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Abstract: Measles is one of the highly contagious human viral diseases. Despite the availability of
vaccines, measles outbreak frequently occurs in many places, including Nepal, partly due to the lack of
compliance with vaccination. In this study, we develop a novel transmission dynamics model to evalu-
ate the effects of monitored vaccination programs to control and eliminate measles. We use our model,
parameterized with the data from the measles outbreak in Nepal, to calculate the vaccinated reproduc-
tion number, Rv, of measles in Nepal. We perform model analyses to establish the global asymptotic
stability of the disease-free equilibrium point for Rv < 1 and the uniform persistence of the disease for
Rv > 1. Moreover, we perform model simulations to identify monitored vaccination strategies for the
successful control of measles in Nepal. Our model predicts that the monitored vaccination programs
can help control the potential resurgence of the disease.
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1. Introduction

Measles is one of the acute and highly contagious viral diseases found as early as the 7th century [1].
It is transmitted either by direct contact with infectious droplets or by airborne spread [2, 3], mainly
among children under five years. Before developing vaccines, measles epidemics used to occur every
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2 to 5 years, resulting in an annual 20 to 30 million infections and at least 1 million deaths worldwide
[4, 5]. Measles incidence and related deaths decreased globally during 2000–2016 [6, 7]. However,
the measles cases have begun to increase again after 2017. The number of cases in 2019 reached the
highest in the past 23 years. The death due to measles also increased by 22% in 2017 and climbed up
to 50% in 2019 [6, 7].

Measles can be successfully prevented with two doses of vaccines received at the recommended
ages of 9 months (first dose) and 15 months (second dose) [8]. However, due to various reasons, such
as poor health systems, lack of access to vaccination, and fear or skepticism about vaccines, the proper
implementation of vaccination programs has been a huge issue. Improper and insufficient vaccines
have presumably caused frequent measles outbreaks in developed and developing countries, including
Nepal. In 2017, the global coverage of the vaccine’s first dose was about 85%, significantly lower
than the 95% recommended by the WHO to achieve herd immunity [5]. Even among developed coun-
tries, such as the United States, France, United Kingdom, Argentina, Italy, Japan, Canada, Germany,
Australia, and Chile, the vaccine coverage has not met the WHO-recommended threshold for herd im-
munity [5]. Efforts by the anti-vaccine activists in the world [9, 10] might have partially contributed
to the low vaccine coverage and eventually to occasional outbreaks, such as the one in New York in
2018–2019 [11, 12].

In Nepal, the monovalent vaccine, known as MCV1, against measles was first introduced in three
districts in 1979. It was later expanded to the whole country in 1989 [13–15]. Measles was one of the
major causes of childhood death before 2007, presumably because of the low coverage of MCV1. After
the MCV1 coverage was increased from 81% to 88% during 2007-2014 along with Supplementary
Immunization Activities (SIAs), the suspected measles incidence declined by 13% [14–19]. However,
the measles cases began to increase in Nepal in 2017 (99, 247, and 430 measles cases in 2017, 2018,
and 2019, respectively) [20, 21]. In 2019 measles outbreaks occurred in Morang, Dang, Kapilvastu,
Kathmandu, and Lalitpur districts [20–23]. Notably, a frequent measles outbreak has been reported
in districts with low vaccine coverage like Kapilvastu, where 95% of children were not vaccinated
in 2016 [24–26]. Even in vaccinated people, the protection level may be reduced due to improper
vaccination timing and incomplete doses. Monitored vaccination programs may help achieve success
in avoiding measles epidemics. Such monitored vaccination programs promote the timely completion
of the vaccination, thereby increasing the chance of complete immunity gain. Mathematical modeling
is a valuable tool for identifying the ideal monitored vaccination programs in the context of Nepal.

Many SIR (susceptible, infected, recovered) based deterministic models, including age-structure
and immigration-impact, have already been developed for the transmission dynamics of measles
[27–32]. Moreover, some SEIR (susceptible, exposed, infected, recovered) based models [33–36]
have been developed, including continuous-time linear vaccination-based control strategy, meta-
populations, and immunization in pregnant women. These basic models have also been extended to
include immunity, vaccination, age-dependent vaccination, time-dependent vaccine efficacy, therapy,
quarantine, and treatment [2, 37–44]. However, modeling has not been extensively explored to study
monitored vaccination programs, especially in the context of Nepal.

Regarding measles in Nepal, some descriptive, analytic, and retrospective studies [14, 45–47] have
provided insights into the progress in measles control, the Case Fatality Rate (CFR) of measles, and
the genetic type of the Asian measles virus. Many of these studies have incorporated the vaccination
but lack a monitored vaccination program. In this study, we develop a novel deterministic model,
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Figure 1. Schematic diagram of the transmission dynamics of measles.

incorporating monitored vaccination programs with two classes of vaccinated individuals, one under
the monitored program and another without the monitored program. The model is validated using two-
decade-long measles data from Nepal. Our model analysis establishes the local and global stability
of disease-free equilibrium, the existence of endemic equilibrium, and the uniform persistence of the
disease. Furthermore, we carry out model simulations to properly evaluate the impact of monitored
vaccination programs on the short-term and long-term trend of measles transmission in Nepal.

2. Mathematical model

We develop a transmission dynamics model of measles for the population that includes all the new-
borns and children under 15 years. As mentioned earlier, implementing a proper vaccination program
is often difficult, particularly for children whose parents have poor health knowledge and have fear or
skepticism about vaccines. To improve the effectiveness of vaccination programs, we introduce a mon-
itored vaccination program into our model. The program mainly focuses on asserting the completion
of vaccines timely and accurately by children under this program. Because of extra care and regular
follow-up, the children under this program are expected to have less susceptibility to infection and a
higher rate of achieving immunity than those under regular (un-monitored) vaccination programs. To
formulate the model, we divide the total population considered (N) into six mutually exclusive com-
partments: susceptible (S), un-monitored vaccinated (UV ), monitored vaccinated (MV ), exposed (E),
infectious (I), and immune (IM).

The schematic diagram showing the flow of individuals from and to the compartments during the
measles transmission dynamics is presented in Figure 1. The dynamical system equations representing
the model are as follows:

dS
dt

= Λ−
(

β I
N

+µ +α1 +α2

)
S, (2.1)

dUV

dt
= α1S−

(
γ1 +µ +

(1− ε1)β I
N

)
UV , (2.2)

dMV

dt
= α2S−

(
γ2 +µ +

(1− ε2)β I
N

)
MV , (2.3)
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dE
dt

=
β IS
N

+
(1− ε1)β IUV

N
+

(1− ε2)β IMV

N
− (µ +σ)E, (2.4)

dI
dt

= σE − (µ +η +δ )I, (2.5)

dIM

dt
= γ1UV + γ2MV +ηI −µIM. (2.6)

Here, Λ represents the recruitment rate of susceptible, i.e., newly born children. The measles infection
occurs with the per capita transmission rate of β I/N, transferring susceptible individuals to the exposed
class. The parameters σ represents the rate of progression of individuals from the exposed class to the
infectious class, and η is the recovery rate of infectious individuals from the disease. Since only the
children up to the age of 15 years are considered in the study, we assumed µ is the rate at which the
children become older than 15 years leaving from the dynamics. We take δ to represent the disease-
induced death rate.

The parameters α1 and α2 represent the rate of un-monitored vaccination and the monitored vaccina-
tion, respectively. As discussed in Pantha et al. [49], for practical purposes, the values of α1 and α2 for
un-monitored and monitored vaccination programs aiming to cover ζ1% and ζ2% of children in t1 and
t2 years, respectively, can be estimated using α1 =− ln(1−ζ1/100)/t1 and α2 =− ln(1−ζ2/100)/t2,
respectively. The individual in the monitored vaccinated group is expected to be properly monitored
to ensure the timely completion of the vaccination. In contrast, individuals in the un-monitored vac-
cinated group have more likelihood of not completing the vaccination in time, possibly delaying the
gain of complete immunity. Therefore, we assumed that the un-monitored and monitored vaccinated
children become immune at different rates, γ1 and γ2, respectively. Our model assumes individuals
recovered from natural infection and those completing vaccination have similar immunity. Therefore,
we include both of them in the same class, namely the immune class (IM). The vaccinated children may
also be infected, but at lesser infectivity rates (1−ε1)β and (1−ε2)β for un-monitored and monitored
vaccinated, respectively. Since the monitoring service providers are expected to counsel individuals in
the monitored vaccinated program for timely completion of vaccine and prevention practices, we also
expect 0 ≤ ε1 < ε2 ≤ 1.

3. Parameter estimation, data fitting, and model validation

3.1. Data source

The publicly available data used in this work is obtained from the official site of the World Health
Organization (WHO) [48]. The data includes the reported measles cases in Nepal from 2000 to 2019.
Since 5% of the reported cases belong to the aged 15 and above [48], we deducted 5% of the cases
from the data. The Crude Birth Rate (CBR) and Infant Mortality Rate (IMR) of Nepal are used from
the “Nepal population growth rate 1950–2020” [50].

3.2. Parameter estimation

Nepal’s population under fifteen years was 9,807,000 in 2000 (taken as the base year) and 8,460,000
in 2019 [48]. The actual population size in individual S, UV , MV , E, I, IM, classes is not available.
It is recorded that 77% of the population was vaccinated in 2000 (the base year) [48]. For our base
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case simulation, among the unvaccinated 23% of the total population, we assumed that 22% were in
the susceptible class (S(0) = 2,157,540). We took 30% of the vaccinated population were in the un-
monitored vaccinated class (UV (0) = 2,206,575). Since the monitored vaccination program was not
present in 2000, we took MV (0) = 0. From the data, the recorded cases were 8927 (after reducing 5%
over 15 years from the total recorded 9397), among which we assume E(0) = 300 in the exposed class
and I(0) = 340 in the infectious class. The remaining population (N(0)−S(0)−UV (0)−E(0)− I(0))
is included in the immune class (IM(0) = 5,442,245).

The recruitment rate (Λ = 612,328) is the annual average birth rate, which is calculated by using
the Crude Birth Rate (CBR) and Infant Mortality Rate (IMR) from the 2000-2019 data [50]. Since only
the population below fifteen years is considered in the study, we used µ = 1/15 = 0.0667 per year. It
is given that the incubation period of measles is 10–14 days on average [4, 51], and thus the disease
progression rate from the exposed class to the infectious class is taken as σ = 1/12× 365 ≈ 30 per
year. Also, since it takes about 18 days (range between 7 to 23 days) to recover from the disease [51],
we used η = 1/18×365 ≈ 20 per year. As per WHO guidelines, children are vaccinated with the first
dose at the age of 9 months and the second dose at 15 months [8], giving a six-month interval between
the two doses. Since the monitored vaccinated individuals (MV ) are expected to complete them in
time, we took γ2 = 0.5 per year. From the data [52, 53], we estimated the average disease-induced
death rate to be δ = 0.01 per year. The remaining parameters of the model, β , α1, α2, γ1, ε1, and ε2,
are estimated by fitting the model to the measles case data from Nepal.

3.3. Data fitting and model validation

From the model, the yearly new infections at time t can be calculated using h(t) = σE(t), which
we obtained using the numerical solutions of the system (2.1–2.6). Then we estimated the parameters
with the help of the nonlinear regression method [54], which minimizes the following sum of the square
residuals:

n

∑
k=1

(hk − h̄k)
2,

where hk denotes the model predicted yearly new infection, h̄k denotes yearly new infection data,
and n is the number of data points used for the model fitting. For each estimated parameter, we also
computed the confidence limits using the standard errors from the sensitivity matrix (S ) based on the
complex-step derivative technique described in the previous study [55–58]. Our model is consistent
with the yearly incidence cases observed in Nepal (Figure 2). In addition, we also show that the model
prediction of the cumulative cases agrees well with the cumulative data, thereby validating our model
to describe the measles epidemic in Nepal.

We note that while making all six parameters free in the data fitting process, we obtained negative
lower limits of some confidence intervals. To tackle this issue, we needed to fix some of the parameters
as done previously [55–57]. Since the parameters α2 and ε2 are the two least sensitive parameters
identified from the sensitivity matrix, S , we fixed α2 = 0.02 per year and ε2 = 0.90 at their best
estimate values. We also note that taking the different values of α2 and ε2 did not significantly affect
estimates of other parameters, as expected, because of the least sensitivity. Then, we estimated the
remaining only four parameters, β , α1, γ1, and ε1, from the further data fitting. Here the ratio of
the data to the free parameters is 5:1, which lies within the recommended range of 5:1 to 10:1 for a
reasonable parameter estimate [59]. Furthermore, to analyze the identifiability of the estimated four
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parameters, we use the sensitivity-based method [60], in which we obtained the rank of the matrix
S T S . For our case with four parameters estimated, the obtained full rank (Rank = 4) of the matrix
S T S confirms that these four parameters are practically identifiable for the model and the data used
in this study. All the computations were carried out in MATLAB (The Math Works. Inc.) using its
various routines, including “ode45” (ODE solver) and “fmincon” (minimizer).

Our estimates show that the transmission rate (β ), the rate of un-monitored vaccination (α1), the
rate of recovery from un-monitored vaccination (γ1), and the effectiveness of un-monitored vaccination
(ε1) are 63.0238 (95% CI: 63.0188–63.0288), 0.31 (95% CI: 0.0902–0.5298), 0.1 (95% CI: 0.0858–
0.1142), and 0.5082 (95% CI: 0.4926–0.5238), respectively (Table 1). We note that the confidence
interval of the parameter α1 appears to be large compared to other parameters for this particular data
set. However, we consider this parameter a control parameter and vary widely for the analysis of the
vaccination program; thus, one set of confidence intervals does not significantly impact the main results
of our study.

(a) (b)

Figure 2. Data fitting and Model validation. (a) The recorded yearly cases of measles in
Nepal (dot) along with the best fit of the model (line). (b) The cumulative recorded cases of
measles in Nepal (dot) along with the model prediction of the cumulative cases (line).

4. Model analysis

4.1. Basic properties of model

We first establish the biological or epidemiological validation of the model by proving the non-
negativity and the boundedness of the solution of the system of equations.
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Table 1. Values of estimated and fixed parameters.

Parameters Description Baseline Value Confidence Interval Sources
(yr)−1

α2 Monitored 0.02 Fixed Assumed
vaccination rate

α1 Un-monitored 0.31 [0.0902 0.5298] Data Fitting
vaccination rate

β Transmission rate 63.02 [63.01 63.03] Data Fitting
ε1 Effectiveness of 0.51 (Dim.less) [0.49 0.52] Data Fitting

un-monitored vacc.
ε2 Effectiveness of 0.9 (Dim.less) Fixed Assumed

monitored vacc.
µ Removed rate 0.0667 Fixed Assumed
γ1 UV immunity rate 0.1 [0.086 0.12] Data Fitting
γ2 MV immuninity rate 0.5 Fixed Assumed
σ Disease progress rate 30 Fixed [4]
η Recovery rate 20 Fixed [4]
δ Disease-induced 0.01 Fixed [52]

death rate

4.1.1. Positivity of the solutions

Theorem 4.1. If S(0)> 0, UV (0)≥ 0, MV (0)≥ 0, E(0)≥ 0, I(0)≥ 0, and IM(0)≥ 0, then the set of
solution {S(t), UV (t), MV (t), E(t), I(t), IM(t)} of the system (2.1–2.6) is positive for all t ≥ 0.

Proof. From (2.1),
dS
dt

> −(β I/N + µ + α1 + α2)S, which implies S(t) >

S(0)exp
(
−
∫ t

0
(β I(s)/N(s)+µ +α1 +α2)ds

)
. Since S(0) > 0, S(t) > 0, ∀t > 0 confirming

the positivity of S(t). Similarly from (2.2–2.6), we have
dUV

dt
≥ −(γ1 +µ +(1− ε1)β I/N)UV ,

dMV

dt
≥ −(µ + γ2 + (1 − ε2)β I/N)MV ,

dE
dt

≥ −(µ + σ)E,
dI
dt

≥ −(µ + η + δ )I, and

dIM

dt
≥ −µIM. Then we get UV (t) ≥ UV (0)exp

(
−
∫ t

0
((1− ε1)β I(s)/N(s)+µ + γ1)ds

)
≥ 0,

MV (t)≥ MV (0)exp
(
−
∫ t

0
((1− ε2) β I(s)/N(s)+µ + γ2)ds

)
≥ 0, E(t)≥ E(0)exp(−(µ +σ)t)≥ 0,

I(t)≥ I(0)exp(−(µ +η +δ )t)≥ 0, and IM(t)≥ IM(0)exp(−µt)≥ 0,∀t > 0 for UV (0)≥ 0, MV (0)≥
0, E(0) ≥ 0, I(0) ≥ 0, and IM(0) ≥ 0. Therefore, UV (t), MV (t), E(t), I(t), IM(t) ≥ 0, ∀t > 0,
showing the positivity of the solution set of the system (2.1–2.6). □

4.1.2. Boundedness and invariant region

Adding all differential equations (2.1–2.6), we get dN/dt =Λ−µN−δ I ≤Λ−µN, which provides
N(t) ≤ N(0)e−µt +Λ/µ(1 − e−µt) and limsup

t→∞

N(t) ≤ Λ/µ , showing that the total population is
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ultimately bounded by Λ/µ . Hence the solution set bounded by Λ/µ is positively invariant in the
feasible region

Ω =
{
(S(t), UV (t), MV (t), E(t), I(t), IM(t)) ∈ R6

+ : N(t)≤ Λ/µ

}
.

4.2. Existence of Equilibria

In this section we discuss the disease-free equilibrium point (DFE) and the endemic equilibrium
point of the system (2.1–2.6).

4.2.1. Disease free equilibrium point and formulation of the vaccinated reproduction number

Setting E = 0 and I = 0 in the system, we obtain DFE: E0 = (S0, U0
V , M0

V , 0, 0, I0
M), where

S0 =
Λ

α1 +α2 +µ
, U0

V =
α1Λ

(α1 +α2 +µ)(γ1 +µ)
, M0

V =
α2Λ

(α1 +α2 +µ)(γ2 +µ)
, and

I0
M =

Λ(α1γ1(µ + γ2)+α2γ2(µ + γ1))

µ (α1 +α2 +µ)(γ1 +µ)(γ2 +µ)
. Note that our model implies non-zero immune class I0

M at the

DFE due to the immunity gained through vaccination.
The vaccinated reproduction number, denoted by Rv, is defined as the average number of secondary

cases generated by a single infectious case introduced into the mixed population with susceptible and
vaccinated status. Here we formulate the vaccinated reproduction number using the Next Generation
method [61–65].

Following the Next Generation Matrix method [62], we divide the system into two groups, infected
x⃗ = (xi, i = 1,2) = (E, I) and uninfected y⃗ = (y j, j = 1,2,3,4) = (S, UV , MV , IM), as follows:

ẋi = fi(⃗x, y⃗) = Fi(⃗x, y⃗)−Vi(⃗x, y⃗), i = 1, 2 and ẏ j = g j (⃗x, y⃗), j = 1,2,3,4, (4.1)

where Fi(⃗x, y⃗) is the rate of appearance of new infections in the compartment i, and Vi(⃗x, y⃗) is the
difference between the transfer of individuals out of and into the compartment i (i = 1,2). Here we
have

F =

(
(βS+(1− ε1) βUV +(1− ε2) βMV )I/N

0

)
and V =

(
(µ +σ)E

−σE +(µ +η +δ )I

)
.

It is easy to verify that Fi and Vi satisfy the conditions A(1)–A(5) of [62]. As the process provided
in [62], we obtained the Jacobians of F and V at the disease free equilibrium point (DF (E0) =
F, DV (E0) =V ):

F =

(
0 (βS0 +(1− ε1) βU0

V +(1− ε2) βM0
V )/N0

0 0

)
and V =

(
µ +σ 0
−σ δ +η +µ

)
.

Clearly, F is non-negative and V is non singular M-matrix. The next generation matrix for our model
is given by:

FV−1 =

 σ
(
βS0 +(1− ε1) βU0

V +(1− ε2) βM0
V
)

N0(µ +σ)(δ +η +µ)

(βS0 +(1− ε1) βU0
V +(1− ε2) βM0

V )

N0(δ +η +µ)
0 0

 .
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Then the vaccinated reproduction number Rv is given by:

Rv = ρ(FV−1) =
βσ

(
S0 +(1− ε1)U0

V +(1− ε2)M0
V
)

N0(µ +σ)(δ +η +µ)
.

Using the expression of DFE obtained above, we get

Rv =
β µσ (α1 (1− ε1)(γ2 +µ)+(γ1 +µ)(α2 (1− ε2)+ γ2 +µ))

(α1 +α2 +µ)(γ1 +µ)(γ2 +µ)(µ +σ)(δ +η +µ)
.

Furthermore, as the system (4.1) satisfies all the conditions of [62, Theorem 2], it follows the local
stability of the disease-free equilibrium for RV < 1. Moreover, for the verification purpose, we also
prove the local stability of DFE by showing the negative real part of eigenvalues in Subsection 4.3.1
below.

4.2.2. Endemic equilibrium point

Let

λ
∗ = β I∗/(S∗+U∗

v +M∗
v +E∗+ I∗+ I∗M). (4.2)

Then solving the full system (2.1–2.6) equated to zero, we get

S∗ =
Λ

α1 +α2 +λ ∗+µ
,

U∗
V =

α1Λ

Q1 (α1 +α2 +λ ∗+µ)
,

M∗
V =

α2Λ

(γ2 +µ)(α1 +α2 +µ +λ ∗(1− ε2))
,

E∗ =
λ ∗Λ(α1(1− ε1)(γ2 +λ ∗(1− ε2)+µ)+Q1 (γ2 +(α2 +λ ∗)(1− ε2)+µ))

Q1(µ +σ)(α1 +α2 +λ ∗+µ)(γ2 +λ ∗(1− ε2)+µ)
,

I∗ =
λ ∗Λσ (Q1 (γ2 +(α2 +λ ∗)(1− ε2)+µ)+α1(1− ε1)(γ2 +λ ∗(1− ε2)+µ))

Q1(µ +σ)(α1 +α2 +λ ∗+µ)(δ +η +µ)(γ2 +λ ∗(1− ε2)+µ)
,

I∗M =
Λ(P1 +P2P3)

Q1µ(µ +σ)(α1 +α2 +λ ∗+µ)(δ +η +µ)(γ2 +λ ∗(1− ε2)+µ)
. (4.3)

where,
Q1 = (γ1 +λ

∗(1− ε1)+µ) ,

P1 = α1 (γ2 +(1− ε2)+µ)(η(1− ε1)λ
∗
σ − γ1(µ +σ)(δ +η +µ)) ,

P2 = (γ1 +λ
∗(1− ε1)+µ) ,

P3 = (α2 (γ2(µ +σ)(δ +η +µ)+ηλ
∗(1− ε2)σ)+ηλ

∗
σ (γ2 +λ

∗(1− ε2)+µ)) .

Substituting (4.3) into (4.2) and after some simplification, we obtain the following equation in terms
of λ ∗:

λ
∗(A3λ

∗3 +A2λ
∗2 +A1λ

∗+A0) = 0, (4.4)
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where,

A3 = (δ µ +(η +µ)(µ +σ))(1− ε1)(1− ε2),

A2 = (1− ε1)((1− ε2)P+α1Q+α2Q)+(1− ε2)Q(γ1 +µ)+Q(γ2 +µ) ,

A1 = (1− ε1)P(γ2 +µ)+(γ1 +µ)((1− ε2)(α1(µ +σ)(δ +η +µ)+P+α2Q)+Q(γ2 +µ))

+(1− ε1)(α2 ((γ2 +µ)(µ +σ)(δ +η +µ)−β (1− ε2)µσ)+α1 (Q(γ2 +µ)−β (1− ε2)µσ)) ,

A0 = (1−Rv)(α1 +α2 +µ)(γ1 +µ)(γ2 +µ)(µ +σ)(δ +η +µ),

P = µ ((δ +η +µ)(µ +σ)−βσ) ,

Q = δ µ +(η +µ)(µ +σ).

Note that λ ∗ = 0 corresponds to the disease-free equilibrium point, and the endemic equilibrium points
are given by the solutions of A3λ ∗3 +A2λ ∗2 +A1λ ∗+A0 = 0. Here, A3 > 0 and A0 < 0 for Rv > 1,
so the equation (4.4) has at least one positive root for Rv > 1. The positiveness of λ ∗ implies the
positiveness of I∗ and E∗. Thus, we conclude that if Rv > 1, the system (2.1–2.6) has at least one
endemic equilibrium point given by (4.3).

4.3. The global dynamics analysis

In this section, we first establish the local and global stability of the disease-free equilibrium when
Rv < 1 and then prove the persistence of the disease when Rv > 1.

4.3.1. Local stability analysis of the disease free equilibrium point

Theorem 4.2. The disease-free equilibrium point of the system (2.1–2.6) is locally asymptotically
stable if Rv < 1 and unstable if Rv > 1.

Proof. Jacobian of the system (2.1–2.6) at the disease free equilibrium point is J =

(
A3×3 B3×3
C3×3 D3×3

)
where,

A3×3 =

 −(α1 +α2 +µ) 0 0
α1 −(γ1 +µ) 0
α2 0 −(γ2 +µ)

 , B3×3 =

 0 −βS0/N0 0
0 −βU0

V (1− ε1)/N0 0
0 −βM0

V (1− ε2)/N0 0

 ,

C3×3 =

 0 0 0
0 0 0
0 γ1 γ2

 , D3×3 =

 −(µ +σ) β
(
S0 +U0

V (1− ε1)+M0
V (1− ε2)

)
/N0 0

σ −(δ +η +µ) 0
0 η −µ

 .

The eigenvalues of the matrix J are

λ1 =−µ, λ2 =−(α1 +α2 +µ) , λ3 =−(γ1 +µ) , λ4 =−(γ2 +µ) ,

λ5 =
1
2

(
−(δ +η +2µ +σ)−

√
(δ +η +2µ +σ)2 +4(Rv −1)(µ +σ)(δ +η +µ)

)
,

λ6 =
1
2

(
−(δ +η +2µ +σ)+

√
(δ +η +2µ +σ)2 +4(Rv −1)(µ +σ)(δ +η +µ)

)
. (4.5)

Since all the eigenvalues are negative if Rv < 1, E0 is locally asymptotically stable if Rv < 1. □
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4.4. Global stability of disease free equilibrium point

In the following theorem, we prove that Rv < 1 asserts the global stability of the DFE.

Theorem 4.3. If Rv < 1, the disease-free equilibrium point E0 of the system (2.1–2.5) is globally
asymptotically stable in R6.

Proof. The Jacobian corresponding to (2.4) and (2.5) at the disease-free equilibrium point E0 is

J0 =

 −µ −σ
βS0

N0 +
(1− ε1) βU0

V
N0 +

(1− ε2) βM0
V

N0

σ −(δ +η +µ)

 .

The spectral bound of J0 is defined as: s(J0) = max{Re(λ ) : λ is an eigenvalue of J0}. Using the theo-
rem 4.2, we conclude:

1. Rv = 1 if and only if s(J0) = 0.
2. Rv < 1 if and only if s(J0)< 0.
3. Rv > 1 if and only if s(J0)> 0.

If Rv < 1 then s(J0)< 0. Also, we can obtain a sufficiently small positive number γ such that s(Jγ)< 0,
where

Jγ =

 −µ −σ
β (S0 + γ)

Λ/µ − γ
+

(1− ε1)β (U0
V + γ)

Λ/µ − γ
+

(1− ε2)β (M0
V + γ)

Λ/µ − γ

σ − (δ +η +µ)

 .

From the subsections 4.1 and 4.2, N(t)→Λ/µ and S(t)→ S0 as t →∞ for all γ > 0. Therefore, there
exists t1 > 0 such that ∀t ≥ t1, we have S ≤ (S0 + γ), Uv ≤ (U0

v + γ), Mv ≤ (M0
v + γ), N ≥ (Λ/µ − γ).

From (2.4) and (2.5), it follows that

dE
dt

=
βS
N

I +
(1− ε1) βUV

N
I +

(1− ε2) βMV

N
I − (µ +σ)E

≤β (S0 + γ)

Λ/µ − γ
I +

(1− ε1) β (U0
V + γ)

Λ/µ − γ
I +

(1− ε2) β (M0
V + γ)

Λ/µ − γ
I − (µ +σ)E,

dI
dt

=σE − (µ +η +δ )I.

dE
dt

=
β (S0 + γ)

Λ/µ − γ
I +

(1− ε1) β (U0
V + γ)

Λ/µ − γ
I +

(1− ε2) β (M0
V + γ)

Λ/µ − γ
I − (µ +σ)E,

dI
dt

= σE − (µ +η +δ )I, ∀ t ≥ t1.
(4.6)

Clearly, the system (4.6) has the Jacobian Jγ , which is irreducible with non-negative off-diagonal ele-
ments. Then s(Jγ) is simple and associated with strongly positive eigenvector ṽ, ∀ t ≥ t1 [66]. For any
solution ψ(t) of the system (4.6) with non-negative initial value ψ(0), there is a sufficiently large pos-

itive number ζ > 0 such that (E(t1), I(t1))≤ ζ ṽ. It is easy to see that V (t) = ζ es(Jγ)(t − t1)ṽ,∀ t ≥ t1
is a solution of (4.6) with V (t1) = ζ ṽ. Then by the comparison principle [66, Theorem B.1], it follows
that (E(t), I(t))≤ ζ ṽ, ∀t ≥ t1. Since s(Jγ)< 0, we get

lim
t→∞

E(t) = 0, lim
t→∞

I(t) = 0,
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which implies that (2.1) is asymptotic to the following equation:

dS
dt

= Λ− (µ +α1 +α2)S,

⇒ S(t) =C1e−(µ +α1 +α2) t +
Λ

(µ +α1 +α2)

(
1− e−(µ +α1 +α2) t

)
, ∀t ≥ t1.

Hence, we get lim
t→∞

S(t) =
Λ

(µ +α1 +α2)
. Solving the system of differential equations (2.2 & 2.3)

together with the help of (2.1), we get

UV =
α1Λ

(α1 +α2 +µ)(γ1 +µ)
+c1e−r1t +c2e−r2t , MV =

α2Λ

(α1 +α2 +µ)(γ2 +µ)
+c3e−k1t +c4e−k2t ,

where,
r1 = k1 = α1 +α2 +µ, r2 = γ1 +µ, and k2 = γ2 +µ.

Thus, we get

lim
t→∞

UV (t) =
α1Λ

(µ +α1 +α2)(γ1 +µ)
, (4.7)

lim
t→∞

MV (t) =
α2Λ

(µ +α1 +α2)(γ2 +µ)
. (4.8)

In the limiting case, we can further verify that lim
t→∞

IM(t) = I0
M. Hence if Rv < 1, the disease-free

equilibrium point E0 of the system (2.1–2.5) is globally asymptotically stable. □

4.4.1. Uniform persistence

The disease is endemic if the system is uniformly persistent. The system (2.1–2.6) is said to be uni-
formly persistent if there exists ζ > 0 such that (S(t), UV (t), MV (t), E(t), I(t), IM(t)) ∈ Γ satisfying

lim
t→∞

Inf E ≥ ζ , lim
t→∞

Inf I ≥ ζ . (4.9)

Here it is enough to consider the reduced system (2.1-2.5). We first define the sets

Γ
o = {(S,UV ,MV ,E, I) ∈ R5 : I , 0 or E , 0}, (4.10)

∂Γ
o = {(S,UV ,MV ,E, I) ∈ R5 : I = 0,E = 0}. (4.11)

We have
Γ

o ∪∂Γ
o = Γ and Γ

o ∩∂Γ
o = φ ,

which implies that ∂Γo is relatively closed in Γ = (S,UV ,MV ,E, I) ∈ R5.

To establish the disease persistence for Rv > 1, we now prove the following theorem.

Theorem 4.4. If Rv > 1, then the system (2.1–2.5) is uniformly persistent with respect to
(Γ0,∂Γ0) in the sense that there is a positive constant ζ > 0 such that every solution
(S(t), UV (t), MV (t), E(t), I(t)) of (2.1–2.5) with (S(0), UV (0), MV (0), E(0), I(0)) ∈ Γ0 satisfies
lim
t→∞

Inf E ≥ ζ , lim
t→∞

Inf I ≥ ζ .
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Proof. Let ψ(t)p be the solution function of system (2.1–2.5) with initial value p. We can
show the solution (ψ(t)p), t > 0 is uniformly persistent with respect to (Γo,∂Γo) [67]. For any
(S(0), UV (0), MV (0), E(0), I(0)) ∈ Γ0, (2.1–2.3) provide

S(t) = exp
(
−
∫ t

0
a(x1)dx1

)[∫ t

0
exp

(∫ y

0
a(x1)dx1

)
b(y)dy+S(0)

]
,

UV (t) = exp
(
−
∫ t

0
a∗(x1)dx1

)[∫ t

0
exp

(∫ y

0
a∗(x1)dx1

)
b∗(y)dy+UV (0)

]
,

MV (t) = exp
(
−
∫ t

0
ao(x1)dx1

)[∫ t

0
exp

(∫ y

0
ao(x1)dx1

)
bo(y)dy+MV (0)

]
,

where a = α1 + α2 + µ + β I/N, b = Λ, a∗ = γ1 + µ + (1− ε1)β I/N, b∗ = α1S, ao = γ2 + µ +
(1− ε2)β I/N, and bo = α2S. Here Λ > 0 implies S(t)> 0. This follows UV (t)> 0, MV (t)> 0, ∀ t >
0. Thus the non-diseased variables S(t), UV (t),and MV (t) are positive.

Defining the two sets,
M∂ = {p ∈ ∂Γo : ψ(t)p ∈ ∂Γo},

ω(p) = {p : ψ(t)xn → p as t → ∞},

we claim that ω(p) = {E0}, ∀p ∈ M∂ . If p(t) ∈ M∂ then ψ(t)p ∈ ∂Γ0 which implies I = 0 and E = 0.
From (4.7, 4.8) and (2.1–2.5), as t → ∞ we obtain S(t),UV (t), and MV (t) approaching to

Λ

(µ +α1 +α2)
,

Λα1

(µ +α1 +α2)(γ1 +µ)
, and

Λα2

(µ +α1 +α2)(γ2 +µ)
, respectively,

which is the equilibrium point E0. Hence ω(p) = {E0}, ∀p ∈ M∂ .
Using the theorem 4.3 (Condition 3, Rv > 1 for s(J0) > 0), we can get a sufficiently small ρ > 0

such that the perturbation Jρ on J0 satisfies s(Jρ)> 0, (see [67], [68, Section II.5.8]) for Rv > 1, where

Jρ =

 −µ −σ
β (S0 −ρ)

Λ/µ +ρ
+

(1− ε1) β (U0
V −ρ)

Λ/µ +ρ
+

(1− ε2) β (M0
V −ρ)

Λ/µ +ρ

σ −δ −η −µ

 .

Now we claim that disease-free equilibrium point E0 is uniform weak repeller with any solution ψ(t).
For this we need to show

lim
t→∞

Sup
∥∥ψ(t)p−E0∥∥≥ ρ,∀ p ∈ Γ

0.

On contrary, suppose there exists a p0 ∈ Γ0 such that lim
t→∞

Sup
∥∥ψ(t)p0 −E0

∥∥< ρ . From the subsec-

tions 4.1 and 4.2, N(t)→ Λ/µ and S(t)→ S0 as t → ∞ implying that for all ρ > 0 there exists t2 > 0
such that ∀t ≥ t2, S ≥ (S0−ρ), Uv ≥ (U0

v −ρ), Mv ≥ (M0
v −ρ), N ≤ (Λ/µ +ρ). Then (2.4) and (2.5)

follows that,

dE
dt

=
βS
N

I +
(1− ε1) βUV

N
I +

(1− ε2) βMV

N
I − (µ +σ)E

≥β (S0 −ρ)

Λ/µ +ρ
I +

(1− ε1) β (U0
v −ρ)

Λ/µ +ρ
I +

(1− ε2) β (M0
v −ρ)

Λ/µ +ρ
I − (µ +σ)E,
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dI
dt

=σE − (µ +η +δ )I.

We consider the following auxiliary equations:

dE
dt

=
β (S0 −ρ)

Λ/µ +ρ
I +

(1− ε1) β (U0
v −ρ)

Λ/µ +ρ
I +

(1− ε2) β (M0
v −ρ)

Λ/µ +ρ
I − (µ +σ)E,

dI
dt

= σE − (µ +η +δ )I.
(4.12)

Here, Jρ is the Jacobian of the system (4.12), is irreducible with non-negative off-diagonal elements,
then s(Jρ) is simple and associated with strongly positive eigenvector ṽ,∀ t ≥ t2, (E(t2), I(t2)) > 0.
Thus there is a positive number ξ > 0 such that (E(t2), I(t2)) ≥ ξ ṽ holds. It is easy to see that V =

ξ es(Jρ)(t − t2)ṽ, ∀ t ≥ t2 is a solution of (4.12) with V (t2) = ξ ṽ. Hence by comparison principle [66,
Theorem B.1], we get

(E(t), I(t))≥ ξ es(Jρ)(t − t2)ṽ, ∀ t ≥ t2.

Also, for Rv > 1, we have s(Jρ) > 0, implying lim
t→∞

E(t) = ∞, lim
t→∞

I(t) = ∞, which is a contradiction.

This proves that the solution repels from E0. It follows that forward orbit of any solutions in M∂

converges to E0 is isolated in R5.
Now, we define a stable set of E0:

W s(E0) = {p ∈ Γ : d(ψ(t)p,E0)→ 0 as t → ∞}.

Clearly, W s(E0)∩ Γ0 = /0. It follows that there is no cycle in M∂ from E0 to E0. Applying [69,
Theorem 1.3.1], we conclude that the system (2.1–2.5) is uniformly persistent, i.e., there exists ζ > 0
satisfying (4.9). □

5. Numerical results

5.1. Basic dynamics of measles in Nepal

We first present the properties of basic dynamics of measles in Nepal, particularly vaccinated re-
production numbers and long-term dynamics.

5.1.1. Computation of the reproduction numbers

Using the estimated parameters (Table 1), we obtain the reproduction number of measles in the
presence of vaccination in Nepal to be Rv = 1.0098. While Rv > 1 is consistent with the currently on-
going endemic of measles, the actual magnitude we observed is significantly lower than the previously
estimated reproduction number between 5 and 18 in other places [70]. The low value of Rv is expected
as its estimate is based on the parameters influenced by the vaccination program. We now compute the
time-dependent effective reproduction number, Rt , which describes the time-varying average number
of secondary cases. The value of Rt allows us to track whether the epidemic at time t is in an increasing
(Rt > 1) or decreasing (Rt < 1) trend. For our model, the effective reproduction number is given by

Rt =
βσ (S(t)+UV (t)(1− ε1)+MV (t)(1− ε2))

N(t)(µ +σ)(δ +η +µ)
.
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Using the estimated parameters (Table 1), we obtained the pattern of Rt as shown in Figure 3. As pre-
dicted by our model, the value of the effective reproduction number remains less than unity, indicating
the epidemic is in decreasing trend until 2030, after which Rt increases and remains greater than unity
until 2095, showing the increasing trend of the disease in the period 2030–2095 (Figure 3).

Figure 3. Effective Reproduction Number (Rt). The model predicted effective reproduction
number, (Rt), for measles epidemic in Nepal.

(a) (b)

Figure 4. (a) Longterm dynamics predicted by the model. The model prediction of the
longterm dynamics of yearly new measles cases in Nepal. (b) Infections from the different
classes. The model prediction of the longterm dynamics of yearly new measles cases in Nepal
contributed by susceptible, un-monitored vaccinated, and monitored vaccinated classes.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8554–8579.



8569

5.1.2. Longterm dynamics

In this section, we present our model prediction for the long-term dynamics of measles transmission
in Nepal. If the current trend continues, there will still be 178 cases in 2023 (Figure 4), indicating an
obstacle to the measles elimination program set by the government of Nepal. Our model predicts
that the cases remain at a significantly low level until 2033 but persist at a low level without being
eradicated. After 2033, the resurgence of the outbreak will begin and reach the peak value (7670) in
2097. The dynamic is relatively slow, reaching a steady-state only after about 2100. The resurgence of
measles in Nepal predicted by our model supports the worldwide trend of the epidemic, which shows
an eventual resurgence in many places such as the UK, the US (31 states including New York), and the
Philippines. We also predict the contribution of susceptible (unvaccinated), un-monitored vaccinated,
and monitored vaccinated to the resurgence of the measles cases. As per our model prediction, the
major contribution to the resurgence is from the susceptible and the un-monitored vaccinated groups.
Note that the un-monitored vaccinated group can be significantly high in Nepal, as shown by the data
that while 92% are vaccinated with MCV1, only about 76% are vaccinated with MCV2 in 2019 [48].
Therefore, proper implementation of the monitored vaccination program may be needed to avoid the
resurgence of the disease.

5.2. Sensitivity analysis

5.2.1. Sensitivity of parameters to Rv

We first observe the local sensitivity of Rv to each of the parameters. For this, we obtain the sensi-
tivity index Sx, given by

Sx =

(
x

Rv

)(
∂Rv

∂x

)
,

where x is the parameter of which the sensitivity is to be obtained. Based on Sx, we found that Rv
is highly sensitive to β . The parameter γ1 also affects Rv more than the other parameters, and the ε2
affects less while the effect of σ and α2 are negligible (Figure 5).

We also extend the analysis to the global sensitivity by using Latin Hypercube Sampling (LHS) [71],
taking 1000 sample points from the global parameter space. We compute the partial rank correlation
coefficients to identify the most influential parameters. We observed that in the global parameter space,
the parameters ε1, α1, and β are the most strongly effective to Rv, followed by α2,ε2,γ1, and σ , while
γ2 is less effective (Figure 5).

5.2.2. Sensitivity of parameters to the dynamics

In this section, we use Latin Hypercube Sampling [71] from the global parameter space to identify
the sensitivity level of the peak value of the infected class and that of the time at the peak of the epi-
demic. The computed partial rank correlation coefficient corresponding to each parameter is presented
in Figure 6. Our analysis shows that the peak value of the infected class is highly correlated to β (pos-
itive correlation). The peak value is moderately affected by α1,α2, γ1, and σ and is weakly correlated
to the parameters γ2, ε2, and ε1 (Figure 6). Similarly, the peak time of the epidemic is mostly affected
by the parameters β and ε1, while it is less influenced by the parameters α1 and γ1. The parameters
σ ,γ2,α2, and ε2 have the least effect on the peak time.
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(a) (b)

Figure 5. (a) Local sensitivity of parameters to Rv. The sensitivity index, Sx, showing the
level of change in Rv with respect to the parameters. Note that the sensitivity index Sx of
σ = 0.0022 and α2 = −0.06 are negligible, and thus difficult to visualize in the figure. (b)
Global sensitivity of Rv. Partial Rank Correlation Coefficients for Rv from LHS method.

(a) (b)

Figure 6. (a) Global sensitivity of the peak level of infected class. The partial rank correlation
coefficients for sensitivity of peak level of infected class based on Latin Hypercube sampling.
(b) Global sensitivity of the peak time. The partial rank correlation coefficients for sensitivity
for the peak time based on Latin Hypercube sampling.

5.3. Effects of monitored and un-monitored vaccination

We use five parameters, the un-monitored vaccination rate (α1), the monitored vaccination rate
(α2), the immunization rate of un-monitored vaccination (γ1), the effectiveness of un-monitored vac-
cination (ε1), and the effectiveness of monitored vaccination (ε2) to evaluate the effects of the vacci-
nation programs.
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5.3.1. Effects on the measles eradication

Note that Rv < 1 can be associated with a condition required to eradicate the disease (Section 4.3).
We now use our Rv formulation to identify vaccine-related parameters that can reduce Rv below one
(Figure 7). We found that at the current level of α1, either the monitored vaccination rate α2 needs
to rise by 250% (α2 ≥ .07) or the effectiveness of un-monitored vaccination ε1 needs to rise by 4%
(ε1 ≥ 0.52) to make Rv < 1. On the other hand, with the current effectiveness of monitored vaccination
(ε2), the effectiveness of un-monitored vaccination (ε1) needs to be greater than 0.52 to make Rv < 1
(Figure 7).

If the un-monitored vaccination rate (α1) is increased by 20% (α1 ≈ 0.42 per year), the activity of
the monitored vaccination program can be somewhat relaxed at the current level of α2 ≈ 0.02 per year
for Rv < 1. On the other hand, if α1 is decreased by 26% (α1 ≈ 0.23 per year), the activity of the mon-
itored vaccination program needs to be raised, making the level of α2 exceed more than 0.1 per year to
achieve Rv < 1.

Figure 7. Effects of vaccination on Rv. The contour line (the solid line) corresponding to
Rv = 1 in the parameter space plane with each two of the un-monitored vaccination rate
(α1), monitored vaccination rate (α2), the effectiveness of un-monitored vaccination (ε1),
effectiveness of monitored vaccination (ε2), immunization rates of un-monitored vaccination
(γ1) and immunization rate of monitored vaccination (γ2).
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5.3.2. Effects on the dynamics

In the absence of monitored vaccination, the model predicts that the cases will rise and reach the
peak value of 85,750 in 2038 for α2 = 0. With the reduction of un-monitored vaccination by 50% or
α1 = 0.15, our model predicts that the cases will rise and reach the peak value of 647,300 in 2028
(Figure 8). If the immunity rate of un-monitored vaccination is decreased by 50%, i.e., γ1 = 0.05,
the cases rise, leading to the peak value of about 452,800 in 2030. Similarly, if the effectiveness of
un-monitored vaccination is decreased by 20% (ε1 = 0.4), the cases may rise and reach the peak value
of 268,200 in 2027.

Figure 8. Effects of vaccination on the dynamics. Model prediction of dynamics in the
present scenario and various level of un-monitored vaccination rate (α1), its immunization
rate (γ1), and the effectiveness (ε1) and the monitored vaccination rate (α2).

5.3.3. Effects on the steady state

We explore how the different levels of vaccination-related parameters, α1, α2, γ1,γ2,ε1, and ε2,
(Figure 9) affect the level of steady-state of new infections (Figure 9). As expected, an increase in
the vaccination rate decreases the steady-state level of new infections. Based on our model prediction,
the current level of vaccination results in 7,312 new cases at a steady state. To sufficiently reduce
the steady-state level of new infections, the rate of un-monitored vaccination should be increased by
6.5% (α1 = 0.33), or the rate of monitored vaccination should be increased by 50% (α2 = 0.03).
Similarly, the immunizing rate of un-monitored vaccine needs to be increased by 100% (γ1 = 0.2),
or its effectiveness needs to be increased by 20% (ε1 = 0.6) to bring the steady-state level of new
infections to a sufficiently low level.

Furthermore, the reduction of 6.5% of the un-monitored vaccination rate (α1) increases the steady-
state new cases by 206% (22.35 thousand), showing the high impact of the vaccination rate. Also,
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lowering the monitored vaccination rate (α2) by 50% increases the steady-state level of new cases
by approximately 250% (25.56 thousand). Similarly, decreasing the immunity rate of un-monitored
vaccination (γ1) by 10% increases the steady-state new cases by about 300% (29.1 thousand) while
reducing the effectiveness of monitored vaccination (ε2) by 18% increases the steady-state new cases
by 30% (9.528 thousand).

Figure 9. Effects of vaccination on the steady state. Model predicted new cases at the steady
state for the various vaccination rates α1, α2, immunized rate γ1, γ2 and effectiveness of un-
monitored and monitored vaccination program ε1, and ε2, respectively.

6. Conclusions

In recent years, the frequent outbreaks of measles in developing and developed countries have
become a significant obstacle to achieving the goal of elimination. Mainly, unvaccinated children are
the victims of the disease [6, 7, 26]. Despite the Supplementary Immunization Activities (SIAs), most
of the population is not vaccinated in some districts of Nepal, including Rautahat, Kapilvastu, Morang,
and Bajura. Furthermore, many of those initiating the vaccination does not complete the vaccine doses
correctly, making them not completely protected. Because of the resurgence of measles in Nepal since
2017 [20,21], WHO’s deadline for the elimination goal has been extended to 2023 [53]. We developed
a novel deterministic model validated by the data from Nepal to evaluate the monitored vaccination
programs.

We thoroughly analyzed our model to formulate the vaccinated reproduction number (Rv > 1), the
stability analysis, and the disease persistence theory. Using the model and the available data from
the official websites of WHO, we estimated key parameters related to the un-monitored vaccination.
Moreover, we performed a global sensitivity analysis using Latin Hypercube Sampling from the wider
parameter space. Our model predicts that the measles elimination goal can be achieved if the monitored
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vaccination rate is increased by 50% (α2 = 0.03) or the un-monitored vaccination rate is increased by
6.5% (α1 = 0.33). The elimination goal can also be achieved by the high effectiveness of the un-
monitored vaccine (i.e., with ε1 ≥ 0.53). However, if the current trend continues, our model predicts
that the measles will persist causing an obstacle to the measles elimination goal of Nepal. Furthermore,
our model predicts that without any additional interventions, measles transmission will continue with
a rise in the epidemic after 2033 (Figure 4). Our model also predicts that the major contributor to
the measles resurgence in Nepal is susceptible (unvaccinated) and unmonitored vaccinated groups,
emphasizing the need for the expedition of monitored-vaccination programs. The epidemic dynamics
in Nepal is quite slow, reaching the peak only in about 2097 (Figure 4). The observed slow dynamics
is consistent with the previous study [72].

We acknowledge some limitations of our study. The parameter estimations are based on the limited
data of yearly incidence cases (2000–2019). Moreover, measles is a short-term disease recovered
within a month, so the daily or weekly more detailed and accurate data can help improve the prediction
of our model. We could obtain the closed form of the unique endemic equilibrium but are unable to
perform a detailed analysis of the endemic equilibrium. Instead, we established the disease persistence
criteria. The homogeneous mixing assumed among the children of Nepal can be improved by the
model with an appropriate network of contact among children.

In summary, we develop a model of measles transmission in the context of Nepal, where monitoring
is critical for the successful implementation of the vaccination program. Our thorough analysis and the
detailed numerical simulations of the model can provide helpful information for policymakers to design
ideal monitored-vaccination programs to achieve the elimination goal of measles from Nepal.
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