H1

0 (Ω) +
λ2

2
‖v‖2H1

0 (Ω) +
λ2p

p2 ‖uv‖p
p −

λ2p

p
logλ2‖uv‖p

p −
λ2p

p

∫
Ω

|uv|plog(|uv|)dx.

Thus limλ→0 J(λu, λv) = 0, limλ→+∞ J(λu, λv) = −∞.

(ii) Differentiating J(λu, λv) with respect to λ, we get

d
dλ

J(λu, λv) = λ‖u‖2H1
0 (Ω) + λ‖v‖2H1

0 (Ω) − 2λ2p−1 log λ2‖uv‖p
p − 2λ2p−1

∫
Ω

|uv|p log(|uv|)dx

= λ

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω) − 2λ2p−2 log λ2‖uv‖p

p − 2λ2p−2
∫

Ω

|uv|p log(|uv|)dx
)
.

Setting g(λ) = ‖u‖2
H1

0 (Ω)
+‖v‖2

H1
0 (Ω)
−2λ2p−2 log λ2‖uv‖p

p−2λ2p−2
∫

Ω
|uv|p log(|uv|)dx, we have limλ→0 g(λ) =

‖u‖2
H1

0 (Ω)
+ ‖v‖2

H1
0 (Ω)

> 0, limλ→+∞ g(λ) = −∞, and

g′(λ) = −2(2p − 2)λ2p−3 log λ2‖uv‖p
p − 4λ2p−3‖uv‖p

p − 2(2p − 2)λ2p−3
∫

Ω

|uv|p log |uv|dx < 0.

Thus there exists a unique λ∗ > 0 such that g(λ∗) = 0, i.e., d
dλ J(λu, λv)

∣∣∣
λ=λ∗

= 0.
(iii) It is easy to find that J(λu, λv) is strictly increasing on (0, λ∗], strictly decreasing on (λ∗,+∞) and
taking the maximum at λ = λ∗.

(iv) Since

I(λu, λv) = ‖λu‖2H1
0 (Ω) + ‖λv‖2H1

0 (Ω) − 2
∫

Ω

|λuλv|p log(|λuλv|)dx = λ
d

dλ
J(λu, λv),

then the conclusion follows immediately.

Lemma 2. Assume (1.2) holds, let (u, v) ∈ H1
0(Ω) × H1

0(Ω) satisfy I(u, v) < 0, then

I(u, v) < 2p(J(u, v) − d). (2.6)

Proof. According to I(u, v) < 0 and Lemma 1, we have (u, v) , (0, 0) and there exists a λ∗ ∈ (0, 1) such
that I(λ∗u, λ∗v) = 0, i.e., J(λ∗u, λ∗v) ≥ d. For λ > 0, set

h(λ) = 2pJ(λu, λv) − I(λu, λv) = (p − 1)λ2
(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

2
p
λ2p‖uv‖Pp ,

then
h′(λ) = 2(p − 1)λ

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+ 4λ2p−1‖uv‖Pp > 0.

Hence h(λ) is strictly increasing for λ > 0. Together with λ∗ ∈ (0, 1), it follows that h(1) > h(λ∗). i.e.,

2pJ(u, v) − I(u, v) > 2pJ(λ∗u, λ∗v) − I(λ∗u, λ∗v) = 2pJ(λ∗u, λ∗v) ≥ 2pd.

Then (2.6) follows immediately.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8580–8600.



8585

Lemma 3. Assume (1.2) holds, let (u0, v0) ∈ H1
0(Ω)×H1

0(Ω) and (u(t), v(t)) = (u(x, t), v(x, t)) be a weak
solution of problem (1.1). If J(u0, v0) < d and I(u0, v0) < 0, then (u(t), v(t)) ∈ V for all 0 ≤ t ≤ T,
where T is the maximal existence time of (u(t), v(t)).

Proof. We will show that (u(t), v(t)) ∈ V for 0 ≤ t ≤ T . Arguing by contradiction, suppose that
t0 ∈ [0,T ] be the smallest time for which (u(t0), v(t0)) < V , then by the continuity of the (u(t), v(t)), we
get (u(t0), v(t0)) ∈ ∂V . Hence, it follows that

I(u(t0), v(t0)) = 0 (2.7)

or
J(u(t0), v(t0)) = d. (2.8)

If (2.7) is true, then (u(t0), v(t0)) ∈ N , J(u(t0), v(t0)) > d ,which contradicts with (2.5). While if (2.8) is
true, it also contradicts with (2.5). Consequently, we have (u(t), v(t)) ∈ V for all 0 ≤ t ≤ T.

Lemma 4. Let (u,v) be a weak solution of problem (1.1). Then for all t ∈ [0,T ),

d
dt

(
‖u‖22 + ‖v‖22

)
= −2I(u, v).

Proof. The proof of Lemma 4 directly follows by choosing w1 = u,w2 = v in Definition 1.

3. Low initial energy J(u0, v0) < d

In this section, we prove global existence and finite time blow up of solutions for problem (1.1) with
the initial energy J(u0, v0) < d.

Theorem 1. Assume (u0, v0) ∈ H1
0(Ω) × H1

0(Ω) and (1.2) hold. If J(u0, v0) < d and I(u0, v0) ≥ 0, then
the problem (1.1) has a global solution (u(t), v(t)) ∈ L∞((0,∞); H1

0(Ω) × H1
0(Ω)) with (ut(t), vt(t)) ∈

L2((0,∞); L2(Ω) × L2(Ω)) and (u(t), v(t)) ∈ W for 0 ≤ t < ∞. Furthermore, if I(u0, v0) > 0, then there
exists a c > 0 such that ‖u‖22 + ‖v‖22 ≤ (‖u0‖

2
2 + ‖v0‖

2
2)e−2ct.

Proof. Since we know J(u0, v0) < d and I(u0, v0) ≥ 0, then it follows that
(i) If 0 < J(u0, v0) < d and I(u0, v0) ≥ 0, then we have I(u0, v0) > 0. In fact, if I(u0, v0) = 0, then by the
definition of d in (2.4), we have J(u0, v0) ≥ d, which is a contradiction.
(ii) If J(u0, v0) = 0 and I(u0, v0) ≥ 0, then we obtain (u0, v0) = (0, 0). In fact, if (u0, v0) , (0, 0), then by
the (2.3) , we have p−1

2p

(
‖u0‖

2
H1

0 (Ω)
+ ‖v0‖

2
H1

0 (Ω)

)
+ 1

p2 ‖u0v0‖
p
p < 0, which is also a contradiction.

(iii) If J(u0, v0) < 0 and I(u0, v0) ≥ 0, then it is contradictive with (2.3).
From the discussions above, we consider the case 0 < J(u0, v0) < d and I(u0, v0) > 0. It is widely

know that there is a basis {ω j(x)}∞j=1 of H1
0(Ω) such that ω j is an eigenfunction of the Laplacian operator

corresponding to the eigenvalue λ j and{
−∆ω j = λ jω j, x ∈ Ω,

ω j = 0, x ∈ ∂Ω.

Hence, we choose {ω j(x)}∞j=1 as the Galerkin basis for −∆ in H1
0(Ω). Then we construct the Galerkin

approximate solution (um(x, t), vm(x, t)) of the problem (1.1),{
um(x, t) =

∑m
j=1 g jm(t)ω j(x), m = 1, 2, · · · ,

vm(x, t) =
∑m

j=1 h jm(t)ω j(x), m = 1, 2, · · · ,
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which satisfy, for j = 1, 2, · · · ,m,

(umt, ω j) + (∇um,∇ω j) = (|vm|
p|um|

p−2um log(|umvm|), ω j) (3.1)

and
(vmt, ω j) + (∇vm,∇ω j) = (|um|

p|vm|
p−2vm log(|umvm|), ω j), (3.2)

with initial condition um(x, 0) = u0m, vm(x, 0) = v0m, where u0m and v0m are chosen in span{ω1, ω2, · ·

·, ωm} so that

u0m =

m∑
j=1

g jm(0)ω j(x)→ u0 in H1
0(Ω), as m→ +∞ (3.3)

and

v0m =

m∑
j=1

h jm(0)ω j(x)→ v0 in H1
0(Ω), as m→ +∞. (3.4)

According to the standard ordinary differential equation theory, the system (3.1)–(3.4) admit a so-
lution

(g jm(t), h jm(t)) ∈ C1[0,T0) ×C1[0,T0),

where T0 is the minimum of the existence time of g jm(t) and h jm(t) for each m. Thus (um(x, t), vm(x, t)) ∈
C1

(
[0,T0); H1

0(Ω) × H1
0(Ω)

)
.

Next, multiplying (3.1) and (3.2) by g′jm(t) and h′jm(t), respectively, summing for j from 1 to m,
integrating with respect to t from 0 to t and adding these two equations, we get∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2 dτ + J (um, vm) = J (u0m, v0m) , 0 ≤ t < T0. (3.5)

From J(u0, v0) < d and (3.3)–(3.4), we see that J(u0m, v0m) < d for sufficiently large m. Then we get
from (3.5) that ∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2 dτ + J (um, vm) = J (u0m, v0m) < d, 0 ≤ t < T0, (3.6)

for sufficiently large m.
By (3.3) and (3.4) and (u0, v0) ∈ W, we know that (u0m, v0m) ∈ W for large enough m. Next,

we prove (um(x, t), v(x, t)) ∈ W for large enough m and 0 ≤ t < T0. If it is false, then there exists
t0 ∈ (0,T0) such that (um(x, t0), vm(x, t0)) ∈ ∂W, then I(um(t0), vm(t0)) = 0 and (um(t0), vm(t0)) , (0, 0),
or J(um(t0), vm(t0)) = d.

By (3.6), J(um(t0), vm(t0)) = d is not true. On the other hand, if I(um(t0), vm(t0)) = 0 and
(um(t0), vm(t0)) , (0, 0), then by the definition of d, we have J(um(t0), vm(t0)) ≥ d, which is also contra-
diction with (3.6). So (um(x, t), vm(x, t)) ∈ W for large enough m and 0 ≤ t < T0.

From the fact
(
um(x, t), vm(x, t)

)
∈ W for large enough m, (3.6) and

J(um(t), vm(t)) =
p − 1
2p

(
‖um(t)‖2H1

0 (Ω) + ‖vm(t)‖2H1
0 (Ω)

)
+

1
p2 ‖um(t)vm(t)‖p

p +
1

2p
I(um(t), vm(t)),
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we obtain∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2dτ +

p − 1
2p

(
‖um(t)‖2H1

0 (Ω) + ‖vm(t)‖2H1
0 (Ω)

)
+

1
p2 ‖um(t)vm(t)‖p

p < d, 0 ≤ t < T0, (3.7)

for sufficiently large m, which gives

‖um(t)‖2H1
0 (Ω) <

2p
p − 1

d, (3.8)

‖vm(t)‖2H1
0 (Ω) <

2p
p − 1

d, (3.9)∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2dτ < d. (3.10)

By (3.10), we know that T0 = +∞. Then by (3.8)–(3.10), there exist u, v with theirs subsequences
of {um}

+∞
j=1 and {vm}

+∞
j=1, such that, as m→ +∞,

um → u weakly star in L∞
(
0,+∞; H1

0(Ω)
)
, (3.11)

vm → v weakly star in L∞
(
0,+∞; H1

0(Ω)
)
, (3.12)

umt → ut weakly in L2
(
0,+∞; L2(Ω)

)
, (3.13)

νmt −→ vt weakly in L2
(
0,+∞; L2(Ω)

)
. (3.14)

Then it follows Aubin-lions compactness theorem [27] that

um → u strongly in C
(
[0,+∞); L2(Ω)

)
,

vm → v strongly in C
(
[0,+∞); L2(Ω)

)
.

Clearly, this implies that
um → u a.e. in Ω × [0,+∞),

vm → v a.e. in Ω × [0,+∞).

Furthermore, we get

|vm|
p|um|

p−2um log(|umvm|)→ |v|p|u|p−2u log(|uv|) a.e. in Ω × [0,+∞), (3.15)

|um|
p|vm|

p−2vm log(|umvm|)→ |u|p|v|p−2v log(|uv|) a.e. in Ω × [0,+∞). (3.16)

On the other hand,∫
Ω

∣∣∣|vm|
p|um|

p−2um log(|umvm|)
∣∣∣ p

p−1 dx =

∫
Ω

(
|vm|

p|um|
p−1 log(|umvm|)

) p
p−1 dx

=

∫
{x∈Ω:|um(x)vm(x)|≤1}

(
|vm|

p|um|
p−1 log(|umvm|)

) p
p−1 dx +

∫
{x∈Ω:|um(x)vm(x)|>1}

(
|vm|

p|um|
p−1 log(|umvm|)

) p
p−1 dx

≤

∫
Ω

(e(p − 1)−1|vm|)
p

p−1 dx +

∫
Ω

|um|
(p−1+r)p

p−1 |vm|
(p+r)p

p−1 dx

≤ e(p − 1)−
p

p−1 ‖vm‖
p

p−1
p

p−1
+ ‖um‖

e
2e‖vm‖

σ
2σ

≤ c‖vm‖
p

p−1

H1
0 (Ω)

+ c‖um‖
e
H1

0 (Ω) ‖vm‖
σ
H1

0 (Ω) ≤ c,
(3.17)
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where σ =
(p+r)p

p−1 , e =
(p−1+r)p

p−1 , and since |xq−1 log x| ≤ (e(q−1))−1 for 0 < x < 1 while x−µ log x ≤ (eµ)−1

for x ≥ 1, µ > 0. Choosing a positive real number r so that 0 < 2e < 2∗ and 0 < 2σ < 2∗, and similar
to the proof (3.17), we have ∫

Ω

∣∣∣|um|
p|vm|

p−2vm log(|umvm|)
∣∣∣ p

p−1 dx ≤ c. (3.18)

Hence, from (3.15)–(3.18) and Lion’s Lemma(see [27], Lemma 1.3, p.12), we have

|vm|
p|um|

p−2um log(|umvm|)→ |v|p|u|p−2u log(|uv|) weakly star in L∞
(
0,+∞; L

p
p−1 (Ω)

)
, (3.19)

|um|
p|vm|

p−2vm log(|umvm|)→ |u|p|v|p−2v log(|uv|) weakly star in L∞
(
0,+∞; L

p
p−1 (Ω)

)
. (3.20)

In view of (3.11)–(3.14) and (3.19),(3.20), for j fixed, we can pass to the limit in (3.1) and (3.2) to
get

(ut, ω j) + (∇u,∇ω j) = (|v|p|u|p−2u log(|uv|), ω j)

and
(vt, ω j) + (∇v,∇ω j) = (|u|p|v|p−2v log(|uv|), ω j)

for a.e., t ∈ (0,+∞). Since {ω j(x)}∞j=1 is the basis in H1
0(Ω), we have

(ut,w1) + (∇u,∇w1) =
(
|v|p|u|p−2u log(|uv|),w1

)
(3.21)

and
(vt,w2) + (∇v,∇w2) =

(
|u|p|v|p−2v log(|uv|),w2

)
(3.22)

for any w1,w2 ∈ H1
0(Ω) and a.e., t ∈ (0,+∞).

Fixing any t ∈ (0,+∞) and integrating (3.21) and (3.22) from 0 to t, we get

(u,w1) +

∫ t

0
(∇u,∇w1) dτ =

∫ t

0

(
|v|p|u|p−2u log(|uv|),w1

)
dτ + (u(0),w1), ∀w1 ∈ H1

0(Ω), (3.23)

and

(v,w2) +

∫ t

0
(∇v,∇w2) dτ =

∫ t

0

(
|u|p|v|p−2v log(|uv|),w2

)
dτ + (v(0),w2), ∀w2 ∈ H1

0(Ω). (3.24)

Similarly, integrating (3.1) and (3.2) from 0 to t, and passing to the limit, we get

(u,w1) +

∫ t

0
(∇um,∇w1) dτ =

∫ t

0

(
|vm|

p|um|
p−2um log(|umvm|),w1

)
dτ + (u0,w1), ∀w1 ∈ H1

0(Ω), (3.25)

and

(v,w2) +

∫ t

0
(∇vm,∇w2) dτ =

∫ t

0

(
|um|

p|vm|
p−2vm log(|umvm|),w2

)
dτ + (v0,w2), ∀w2 ∈ H1

0(Ω). (3.26)

From (3.23)–(3.26), we get u(0) = u0 and v(0) = v0.
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According to (3.3), (3.4), (3.7), (3.11)–(3.14), (3.19), (3.20) and since the norm is weakly lower
semicontinuous, we know that the energy inequality (2.5) holds. Then from Definition 2, (u(t), v(t)) is
a global weak solution and (u(t), v(t)) ∈ W.

Next, we will prove the algebraic decay of the global solution u(x, t). Combining (2.3), (2.5) and
(u(t), v(t)) ∈ W, we have

p − 1
2p

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

1
p2 ‖uv‖p

p ≤ J(u(t)) ≤ J(u0). (3.27)

As I(u, v) < 0, then there exists a λ∗ ∈ (0, 1) such that I(λ∗u, λ∗v) = 0. Furthermore, we get

λp
∗

(
p − 1
2p

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

))
+

1
p2 ‖uv‖p

p ≥ J(λ∗u(t)) ≥ d. (3.28)

It follows from (3.27) and (3.28) that

λ∗ ≥

(
d

J(u0, v0)

) 1
p

. (3.29)

Due to the I(λ∗u, λ∗v) = 0, we have

I(λ∗u, λ∗v) = λ2
∗

(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
− 2λ2p

∗

∫
Ω

|uv|p log |uv|dx − 2λ2p
∗ log λ2

∗‖uv‖p
p

= (λ2
∗ − 2λ2p

∗ )
(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+ 2λ2p

∗ I(u, v) − 2λ2p
∗ log λ2

∗‖uv‖p
p

= 0,

i.e.,

I(u, v) ≥
(
1 −

1

2λ2(p−1)
∗

)
(‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)). (3.30)

Combining (3.29) with (3.30), we have

I(u, v) ≥
(
1 −

1
2

(
d

J(u0, v0)
)2( 1

p−1)
)

(‖u‖2H1
0 (Ω) + ‖v‖2H1

0 (Ω)).

By the emdedding H1
0(Ω) ↪→ L2(Ω), we have

I(u, v) ≥ c(‖u‖2L2(Ω) + ‖v‖2L2(Ω)). (3.31)

On the other hand, by Lemma 4, we know

1
2

d
dt

(‖u‖22 + ‖v‖22) + I(u, v) = 0, 0 ≤ t < ∞.

Combining this equality with (3.31), we get

1
2

d
dt

(‖u‖22 + ‖v‖22) + c(‖u‖2L2(Ω) + ‖v‖2L2(Ω)) ≤ 0, 0 ≤ t < ∞.

By Grönwall’s inequality, we have

‖u‖22 + ‖v‖22 ≤ (‖u0‖
2
2 + ‖v0‖

2
2)e−2ct, 0 ≤ t < ∞.

The proof of Theorem 1 is complete.
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Theorem 2. Assume (u0, v0) ∈ H1
0(Ω) × H1

0(Ω) and (1.2) hold. If J(u0, v0) < d and I(u0, v0) < 0, then
the weak solution (u(x, t), v(x, t)) of the problem (1.1) blows up in finite time, i.e., there exists a T > 0
such that

lim
t→T

∫ t

0
‖u‖22 + ‖v‖22dτ = +∞.

Proof. Step 1: Blow-up in finite time
By contradiction, we suppose that (u(t), v(t)) is global weak solution of problem (1.1), then Tmax =

+∞. Let

G(t) =

∫ t

0
‖u‖22 + ‖v‖22dτ,

then
G′(t) = ‖u‖22 + ‖v‖22

and

G′′(t) = 2 ((u, ut) + (v, vt)) = −2
(
‖∇u‖22 + ‖∇v‖22

)
+ 4

∫
Ω

|u|p|v|p log(|uv|)dx = −2I(u, v). (3.32)

From (3.32) and energy inequality (2.5), it follows that

G′′(t) ' 2(p − 1)
(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

4
p
‖uv‖p

p − 4pJ(u, v)

≥ 2(p − 1)
(
‖u‖2H1

0 (Ω) + ‖v‖2H1
0 (Ω)

)
+

4
p
‖uv‖p

p − 4pJ(u0, v0) + 4p
∫ t

0
‖uτ‖22 + ‖vτ‖22dτ

≥ 4p
∫ t

0
‖uτ‖22 + ‖vτ‖22dτ + 2(p − 1)cG′(t) − 4pJ(u0, v0),

(3.33)

where the constant c is from the Poincaré inequality ‖u‖22 ≤ c‖∇u‖22.
Note that (∫ t

0
(uτ, u) + (vτ, v)dτ

)2

=

(
1
2

∫ t

0

d
dτ

(‖u‖22 + ‖v‖22)dτ
)2

=

(
1
2

(‖u‖22 + ‖v‖22 − ‖u0‖
2
2 − ‖v0‖

2
2)
)2

=
1
4

[(‖u‖22 + ‖v‖22)2 − 2(‖u0‖
2
2 + ‖v0‖

2
2)(‖u‖22 + ‖v‖22) + (‖u0‖

2
2 + ‖v0‖

2
2)2]

=
1
4

[(G′(t))2 − 2G′(t)(‖u0‖
2
2 + ‖v0‖

2
2) + (‖u0‖

2
2 + ‖v0‖

2
2)2],

then

G′(t) = 4
(∫ t

0
(uτ, u) + (vτ, v)dτ

)2

+ 2G′(t)(‖u0‖
2
2 + ‖v0‖

2
2) − (‖u0‖

2
2 + ‖v0‖

2
2)2. (3.34)
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Hence by (3.33) and (3.34) we know that

G(t)G′′(t) − p(G′(t))2 > 4p
∫ t

0
‖uτ‖22 + ‖vτ‖22dτ

∫ t

0
‖u‖22 + ‖v‖22dτ − 4p

(∫ t

0
(uτ, u) + (vτ, v)dτ

)2

+ 2(p − 1)cG(t)G′(t) − 4pG(t)J(u0, v0) − 2pG′(t)(‖u0‖
2
2 + ‖v0‖

2
2) + p(‖u0‖

2
2 + ‖v0‖

2
2)2.

By Schwartz inequality, we have∫ t

0
‖uτ‖22 + ‖vτ‖22dτ

∫ t

0
‖u‖22 + ‖v‖22dτ −

(∫ t

0
(uτ, u) + (vτ, v)dτ

)2

≥

∫ t

0
‖uτ‖22 + ‖vτ2

2dτ
∫ t

0
‖u‖22 + ‖v‖22dτ −

(∫ t

0
‖u‖2‖uτ‖2 + ‖v‖2‖vτ‖2dτ

)2

≥

∫ t

0
‖uτ‖22 + ‖vτ‖22dτ

∫ t

0
‖u‖22 + ‖v‖22dτ −

(∫ t

0

√
‖uτ‖22 + ‖vτ‖22

√
‖u‖22 + ‖v‖22dτ

)2

≥0.

It implies that

G(t)G′′(t) − p(G′(t))2 ≥ 2(p − 1)cG′(t)G(t) − 4pJ(u0, v0)G(t) − 2pG′(t)(‖u0‖
2
2 + ‖v0‖

2
2). (3.35)

From Lemma 3 we have I(u(t), v(t)) < 0 for 0 ≤ t < +∞. Thus from Lemma 2 one has

− 2I(u(t), v(t)) > 4p(d − J(u(t), v(t))), 0 ≤ t < +∞. (3.36)

Combing (3.36) and (2.5) we get

G′′(t) = −2I(u, v) > 4p(d − J(u, v)) ≥ 4p(d − J(u0, v0)) := C1 > 0, 0 ≤ t < +∞

and
G′(t) ≥ C1t + G′(0) = C1t, 0 ≤ t < +∞,

G(t) ≥
1
2

C1t2 + G(0) =
1
2

C1t2, 0 ≤ t < +∞.

Hence for sufficiently large t, we have

(p − 1)cG(t) > 2p(‖u0‖
2
2 + ‖v0|

2
2) and (p − 1)cG′(t) > 4pJ(u0, v0). (3.37)

Combining (3.35) with (3.37), we obtain

G(t)G′′(t) − p(G′(t))2 ≥
(
(p − 1)cG(t) − 2p(‖u0‖

2
2 + ‖v0‖

2
2)
)
G′(t)

+
(
(p − 1)cG′(t) − 4pJ(u0, v0)

)
G(t) > 0,

for sufficiently large t. Note that(
G−(p−1)(t)

)′′
=
−(p − 1)
Gp+1(t)

(
G(t)G′′(t) − p(G′(t))2

)
< 0.
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It follows that there exists a finite time T > 0 such that limt→T G−(p−1)(t) = 0, i.e., limt→T

∫ t

0
‖u‖22 +

‖v‖22dτ = +∞.

Step 2: Upper bound estimation of the blow-up time.
We next give an upper bound estimate of T . Suppose (u(t), v(t)) be a solution of problem (1.1)

with initial value (u0, v0) satisfying I(u0, v0) < 0 and J(u0, v0) < d. By Step 1, the maximal existence
time T < ∞. By Lemma 3, we get (u(t), v(t)) ∈ V ,∀t ∈ [0,T ), i.e., I(u(t), v(t)) < 0, t ∈ [0,T ). For
T1 ∈ (0,T ), we define the auxiliary functional M : [0,T1]→ R which is defined by

M(t) :=
∫ t

0
‖u‖22 + ‖v‖22dτ + (T − t)(‖u0‖

2
2 + ‖v0‖

2
2) + β(t + γ)2, (3.38)

with β > 0 and γ > 0 specified later. Through a direct calculation, we have

M′(t) = ‖u(t)‖22 + ‖v(t)‖22 − (‖u0‖
2
2 + ‖v0‖

2
2) + 2β(t + γ)

= 2
∫ t

0
(uτ, u) + (vτ, v)dτ + 2β(t + γ)

(3.39)

and
M′′(t) = 2((ut, u) + (vt, v)) + 2β = 2β − 2I(u, v).

It follows from Lemma 2 and (2.5) that

M′′(t) > 4p(d − J(u, v)) + 2β ≥ 4p(d − J(u0, v0)) + 4p
∫ t

0
‖uτ‖22 + ‖vτ‖22dτ + 2β. (3.40)

From (3.39) and Hölder inequality, we have

(M′(t))2 = 4
[∫ t

0
(uτ, u) + (vτ, v)dτ + 2β(t + γ)

]2

≤ 4
[∫ t

0
‖uτ‖2‖u‖2 + ‖vτ‖2‖v‖2dτ + 2β(t + γ)

]2

.

(3.41)

According to the inequality
xz + yw ≤ (x2 + y2)

1
2 (z2 + w2)

1
2 ,

by setting x = ‖uτ‖2, y = ‖vτ‖2, z = ‖u‖2, w = ‖v‖2 in (3.41), we get

(M′(t))2 ≤ 4
[∫ t

0
(‖uτ‖22 + ‖vτ‖22)

1
2 (‖u‖22 + ‖v‖22)

1
2 dτ + 2β(t + γ)

]2

.

By the Hölder inequality, we get

(M′(t))2 ≤ 4
[∫ t

0
(‖uτ‖22 + ‖vτ‖22)

1
2 (‖u‖22 + ‖v‖22)

1
2 dτ + 2β(t + γ)

]2

≤ 4

(∫ t

0
‖uτ‖22 + ‖vτ‖22dτ

) 1
2
(∫ t

0
‖u‖22 + ‖v‖22dτ

) 1
2

+ 2β(t + γ)


2

≤ 4
[∫ t

0
‖uτ‖22 + ‖vτ‖22dτ + β

] [∫ t

0
‖u‖22 + ‖v‖22dτdτ + β(t + γ)2

]
≤ 4M(t)

[∫ t

0
‖uτ‖22 + ‖vτ‖22dτ + β

]
.

(3.42)
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From (3.38), (3.40) and (3.42), we have

M(t)M′′(t) − p(M′(t))2 ≥ [4p(d − J(u0, v0)) − 2(2p − 1)β]M(t).

Restricting β to satisfy

0 < β ≤
2p(d − J(u0, v0))

2p − 1
, (3.43)

we have
M(t)M′′(t) − p(M′(t))2 ≥ 0, t ∈ [0,T1].

Define y(t) := M1−p(t) for t ∈ [0,T1], then by M(t) > 0,M′(t) > 0 we get

y′(t) = −(p − 1)M−p(t)M′(t) < 0,

y′′(t) = −(p − 1)M−p−1(t)
(
M′′(t)M(t) − p(M′(t))2

)
< 0

for all t ∈ [0,T1]. It follows from y′′(t) < 0 that

y(T1) − y(0) = y′(ξ)T1 < y′(0)T1, ξ ∈ (0,T1), (3.44)

where
y(0) = M1−p(0) > 0, y(T1) = M1−p(T1) > 0,

y′(0) = −(p − 1)M−p(0)M′(0) = 2(1 − p)βγM−p(0) < 0.

Combining (3.44) and the above inequalities, we can deduce

T1 ≤
y(T1)
y′(0)

−
y(0)
y′(0)

< −
y(0)
y′(0)

=
M(0)

2(p − 1)βγ
.

Then by the definition of M(t) and above inequality we have

T1 ≤
T (‖u0‖

2
2 + ‖v0‖

2
2) + βγ2

2(p − 1)βγ
=

γ

2(p − 1)
+
‖u0‖

2
2 + ‖v0‖

2
2

2(p − 1)βγ
T.

Hence, letting T1 → T , we get

T ≤
γ

2(p − 1)
+
‖u0‖

2
2 + ‖v0‖

2
2

2(p − 1)βγ
T. (3.45)

For any β satisfying (3.43), let γ be large enough such that

‖u0‖
2
2 + ‖v0‖

2
2

2(p − 1)β
< γ < +∞, (3.46)

then (3.45) lead to

T ≤
γ

2(p − 1)

(
1 −
‖u0‖

2
2 + ‖v0‖

2
2

2(p − 1)βγ

)−1

=
βγ2

2(p − 1)βγ − (‖u0‖
2
2 + ‖v0‖

2
2)
.
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Let

ρ(β, γ) =
βγ2

2(p − 1)βγ − (‖u0‖
2
2 + ‖v0‖

2
2)
,

then
T ≤ min

(β,γ)∈Φ
ρ(β, γ),

where Φ = {(β, γ) : β, γ satisfy (3.43) and (3.46) respectively}.
Since

ρ′β(β, γ) = −
γ2(‖u0‖

2
2 + ‖v0‖

2
2)(

2(p − 1)βγ − (‖u0‖
2
2 + ‖v0‖

2
2)
)2 < 0,

i.e., ρ(β, γ) is decreasing with respect to β. Then we have

min
(β,γ)∈Φ

ρ(β, γ) = ρ

(
2p(d − J(u0, v0))

2p − 1
, γ

)
:= ρ1(γ),

where

ρ1(γ) =
2p(d − J(u0, v0))γ2

4p(p − 1)γ(d − J(u0, v0)) − (2p − 1)(‖u0‖
2
2 + ‖v0‖

2
2)

and
(2p − 1)(‖u0‖

2
2 + ‖v0‖

2
2)

4p(p − 1)(d − J(u0, v0))
< γ < +∞.

It is easy to get that ρ1(γ) achieves its minimum at

γ1 =
(2p − 1)(‖u0‖

2
2 + ‖v0‖

2
2)

2p(p − 1)(d − J(u0, v0))
,

and

ρ1(γ1) =
(2p − 1)(‖u0‖

2
2 + ‖v0‖

2
2)

2p(p − 1)2(d − J(u0, v0))
.

Thus, we have

T ≤
(2p − 1)(‖u0‖

2
2 + ‖v0‖

2
2)

2p(p − 1)2(d − J(u0, v0))
.

The proof of Theorem 2 is complete.

4. Critical initial energy J(u0, v0) = d

In this section, we prove global existence and blow up at finite time of solutions for problem (1.1)
with the initial energy J(u0, v0) = d.

Theorem 3. Assume (u0, v0) ∈ H1
0(Ω) × H1

0(Ω) and (1.2) hold. If J(u0, v0) = d and I(u0, v0) ≥ 0, then
the problem (1.1) has a global solution (u(t), v(t)) ∈ L∞(0,+∞; H1

0(Ω) × H1
0(Ω)) with (ut(t), vt(t)) ∈

L2(0,+∞; L2(Ω) × L2(Ω)) and (u(t), v(t)) ∈ W = W ∪ ∂W for 0 ≤ t < ∞.
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Proof. Since J(u0, v0) = d, then (u0, v0) , (0, 0). Let λm = 1 − 1
m , (u0m, v0m) = λm(u0, v0), m = 1, 2, · · ·,

and consider the following problem:

umt − ∆um = |vm|
p|um|

p−2um log(|umvm|), x ∈ Ω, t > 0,
vmt − ∆vm = |um|

p|vm|
p−2vm log(|umvm|), x ∈ Ω, t > 0,

um(x, 0) = u0m(x), x ∈ Ω,

vm(x, 0) = v0m(x), x ∈ Ω,

um(x, t) = vm(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ].

(4.1)

By I(u0, v0) ≥ 0 and Lemma 1, there exists a unique λ∗ ≥ 1 such that I(λ∗u0, λ
∗v0) = 0. Due to the

λm < 1 < λ∗, we get I(λmu0, λmv0) > 0, J(λmu0, λmv0) < J(u0, v0) = d. From Theorem 1, it follows
that for each m problem (4.1) admits a global solution (um(t), vm(t)) ∈ L∞(0,+∞; H1

0(Ω) × H1
0(Ω)) with

(umt(t), vmt(t)) ∈ L2(0,+∞; L2(Ω) × L2(Ω)) with the initial data

um(0) = u0m → u0 in H1
0(Ω) as m→ +∞.

Furthermore, we have (um(t), vm(t)) ∈ W for 0 ≤ t < +∞,

(umt,w1) + (∇um,∇w1) =
(
|vm|

p|um|
p−2um log(|umvm|),w1

)
, ∀w1 ∈ H1

0(Ω), 0 ≤ t < +∞,

(vmt,w2) + (∇vm,∇w2) =
(
|um|

p|vm|
p−2vm log(|umvm|),w2

)
, ∀w2 ∈ H1

0(Ω), 0 ≤ t < +∞,

and ∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2 dτ + J (um, vm) ≤ J (u0m, v0m) < d, 0 6 t < +∞. (4.2)

From (4.2) and

J(um(t), vm(t)) =
p − 1
2p

(
‖um(t)‖2H1

0 (Ω) + ‖vm(t)‖2H1
0 (Ω)

)
+

1
p2 ‖vm(t)‖p

p +
1

2p
I(um(t), vm(t)),

we obtain∫ t

0
‖umτ‖

2
2 + ‖vmτ‖

2
2dτ +

p − 1
2p

(
‖um(t)‖2H1

0 (Ω) + ‖vm(t)‖2H1
0 (Ω)

)
+

1
p2
‖um(t)vm(t)‖p

p < d, 0 6 t < +∞.

The remainder of the proof is similar to that in the proof of Theorem 1.
The proof of Theorem 3 is complete.

Theorem 4. Assume (u0, v0) ∈ H1
0(Ω) × H1

0(Ω) and (1.2) hold. If J(u0, v0) = d and I(u0, v0) < 0, then
the weak solution (u(x, t), v(x, t)) of the problem (1.1) blows up in finite time, i.e., there exists a T > 0
such that

lim
t→T

∫ t

0
‖u‖22 + ‖v‖22dτ = +∞.

Proof. By contradiction, we suppose that (u(t), v(t)) is a global weak solution of problem (1.1), then
Tmax = +∞. Let

G(t) =

∫ t

0
‖u‖22 + ‖v‖22dτ.
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Taking into account to (3.35) still holds, combining the fact J(u0, v0) = d, we have

G(t)G′′(t) − p(G′(t))2 ≥
(
(p − 1)cG(t) − 2p(‖u0‖

2
2 + ‖v0‖

2
2)
)
G′(t)

+
(
(p − 1)cG′(t) − 4pd

)
G(t).

(4.3)

From continuities of J(u, v) and I(u, v) with respect to t, we know that there exists a sufficient small
t1 ∈ (0,+∞) such that J(u(t1), v(t1)) > 0 and I(u, v) < 0 for 0 < t < t1. By (ut, u) + (vt, v) = −I(u, v), we
have (ut, u) + (vt, v) > 0 and ‖ut‖

2
2 + ‖vt‖

2
2 > 0 for t ∈ [0, t1]. From (2.5), we have 0 < J(u(t1), v(t1)) ≤

d −
∫ t1

0
(‖ut‖

2
2 + ‖vt‖

2
2)dt < d. Hence we take t = t1 as the initial time, and obtain (u(t1), v(t1)) ∈ V. From

Lemma 3 we have I(u(t), v(t)) < 0 for t1 ≤ t < +∞. Thus from Lemma 2 one has

− 2I(u(t), v(t)) > 4p(d − J(u(t), v(t))), t1 ≤ t < +∞. (4.4)

Combing (4.4) and (2.5) we get

G′′(t) = −2I(u, v) > 4p(d − J(u, v)) ≥ 4p(d − J(u(t1), v(t1))) := C2 > 0, t1 ≤ t < +∞

and
G′(t) ≥ C2(t − t1) + G′(t1) = C2(t − t1), t1 ≤ t < +∞,

G(t) ≥
1
2

C22t2 −C2t1t + G(t1), t1 ≤ t < +∞.

Hence for sufficiently large t, we have

(p − 1)cG(t) > 2p(‖u0‖
2
2 + ‖v0|

2
2) and (p − 1)cG′(t) > 4pd. (4.5)

Combining (4.3) with (4.5), we get

G(t)G′′(t) − p(G′(t))2 ≥
(
(P − 1)cG(t) − 2p(‖u0‖

2
2 + ‖v0‖

2
2)
)
G′(t)

+
(
(p − 1)cG′(t) − 4pd

)
G(t) > 0,

for sufficiently large t. Then similar to the proof of Theorem 2, i.e., there exists a finite time T > 0
such that limt→T

∫ t

0
‖u‖22 + ‖v‖22dτ = +∞.

The proof of Theorem 4 is complete.

5. High initial energy J(u0, v0) > d

In this section, we investigate the conditions that ensure the global existence or blow up of solution
for problem (1.1) with the initial energy J(u0, v0) > d.

Theorem 5. For any α ∈ (d,+∞), the following conclusions hold.
(i) If (u0, v0) ∈ Φα, then the solution of the problem (1.1) exists globally and (u(t), v(t)) → (0, 0), as
t → ∞;
(ii) If (u0, v0) ∈ Ψα, then the solution of the problem (1.1) blows up in finite or infinite time, where

Φα = N+ ∩ {(u(t), v(t)) ∈ H1
0 (Ω) × H1

0(Ω)|
1
2

(‖u‖22 + ‖v‖22) < λα, d < J(u, v) 6 α}, (5.1)
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Ψα = N− ∩ {(u(t), v(t)) ∈ H1
0 (Ω) × H1

0(Ω)|
1
2

(‖u‖22 + ‖v‖22) > Λα, d < J(u, v) 6 α}, (5.2)

and

λα = inf{
1
2

(‖u‖22 + ‖v‖22)|(u, v) ∈ Nα}, Λα = sup{
1
2

(‖u‖22 + ‖v‖22)|(u, v) ∈ Nα} for all α > d.

Proof. (i) Assume that (u0, v0) ∈ Φα, then by the definition of Φα and the monotonicity property of λα,
we have (u0, v0) ∈ N+, d < J(u0, v0) ≤ α and

1
2

(‖u0‖
2
2 + ‖v0‖

2
2) < λα ≤ λJ(u0,v0). (5.3)

We claim that (u(t), v(t)) ∈ N+. By contradiction, there exists a t0 ∈ (0,T ) such that (u(t), v(t)) ∈ N+

for t ∈ [0, t0) and (u(t0), v(t0)) ∈ N . By Lemma 4, we have

1
2

d
dt

(‖u‖22 + ‖v‖22) = −I(u, v). (5.4)

From the definition of N+ and (5.4), we know that ‖u‖22 + ‖v‖22 is strictly decreasing on [0, t0). On the
other hand, by (2.5), we know that J(u, v) is nonincreasing with respect to t. Therefore, we have

J(u, v) ≤ J(u0, v0) for all t ∈ [0,T ).

From (5.3), we get
1
2

(‖u(t0)‖22 + ‖v(t0)‖22) <
1
2

(‖u0‖
2
2 + ‖v0‖

2
2) < λJ(u0,v0). (5.5)

By (u(t0), v(t0)) ∈ N and (5.3), we get (u(t0), v(t0)) ∈ NJ(u0,v0). According to the definition of λJ(u0,v0),
we have

λJ(u0,v0) = inf{
1
2

(‖u‖22 + ‖v‖22)|(u, v) ∈ NJ(u0,v0)} ≤
1
2

(‖u(t0)‖22 + ‖v(t0)‖22),

which contradicts with (5.5) and prove the claim. Hence, we have (u(t), v(t)) ∈ N+ for all t ∈ [0,T )
and (u(t), v(t)) ∈ JJ(u0,v0), i.e., (u(t), v(t)) ∈ JJ(u0,v0) ∩N+ for all t ∈ [0,T ). From the definition ofNα, we
have (‖u‖2

H1
0 (Ω)

+‖v‖2
H1

0 (Ω)
) < 2p

p−2 J(u0, v0), ∀t ∈ [0,T ), so T = +∞. It indicates that (u(t), v(t)) is bounded

uniformly in H1
0(Ω) × H1

0(Ω). Hence, ω-limit set is not an empty set.
Next, for any (ω, ϕ) ∈ ω(u0, v0), by the above discussions, we get

J(ω, ϕ) ≤ J(u0, v0) and
1
2

(‖ω‖22 + ‖ϕ‖22) < λJ(u0,v0).

According to first inequality, it implies that (ω, ϕ) ∈ JJ(u0,v0). According to the second inequality and
the definition of λJ(u0,v0), we know that (ω, ϕ) < NJ(u0,v0). Since NJ(u0,v0) = N ∩ JJ(u0,v0), we obtain
(ω, ϕ) < N . Hence, ω(u0, v0) ∩ N = φ. As N include the nontrivial solutions of the problem (1.1), we
have ω(u0, v0) = (0, 0), i.e., (u(t), v(t))→ (0, 0), as t → ∞.

(ii) If (u0, v0) ∈ Ψα, by the definition of Ψα, it is clear that (u0, v0) ∈ N− and d < J(u0, v0) ≤ α.
Combing with the monotonicity of Λα, we get

1
2

(‖u0‖
2
2 + ‖v0‖

2
2) > Λα ≥ ΛJ(u0,v0).
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We claim that (u(t), v(t)) ∈ N− for t ∈ [0,T ). By contradiction, if there exists a t1 ∈ (0,T ) such that
(u(t), v(t)) ∈ N− for t ∈ [0, t1) and (u(t1), v(t1)) ∈ N . By Lemma 4, we have

1
2

d
dt

(‖u‖22 + ‖v‖22) = −I(u, v).

Then by the definition of N−, we deduce that 1
2 (‖u‖22 + ‖v‖22) is strictly increasing on [0, t1). It along

with (2.5) yields

1
2

(‖u(t1)‖22 + ‖v(t1)‖22) >
1
2

(‖u0‖
2
2 + ‖v0‖

2
2) > ΛJ(u0,v0), J(u(t1), v(t1)) ≤ J(u0, v0). (5.6)

By (u(t1), v(t1)) ∈ N and (5.6), we get (u(t1), v(t1)) ∈ NJ(u0,v0). Hence, it follows from the definition of
ΛJ(u0,v0) that

ΛJ(u0,v0) = sup{
1
2

(‖u‖22 + ‖v‖22)|(u, v) ∈ NJ(u0,v0)} ≥
1
2

(‖u(t1)‖22 + ‖v(t1)‖22),

which is incompatible with (5.6), so we get (u(t), v(t)) ∈ JJ(u0,v0) ∩ N− for all t ∈ [0,T ).
Next, we assume that (u(t), v(t)) exists globally, i.e., T = +∞. For every (ω, ϕ) ∈ ω(u0, v0), by the

above discussions, we get

J(ω, ϕ) ≤ J(u0, v0) and
1
2

(‖ω‖22 + ‖ϕ‖22) > ΛJ(u0,v0).

According to first inequality, this shows (ω, ϕ) ∈ JJ(u0,v0). According to the second inequality and
the definition of ΛJ(u0,v0), we know that (ω, ϕ) < NJ(u0,v0). Since NJ(u0,v0) = N ∩ JJ(u0,v0), we obtain
(ω, ϕ) < N . Hence, ω(u0, v0)∩N = φ. However, since dist(0,N−) > 0, we also have (0, 0) < ω(u0, v0).
Thus, ω(u0, v0) = ∅, it contraries to the assumption that (u(t), v(t)) is a global solution, then T < ∞.

The proof of Theorem 5 is complete.
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