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Abstract: Multiple variants of SARS-CoV-2 have emerged but the effectiveness of existing COVID-
19 vaccines against variants has been reduced, which bring new challenges to the control and mitigation
of the COVID-19 pandemic. In this paper, a mathematical model for mutated COVID-19 with quar-
antine, isolation and vaccination is developed for studying current pandemic transmission. The basic
reproduction number R0 is obtained. It is proved that the disease free equilibrium is globally asymptot-
ically stable if R0 < 1 and unstable if R0 > 1. And numerical simulations are carried out to illustrate
our main results. The COVID-19 pandemic mainly caused by Delta variant in South Korea is analyzed
by using this model and the unknown parameters are estimated by fitting to real data. The epidemic
situation is predicted, and the prediction result is basically consistent with the actual data. Finally,
we investigate several critical model parameters to access the impact of quarantine and vaccination on
the control of COVID-19, including quarantine rate, quarantine effectiveness, vaccination rate, vaccine
efficacy and rate of immunity loss.
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1. Introduction

Corona Virus Disease 2019 (COVID-19), caused by SARS-CoV-2, has been seriously impacting
the world since the end of 2019 [1]. As of April 13, 2022, there have been over 499 million confirmed
cases of COVID-19, including over 6 million deaths all over the world [2].

Since the outbreak of COVID-19, many scholars have used different methods to study its transmis-
sion [3], such as neural network [4], time series analysis [5] and kinetic modeling [6].

Dynamics models have played a key role in studying the development of things and assessing the
impact of different intervention strategies [7, 8]. In particular, during the COVID-19 outbreak, multiple
dynamics models have been developed to investigate its spread and control.

Before the availability of effective vaccines, non-pharmaceutical interventions strategies (NPIs)
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were taken into account controlling the pandemic transmission, such as lockdowns, the use of face-
masks in public, quarantine of close contacts, isolation of confirmed cases, among others [9]. Ngong-
hala et al. [10] proposed a detailed mathematical model of COVID-19 that combined quarantine and
isolation to assess the impact of NPIs on combating and mitigating the burden of COVID-19. Their re-
sults indicated that the early implementation (and enhancement of effectiveness) of these intervention
measures is obviously critically-important to curtail COVID-19 transmission. NPIs could mitigate the
spread of the virus, but it is not the permanent solution to the problem [11].

Since January 2021, more than ten types of vaccines against SARS-CoV-2 have been fully or limit-
edly approved and used clinically [12]. And many countries are starting vaccination campaigns, which
has improved the global epidemic to some extent [13]. Iboi et al. [14] developed a mathematical
model for assessing the impact of an anti-COVID-19 vaccine on the spread of COVID-19 in the United
States. This study showed that the prospect of eliminating COVID-19 in the US using the imperfect
hypothetical vaccine is promising. Moreover, the integration of vaccination and physical distancing in-
terventions, can result in better pandemic prevention [15]. Zou et al. [16] established a multiple patch
coupled model to explore the impact of vaccination and NPIs on the control of COVID-19 and the
results indicated that effective vaccination has positive impact on prevention of pandemic transmission
and the joint implementation of vaccination and quarantine ensures the controllability of the epidemic.

However, new variants of COVID-19 with high transmission rates are spreading around the world
and vaccines are less effective in preventing infection than they were for earlier virus variants, which
have brought new challenges to the elimination of pandemic [17, 18]. Recently, Li et al. [19] developed
a mathematical model of COVID-19 transmission with imperfect vaccination to explore effective and
reasonable plans to prevent the spread of Delta variant. Their results found that the optimal control
measure is to dynamically adjust three control measures, namely, vaccination, isolation and nucleic
acid testing, to achieve the lowest number of infections at the lowest cost. Truszkowska et al. [20]
developed an extremely detailed mathematical model, to study the combined effect of booster shot
administration and testing practices in this stage of the pandemic.

Motivated by the implement of NPIs, the promotion of vaccination strategy and the emerging of
variants of COVID-19, we consider a mathematical model for mutated COVID-19 with quarantine,
isolation and vaccination, make some theoretical analysis of the model, verify the applicability of the
model by the COVID-19 pandemic mainly caused by Delta variant in South Korea, and finally, assess
the impact of quarantine and vaccination on eliminating mutated COVID-19 transmission.

The organization of this paper is as follows. In Section 2, the basic model formulation is discussed.
In Section 3 we derive the disease free equilibrium and basic reproduction number R0. The local
asymptotic stability and global asymptotic stability of the model at the disease free equilibrium are
proved. In Section 4, the numerical simulation is carried out to verify the correctness of the proof. In
Section 5, according to the epidemic data of COVID-19 in South Korea from August 22 to October 20,
2021, unknown parameters are obtained by two-stage fitting, and then the epidemic is predicted, which
is compared with the real data to verify the applicability of the model. In Section 6, the impact of
quarantine and vaccination on the control of COVID-19 are assessed by numerical simulation. Finally,
in Section 7, we give some discussions.
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2. Model formulation

We develop an epidemic model, which incorporates the main interventions being implemented
to curtail COVID-19 transmission (such as quarantine, isolation and vaccination). We stratify
the population as susceptible (S u), vaccinated (Vu), exposed (Eu), asymptomatically-infectious (Ia),
symptomatically-infectious (Iu) and recovered (R) compartments, and further stratify the population
to include quarantined susceptible (S q), quarantined vaccinated (Vq), quarantined exposed (Eq) and
hospitalized (Ih) compartments, so that the total population of the model N(t) is divided into 10 com-
partments, namely

N(t) = S u(t) + S q(t) + Vu (t) + Vq (t) + Eu(t) + Eq(t) + Iu(t) + Ih(t) + Ia(t) + R(t).

For developing the mathematical model, the basic assumptions are as follows:
(i) The recruitment rate (either by birth or by immigration) of the population is given by a constant

rate Λ and they are all susceptible.
(ii) Susceptible individuals move to exposed compartment by effective contacts with exposed,

symptomatically-infectious or asymptomatically-infectious individuals and after latency period, they
become infectious and move to infectious compartment.

(iii) After recovery the individuals have immunity to COVID-19 in a short time.
(iv) A part of vaccinated individuals will lose their immunity and rejoin the susceptible compart-

ment.
(v) After the immunity period, the vaccinated individuals become susceptible again.
(vi) Hospitalization is completely effective.
(vii) The exposed individuals and the asymptomatically-infectious individuals are also infectious,

but the infectivity is weaker than that of symptomatically-infectious individuals, measuring by coeffi-
cients ηu and ηa respectively(0 < ηu, ηa < 1).

(viii) The contact rate c is the same for the individuals in symptomatically-infectious Iu, non-
quarantined exposed Eu and the asymptomatically-infectious Ia compartments.

(ix) The latency period is defined as the days from exposure to the onset of illness.
(x) The asymptomatically-infectious compartment Ia includes those with mild symptoms or no clin-

ical symptoms of the COVID-19 at the end of the latency period.
(xi) Considering that the number of people that an infected person can contact per unit time is finite,

a more realistic standard incidence is used in the model.
(xii) The vaccinated individuals will not lose immunity during the quarantine period.
(xiii) If the quarantine individuals have symptoms, they will be sent to the hospital.
The assumptions above lead to the flow diagram of the model depicted in Figure 1.
It is worth noting that hospitalization indicates isolation at the hospital in this study. With contact

tracing, a proportion, q, of individuals exposed to the virus is quarantined. The quarantined individ-
uals, if infected, move to the compartment Eq and and the remaining individuals can either stay in
compartment Vq or S q, depending on whether they are vaccinated or not. For those individuals who
are missed from contact tracing, the situation is similar.
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Figure 1. Flow diagram of the model.

The model is given by the following deterministic system of nonlinear differential equations.

dS u

dt
= Λ −

[
β(1 − q)λ + βqλ + (1 − β)qλ + ξv + d

]
S u + ωS q + ηvVu,

dS q

dt
= −(ω + θβλ + d)S q + (1 − β)qλS u,

dVu

dt
= −

[
ηv + εvβ(1 − q)λ + εvβqλ + p2(1 − β)qλ + d

]
Vu + ξvS u + p1ωVq,

dVq

dt
= −(p1ω + εvθβλ + d)Vq + p2(1 − β)qλVu,

dEu

dt
= −

[
αu + f1σu + f2σu + (1 − f1 − f2)σu + d

]
Eu + β(1 − q)λS u + εvβ(1 − q)λVu,

dEq

dt
= −

[
rσq + (1 − r)σq + d

]
Eq + βqλS u + θβλS q + εvβqλVu + εvθβλVq + αuEu,

dIu

dt
= −(ϕu + δu + γu + d)Iu + f1σuEu,

dIh

dt
= −(δh + γh + d)Ih + f2σuEu + rσqEq + ϕuIu + σaIa,

dIa

dt
= −(σa + δa + γa + d)Ia + (1 − f1 − f2)σuEu + (1 − r)σqEq,

dR
dt
= γuIu + γhIh + γaIa − dR.

(2.1)

where λ(t) =
c(Iu + ηuEu + θηuEq + ηaIa)

S u + Vu + Eu + Iu + Ia + R + θ(S q + Eq + Vq)
.

The initial conditions for system (2.1) are as follows:

S u(0) = S u0 ≥ 0, S q(0) = S q0 ≥ 0,Vu(0) = Vu0 ≥ 0,Vq(0) = Vq0 ≥ 0, Eu(0) = Eu0 ≥ 0,
Eq(0) = Eq0 ≥ 0, Iu(0) = Iu0 ≥ 0, Ih(0) = Ih0 ≥ 0, Ia(0) = Ia0 ≥ 0,R(0) = R0 ≥ 0.

(2.2)

The state variables and parameters of the model are described in Tables 1 and 2, respectively.
Let H(t) = (S u(t), S q(t),Vu(t),Vq(t), Eu(t), Eq(t), Iu(t), Ih(t), Ia(t) ,R(t)).
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Table 1. Description of state variables of the model (2.1).

State variable Description
S u Population of non-quarantined susceptible individuals
S q Population of quarantined susceptible individuals
Vu Population of non-quarantined vaccinated individuals
Vq Population of quarantined vaccinated individuals
Eu Population of non-quarantined exposed individuals
Eq Population of quarantined exposed individuals
Iu Population of non-hospitalized symptomatically-infectious

individuals
Ih Population of hospitalized symptomatically-infectious

individuals
Ia Population of asymptomatically-infectious individuals with

mild or no clinical symptoms of the disease
R Population of recovered individuals

Lemma 1. Consider the initial data Hi(0) ≥ 0, i = 1, 2, ..., 10. Then, for any t > 0, we have the
non-negative solution for the system (2.1).

Proof. Consider t1 = sup{t > 0 : Hi(t) > 0, i = 1, 2, ..., 10}. So, t1 > 0. The following result is given
using the first equation of the model (2.1),

dS u

dt
= Λ + ωS q + ηvVu − (d + ξv)S u −

[
βλ + (1 − β)qλ

]
S u

≥ Λ − (d + ξv)S u −
[
βλ + (1 − β)qλ

]
S u.

Then, it can be written as,

d
dt

{
S u(t)exp

[
(d + ξv)t +

∫ t

0
[βλ(ρ) + (1 − β)qλ(ρ)]dρ

]}
≥ Λexp

[
(d + ξv)t +

∫ t

0
[βλ(ρ) + (1 − β)qλ(ρ)]dρ

]
.

Thus,

S u(t1)exp
[
(d + ξv)t1 +

∫ t1

0

[
βλ(ρ) + (1 − β)qλ(ρ)

]
dρ

]
− S u(0)

≥

∫ t1

0
Λexp

[
(d + ξv)x +

∫ x

0

[
βλ(ζ) + (1 − β)qλ(ζ)

]
dζ

]
dx,

so that

S u(t1) ≥
(
S u(0) +

∫ t1

0
Λexp

[
(d + ξv)x +

∫ x

0

[
βλ(ζ) + (1 − β)qλ(ζ)

]
dζ

]
dx

)
× exp

[
−(d + ξv)t1 −

∫ t1

0

[
βλ(ρ) + (1 − β)qλ(ρ)

]
dρ

]
> 0.

For the remaining equations, we take the same steps to show Hi(t) > 0 (i = 2, 3, ..., 10) for every
t > 0. □
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Table 2. Description of the parameters of the model (2.1).

Parameter Description Values

c Effective contact rate 0.1
β Probability of infection per contact 0.5
q Proportion of infectious individuals quarantined at time of exposure 0.05
ξv Vaccination rate (the reciprocal of the time during which everyone has completed

vaccination)
0.8

ηv Rate of immunity loss after vaccination (1/ηv is the mean duration of vaccine
immunity)

0.56

εv Ineffectiveness of vaccine against COVID-19 variants 0.14
ηu Modification parameter accounting for the relative infectiousness of individuals in

the Eu compartment in relation to individuals in the Iu compartment (0 < ηu < 1)
0.1

ηa Modification parameter accounting for the relative infectiousness of individuals in
the Ia compartment in relation to individuals in the Iu compartment (0 < ηa < 1)

0.1

θ Ineffectiveness of quarantine 0.5
ω Rate at which individuals in the S q compartment revert to the S u compartment

(1/ω is the duration of quarantine)
0.5

αu Rate at which individuals in the Eu compartment are detected and placed in
quarantine

0.116

1
σu

(
1
σq

) Latency period for non-quarantined (quarantined) exposed individuals 5.1

σa Rate at which individuals in the Ia compartment are detected and hospitalized 0.309
f1 Proportion of individuals in the Eu compartment who progress to the Iu

compartment at the end of the incubation period ( f1 + f2 < 1)
0.4

f2 Proportion of individuals in the Eu compartment who progress to the Ih

compartment at the end of the incubation period ( f1 + f2 < 1)
0.2

1 − f1 − f2 Proportion of individuals in the Eu compartment who progress to the Ia

compartment
0.4

r (1 − r) Proportion of individuals in the Eq compartment who move to the Ih (Ia)
compartment

0.7

ϕu Hospitalization rate of individuals in the Iu compartment 0.2
p1 Modification parameter accounting for the relative release rate of individuals in the

Vu compartment in relation to individuals in the S u compartment
0.5

p2 Modification parameter accounting for the relative quarantine rate of individuals in
the Vu compartment in relation to individuals in the S u compartment

1

γu Recovery rate for individuals in the Iu compartment 0.1
γh Recovery rate for individuals in the Ih compartment 0.125
γa Recovery rate for individuals in the Ia compartment 0.13978
δu Disease-induced mortality rate for individuals in the Iu compartment 0.015
δh Disease-induced mortality rate for individuals in the Ih compartment 0.015
δa Disease-induced mortality rate for individuals in the Ia compartment 0.075
Λ Recruitment rate 20
d Natural death rate 0.2
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Let the closed and biologically feasible region be Ω, shown by Ω ={
(S u, S q,Vu,Vq, Eu, Eq, Iu, Ih, Ia,R) ∈ R10

+ , 0 ≤ S u, S q,Vu,Vq, Eu, Eq, Iu, Ih, Ia,R,N ≤
Λ

d

}
.

Next, we present the following results for this feasible region.

Lemma 2. The region Ω is a positively invariant and attracting region for system (2.1) with the non-
negative initial conditions (2.2).

Proof. Summing up the ten equations in system (2.1) and considering that all parameters of the model
are non-negative, we get

dN(t)
dt
= Λ − dN − δaIa − δuIu − δhIh ≤ Λ − dN.

Now integrating both sides of the above inequality and using the comparison theorem [21], we
obtain

0 < N(t) ≤
Λ

d
+ (N(0) −

Λ

d
)e−dt.

Clearly, 0 < N(t) ≤
Λ

d
, as t → ∞. If N(0) ≤

Λ

d
, then N(t) ≤

Λ

d
. Thus, the region Ω is positive

invariant and attracts all the possible solutions of the model (2.1). We will consider the dynamic
behavior of model (2.1) on Ω. □

3. Theoretical analysis

3.1. basic reproduction number R0

Obviously, the model (2.1) always has a disease free equilibrium (DFE)
P0(S 0, 0,V0, 0, 0, 0, 0, 0, 0, 0), where

S 0 =
Λ(ηv + d)

d(ηv + d + ξv)
,V0 =

Λξv
d(ηv + d + ξv)

.

The basic reproduction number R0 will be calculated using the next generation matrix method [22,
23]. It follows that the next generation operator matrices, F and V for the new infection terms and the
transition terms, are given, respectively,

F =


ηuM1 θηuM1 M1 0 ηaM1

ηuM2 θηuM2 M2 0 ηaM2

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


, and V =


K1 0 0 0 0
−αu K2 0 0 0
− f1σu 0 K3 0 0
− f2σu −rσq −ϕu K4 0

−(1 − f1 − f2)σu −(1 − r)σq 0 0 K5


,

where, M1 = cβ(1−q)
S 0 + εvV0

Λ/d
, M2 = cβq

S 0 + εvV0

Λ/d
, K1 = σu+αu+d, K2 = σq+d, K3 = ϕu+γu+δu+d,

K4 = γh + δh + d, K5 = σa + γa + δa + d. By the definition of the basic reproduction number R0, we get

R0 = ρ(FV−1) = REu +REq +RIu +RIa , (3.1)

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8035–8056.
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where,

REu =
ηu

K1
M1, REq = θηu

(
αu

K1K2
M1 +

1
K2

M2

)
,

RIu =
f1σu

K1K3
M1, RIa = ηa

[(
(1 − f1 − f2)σu

K1K5
+
αu(1 − r)σq

K1K2K5

)
M1 +

(1 − r)σq

K2K5
M2

]
.

The quantity R0 is the basic reproduction number of the model (2.1). It measures the average
number of the new COVID-19 infections generated by a typical infective individual introduced into a
population where basic public health interventions (quarantine, isolation, vaccination, etc.) are imple-
mented.

3.2. Stability analysis of the model

In this section, we analyse the stability of the model (2.1) at the DFE. First, we show the local
stability of system (2.1) at the DFE.

Theorem 1. The DFE of the model (2.1) is locally asymptotically stable if R0 < 1, and unstable if
R0 > 1.

Proof. Let H̄ = (Eu(t), Eq(t), Iu(t), Ia(t), S u(t), S q(t),Vu(t),Vq(t), Ih(t),R(t)), we can obtain the Jacobian
matrix of the system corresponding to H̄ at P0, and partition the matrix.

It is given by

J(P0) =



−K1 + ηu M1 θηu M1 M1 ηa M1 0 0 0 0 0 0
αu + ηu M2 −K2 + θηu M2 M2 ηa M2 0 0 0 0 0 0

f1σu 0 −K3 0 0 0 0 0 0 0
(1 − f1 − f2)σu (1 − r)σq 0 −K5 0 0 0 0 0 0

∗ ∗ ∗ ∗ −(ξv + d) ω ηv 0 0 0
∗ ∗ ∗ ∗ 0 −(ω + d) 0 0 0 0
∗ ∗ ∗ ∗ ξv 0 −(ηv + d) p1ω 0 0
∗ ∗ ∗ ∗ 0 0 0 −(p1ω + d) 0 0
∗ ∗ ∗ ∗ 0 0 0 0 −(δh + γh + d) 0
∗ ∗ ∗ ∗ 0 0 0 0 γh −d


=

(
J1 J2

J3 J4

)
Using the Laplace theorem, it’s easy to find that the eigenvalues of J(P0) are determined by the

eigenvalues of J1 and J4.
Consider the eigenvalues of J4 first.
It is obvious that J4 has always four negative eigenvalues λ1 = −d, λ2 = −(δh + γh + d), λ3 =

−(p1ω + d) and λ4 = −(ω + d), and the other eigenvalues of J4 are determined by the equation

λ2 + (ξv + ηv + 2d)λ + ξvd + ηvd + d2 = 0.

Clearly, λ5 + λ6 = −(ξv + ηv + 2d) < 0, λ5 · λ6 = ξvd + ηvd + d2 > 0, so λ5 and λ6 are both negative.
Then consider the eigenvalues of J1. Through calculation and integration, we have

det(λE − J1) = a0λ
4 + a1λ

3 + a2λ
2 + a3λ + a4 = 0,

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8035–8056.



8043

where,

a0 =1,
a1 =K1 + K2 + K3 + K5 − ηuM1 − θηuM2,

a2 =K5(K2 − θηuM2) − (1 − r)σqηaM2 + (K1 − ηuM1)(K2 + K5 − θηuM2) + K3(K1 + K2 + K5 − ηuM1

− θηuM2) − ηa(1 − f1 − f2)σuM1 + θηuM1(−αu − ηuM2) − f1σuM1,

a3 =K3[K5(K2 − θηuM2) − (1 − r)σqηaM2 + (K1 − ηuM1)(K2 + K5 − θηuM2) − ηa(1 − f1 − f2)σuM1

+ θηuM1(−αu − ηuM2)] + K1[K5(K2 − θηuM2) − (1 − r)σqηaM2] − ηuK2K5M1 − αuθηuK5M1

− ηaαu(1 − r)σqM1 − ηa(1 − f1 − f2)σuK2M1 − f1σu(K2 + K5)M1,

a4 =K3{K1[K5(K2 − θηuM2) − (1 − r)σqηaM2] − ηuK2K5M1 − αuθηuK5M1 − ηaαu(1 − r)σqM1

− ηa(1 − f1 − f2)σuK2M1 − f1σuK2K5M1}.

If R0 < 1, we have
ηu

K1
M1 < 1 and

θηu

K2
M2 < 1, so it can be observed that a1 > 0.

Because of
a4

K1K2K3K5
= 1 −R0, we obtain a4 > 0 if R0 < 1.

Due to

a3

K1K2K3K5
=

1
K1

[1 −
θηu

K2
M2 − ηa

(1 − r)σq

K2K5
M2] +

1
K5

(1 −
ηu

K1
M1 −

αuθηu

K1K2
M1 −

θηu

K2
M2 −

f1σu

K1K3
M1)

+
1

K2
[1 −

ηu

K1
M1 −

f1σu

K1K3
M1 − ηa

(1 − f1 − f2)σu

K1K5
M1] +

1
K3

{
1 −
ηu

K1
M1 −

αuθηu

K1K2
M1

−
θηu

K2
M2 − ηa[

(1 − f1 − f2)σu

K1K5
+
αu(1 − r)σq

K1K2K5
]M1 − ηa

(1 − r)σq

K2K5
M2

}
>

1
K1

(1 −REq −RIa) +
1

K5
(1 −REu −REq −RIu) +

1
K2

(1 −REu

−RIu −RIa) +
1

K3
(1 −REu −REq −RIa)

> 0,

then a3 > 0.
Meanwhile, we can also obtain that

a1a2 − a3 = (K1 + K2 + K5 − ηuM1 − θηuM2)[K5(K2 − θηuM2) − (1 − r)σqηaM2 + K1K5 − ηuK5M1

− ηa(1 − f1 − f2)σuM1] + (K1 + K2 + K3 + K5 − ηuM1 − θηuM2)[K3(K1 + K2 + K5

− ηuM1 − θηuM2) − f1σuM1] + (K1 + K2 + K5 − ηuM1 − θηuM2)[K1(K2 − θηuM2)
− ηuK2M1 − αuθηuM1] − K1K5(K2 − θηuM2) + ηuK2K5M1 + αuθηuK5M1

+ (1 − r)σqηaM2 − ηaαu(1 − r)σqM1 − ηa(1 − f1 − f2)σuK2M1

+ f1σu(K2 + K5)M1

> (K1 + K2 + K5 − ηuM1 − θηuM2)[K5(K2 − θηuM2) − (1 − r)σqηaM2 + K1K5 − ηuK5M1

− ηa(1 − f1 − f2)σuM1] + (K1 + K2 + K3 + K5 − ηuM1 − θηuM2)K3(K2 + K5 − θηuM2)
+ (K1 + K2 − ηuM1 − θηuM2)[K1(K2 − θηuM2) − ηuK2M1 − αuθηuM1]
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+ K5K1(K2 − θηuM2) − K5ηuK2M1 − K5αuθηuM1 − K1K5(K2 − θηuM2)
+ ηuK2K5M1 + αuθηuK5M1

= (K1 + K2 + K5 − ηuM1 − θηuM2)[K5(K2 − θηuM2) − (1 − r)σqηaM2 + K1K5 − ηuK5M1

− ηa(1 − f1 − f2)σuM1] + (K1 + K2 + K3 + K5 − ηuM1 − θηuM2)K3(K2 + K5 − θηuM2)
+ (K1 + K2 − ηuM1 − θηuM2)[K1(K2 − θηuM2) − ηuK2M1 − αuθηuM1]

> 0.

The first inequality is established due to
(
ηu

K1
+

f1σu

K1K3

)
M1 < 1, if R0 < 1. It is apparent from the

above analysis that it satisfies the Routh-Hurwitz stability criterion. Thus, it follows that the DFE P0

is locally asymptotically stable if R0 < 1. On the other hand, we have
a4

K1K2K3K5
= 1 − R0 < 0 if

R0 > 1, then a4 < 0, which shows that at least one of the eigenvalues of J1 is positive. Therefore, the
DFE P0 is unstable if R0 > 1. This completes the proof. □

Theorem 2. The DFE of the model (2.1) is globally asymptotically stable in Ω if R0 < 1.

Proof. Let X = (Eu, Eq, Iu, Ih, Ia)T . It can be stated that

dX
dt
≤ (F − V)X,

with F and V are matrices on calculating R0. Let u = (ηu, θηu, 1, 0, ηa). It then follows from the fact
R0 = ρ(FV−1) = ρ(V−1F) and direct calculation that u is a left eigenvector of the matrix V−1F, i.e.,
uV−1F = R0u.

Consider a Liapunov function

L0 = uV−1X.

Differentiating the above equation, we have

dL0

dt
= uV−1 dX

dt
≤ uV−1(F − V)X = u(R0 − 1)X.

If R0 < 1, the equality
dL0

dt
= 0 implies that uX = 0. This leads to Eu = Eq = Iu = Ia = 0 by

noting that all components of u except for the fourth element are positive.
Clearly, let

E =
{(

S u, S q,Vu,Vq, Eu, Eq, Iu, Ih, Ia,R
)
∈ Ω |

dL0

dt
= 0

}
=

{
Eu = Eq = Iu = Ia = 0

}
,

then the largest invariant set of the system in E is M =
{
Eu = Eq = Iu = Ia = 0

}
. By LaSalle’s Invariant

Principle [24], we get lim
t→∞

Eu (t) = lim
t→∞

Eq (t) = lim
t→∞

Iu (t) = lim
t→∞

Ia (t) = 0. Then, it is easy to solve the
8th equation of the model (2.1), and we have

Ih (t) =
[
Ih0 +

∫ t

0

(
f2σuEu(τ) + rσqEq(τ) + ϕuIu(τ) + σaIa(τ)

)
eK4τdτ

]
e−K4t.
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Using L’Hospital’s rule,

lim
t→∞

Ih(t) = lim
t→∞

f2σuEu(t) + rσqEq(t) + ϕuIu(t) + σaIa(t)
K4

= 0.

In a similar way, for the 2nd, 4th and 10th equation of the model (2.1), we have lim
t→∞

S q (t) =
lim
t→∞

Vq (t) = lim
t→∞

R (t) = 0. Hence, we can obtain the limit system of (2.1) as follows.

dS u

dt
= Λ − (ξv + d) S u + ηvVu,

dVu

dt
= ξvS u − (ηv + d) Vu.

(3.2)

It is easy to solve that

S u (t) = S 0 +

(
S u (0) −

Λ(ηv + d)
d(ηv + d + ξv)

)
e−(ηv+d+ξv)t,

Vu (t) = V0 +

(
Vu (0) −

Λξv
d(ηv + d + ξv)

)
e−(ηv+d+ξv)t.

Clearly, we can get lim
t→∞

S u (t) = S 0, lim
t→∞

Vu (t) = V0, so (S 0,V0) is globally attractive for the limit
system (3.2). By discussion of linearization systems for (3.2), it can be known that (S 0,V0) is locally
asymptotically stable if R0 < 1. Combining global attraction of (S 0,V0), we can obtain that (S 0,V0) is
globally asymptotically stable for the limit systems (3.2). It follows that P0(S 0, 0,V0, 0, 0, 0, 0, 0, 0, 0)
is globally attractive for the original system (2.1). In addition, combining Theorem 1, we eventually
concluded that P0 is globally asymptotically stable if R0 < 1. □

4. Numerical simulation of the system (2.1)

In this section, we present the numerical solution of the system (2.1).
We can get R0 = 0.0147 < 1 and P0 = (48.7179, 0, 51.2821, 0, 0, 0, 0, 0, 0, 0, 0, 0) by using the

parameter values given in Table 2. The dynamical behavior for different initial conditions of model
(2.1) is presented in Figure 2. It’s easy to find that, S u tends to 48.7179, S q tends to 0, Vu tends to
51.2821, Vq tends to 0, Eu tends to 0, Eq tends to 0, Iu tends to 0, Ih tends to 0, Ia tends to 0, and R
tends to 0. It shows that system (2.1) has a DFE and it is globally asymptotically stable with different
initial values when R0 < 1. The numerical simulation results support the case stated in Theorem 2.

5. Empirical analysis

5.1. Data sources and methods

In order to show that the model is practical, the COVID-19 pandemic mainly caused by Delta variant
in South Korea is analysed and verified in this section. The experimental data come from the Central
Disaster Management Headquarters of Korea [25]. About 97% of confirmed cases were infected by
the Delta variant on August 22, 2021 [26], so August 22, 2021 is chosen as the starting date of the data
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Figure 2. The dynamical behavior for different initial conditions of non-quarantined sus-
ceptible individuals S u, quarantined susceptible individuals S q, non-quarantined vaccinated
individuals Vu, quarantined vaccinated individuals Vq, non-quarantined exposed individuals
Eu, quarantined exposed individuals Eq, non-hospitalized symptomatically-infectious indi-
viduals Iu, hospitalized infectious individuals Ih, asymptomatically-infectious individuals Ia

and recovered individuals R, subfigures (a)–(j) represent them, respectively.
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set. The data in this paper is the official data of COVID-19 in Korea from August 22, 2021 to October
20, 2021.

In order to verify the training effect, the data set is divided into training set (from August 22 to
October 14, 2021, 54 days in total) and verification set (from October 15 to 20, 2021, 6 days in
total) according to the ratio of 9:1. The unknown parameters of the model are obtained by fitting
the real data of the training set, and the prediction effect of the model is tested by using the real data
of the verification set. According to the Korea Disease Control and Prevention Agency (KDCA) [27],
since September 24, 2021, the vaccinated individuals can be exempted from quarantine if they show
no symptoms after close contact with the confirmed individuals. Therefore, this paper considers the
training set in two stages. The first stage is from August 22, 2021 to September 23, 2021, and the
second stage is from September 24, 2021 to October 14, 2021.

5.2. Parameter fitting

Before fitting the parameters, we fix some parameters from previous literatures and studies to reduce
the complexity.

Since the recommended duration in quarantine for people suspected of being exposed to COVID-
19 in South Korea was 14 days [28], we set ω = 1/14 per day. Further, Zhang et al. estimated that
the mean incubation period of Delta variant was 4.4 days [29], which was shorter than that of the
original strain reported by Yin et al. (4.4 vs. 6.8) [30]. Thus, we consider σu = σq = 1/4.4 per day.
Some studies have suggested that most COVID-19 infections (over 95.6%) show moderate, mild, or
asymptomatic infections, about 3.08% show severe symptoms (but without requiring ICU admission),
and 1.32% show critically-severe symptoms requiring ICU admission [31, 32]. Consequently, we
set f2 = 0.044. According to [33], the proportion of asymptomatically-infectious individuals is 16%.
Hence, we get f1=0.80304 and 1 − f1 − f2=0.15296 respectively. The modification parameter for the
relative infectiousness of asymptomatically-infectious individuals (ηa) was estimated from [31, 34] to
be 0.5, so we set ηa = 0.5. Due to the strict quarantine policy in South Korea [28], we assume that
the ineffectiveness of quarantine θ = 0. The average lifespan of Korean is 83.3 years [35]. Therefore,
we have the natural death rate d = 1/(83.3 × 365) per day. The latest total population of South
Korea is about N(0)=51,821,669 [36], hence, the recruitment rate Λ is obtained from Λ/d = N(0), so
Λ = 1704.41 per day. The World Health Organization (WHO) explicitly wrote in the document [37]
that the critical characteristic or the minimal requirement is to confer protection for at least six months.
Therefore, we assume that the average duration of vaccine immunity is 180 days, then ηv = 1/180 per
day. It can be seen from [38] that COVID-19 vaccine was on average 86.6% effective in preventing
infections, so we select εv =0.134. According to [39], the maximum and minimum values of disease-
induced mortality rate from August 22 to October 14 were 0.93% and 0.82%, respectively, and we take
the average value as 0.875%. Thus we set δu = δh = 0.00875 per day. To obtain estimation for δa, we
assume that δa = 0.5δu (so that δa = 0.004375 per day). According to [39] and calculation, vaccination
rate ξv is about 7.6 × 10−3 per day. As can be seen from [27], the vaccinated individuals, like the
unvaccinated individuals, needed to be quarantined, so p1 = p2 = 1 in the first stage. However, since
the vaccinated individuals did not need to be quarantined since September 24 [27], p1 = p2 = 0 in
the second stage. In addition, we fix the initial hospitalized population Ih(0) and total population N(0)
as 27,959 and 51,821,669 respectively according to the data information. From [40], it can be known
the number of newly confirmed cases per day confirmed by temporary screening. Let the vaccination

Mathematical Biosciences and Engineering Volume 19, Issue 8, 8035–8056.



8048

proportion on August 22 be ξ. According to [41], ξ=22.5%. The default parameter values and the
initial values of state variables are given in Tables 3 and 4, respectively.

Table 3. Parameter values from the literatures (and those assumed).

Parameter Default values Reference Parameter Default values Reference

Λ 1704.41 [35, 36] 1 − f1 − f2 0.15296 [31, 32, 33]
d 1/(83.3 × 365) [35] r 0.7 [10]
ξv 7.6 × 10−3 [39] σa 0.2435 [10]
ηv 1/180 [37] ϕu 1/5 [10, 31]
εv 0.134 [38] p1 1 0 [27]
ηu 0.5 Assumed p2 1 0 [27]
ηa 0.5 [31, 34] γu 1/10 [10, 31]
θ 0 [28] γh 1/8 [10, 31]
ω 1/14 [28] γa 0.13978 [42]
σu

(
σq

)
1/4.4 [29] δu 0.00875 [39]

f1 0.80304 [31, 32, 33] δh 0.00875 [39]
f2 0.044 [31, 32] δa 0.004375 [39]

The remaining parameters are obtained by fitting the data in the training set. The model is solved
by using lsqcurvefit function in Matlab, which utilizes a nonlinear least squares method to estimate
parameters. The fitting parameters in two stages are given in Table 5.

5.3. Model fitting and prediction

In order to evaluate the fitting and prediction effect, the mean absolute percentage error (MAPE)
is used in this paper. MAPE between the cumulative number of confirmed cases obtained by model
fitting and the actual data in the training set is used to evaluate the fitting effect of the model. Similarly,
MAPE between the cumulative number of confirmed cases obtained by model prediction and actual
data in the verification set is used to evaluate the prediction effect of the model. MAPE is expressed
as:

MAPE =
1
n

n∑
t=1

∣∣∣∣Ĉt −Ct

Ct

∣∣∣∣ × 100% (5.1)

where, Ct is the actual cumulative number of confirmed cases on the t th day.
The best fits to the reported data of the two stages via our model are depicted in Figure 3. Further,

using the above parameters, we make a prediction on the verification set, and the prediction result is
shown in Figure 4. As can be seen, there is a good agreement between the prediction result and the
real data. The fitting and prediction effect of the model are shown in Table 6.

6. Numerical simulations of quarantine and vaccine impact

For simplicity of presentation, we make θ1 = 1− θ and ε = 1− εv, i.e., θ1 is quarantine effectiveness
and ε is vaccine efficacy.
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Table 4. Initial value of state variables.

Variable Initial value Reference

S u 39,465,104 (1 − ξ)(N(0) − S q(0) − Vq(0) − Eu(0) − Eq(0) − Ih(0) −

Iu(0) − Ia(0) − R(0))

S q 478,691 Derived from the number of newly confirmed cases

per day confirmed by temporary screening, ω and ξ

Vu 11,457,611 ξ(N(0) − S q(0) − Vq(0) − Eu(0) − Eq(0) − Ih(0) −

Iu(0) − Ia(0) − R(0))

Vq 138,975 Derived from the number of newly confirmed cases

per day confirmed by temporary screening, ω and ξ

Eu 1664 Derived from Iu(0), Ia(0) and σu

Eq 4852 Derived from the number of newly confirmed cases

per day confirmed by temporary screening and σq

Iu 1751 Derived from the proportion of

symptomatically-infectious individuals, Ih(0) and ϕu

Ih 27,959 Official data

Ia 333 Derived from the proportion of

asymptomatically-infectious individuals, Ih(0) and σa

R 244,729 Derived from official data and the proportion of newly

confirmed cases per day confirmed by temporary

screening

Table 5. Fitted parameters.

Parameter Fitted value of the first stage Fitted value of the second stage

c 10.7392 24.6129

β 0.1037 0.1216

q 0.7727 1

αu 0.0714 0.3156

Table 6. Evaluation of fitting and prediction effect.

Fitting effect of the first stage Fitting effect of the second stage Prediction effect

MAPE 0.23% 0.22% 0.047%
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Figure 3. Data fitting of the model (2.1) in the first and second stages using COVID-19
cumulative number of confirmed cases in South Korea, subfigures (a) and (b) represent them,
respectively.
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Figure 4. Prediction of the model (2.1) (using the estimated parameters).
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Figure 5. The cumulative number of deaths for various values of q and θ1, subfigures (a) and
(b) represent them, respectively.

6.1. Numerical simulations of quarantine impact

First of all, we simulate the impact of the quarantine rate (q) on the spread of COVID-19. As
shown in the Figure 5(a), if the quarantine rate decreases, the cumulative number of deaths will sharply
increase, which negatively affects prevention and control of COVID-19.

Next, we consider the impact of quarantine effectiveness (θ1) on COVID-19 transmission. The re-
sults are shown in Figure 5(b), which imply that implementing strict quarantine measures is an effective
means to prevent the development of the COVID-19 pandemic.

6.2. Numerical simulations of vaccine impact

We firstly assess the impact of the vaccination rate (ξv) on the prevention of COVID-19 transmission.
The simulation results are presented in Figure 6(a), which show that a significantly large increasement
in vaccination rate is necessarily needed for the control of COVID-19.

As can be seen from the comparison results in Figure 6(b), when we increase vaccine efficacy (ε),
the cumulative number of deaths markedly decreases. Meanwhile, it is easy to find that the stronger
the effectiveness of vaccine, the faster the elimination of pandemic.

Finally, we simulate the impact of rate of immunity loss (ηv) on dynamic transmission of the
COVID-19. Depicted in Figure 6(c), the longer duration of vaccine immunity can have a better sup-
pression effect on the spread of pandemic.

7. Discussion

A mathematical model for mutated COVID-19 combining quarantine, isolation and vaccination is
established in this paper, and it is proved that the model is globally asymptotically stable at the DFE if
R0 < 1, and the correctness of this result is verified by numerical simulation. The unknown parameters
are obtained by fitting the COVID-19 epidemic data in South Korea from August 22 to October 14,
2021 in stages, and MAPE in two stages are 0.23 and 0.22%, respectively. The fitting effect of the
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Figure 6. The cumulative number of deaths for various values of ξv, ε and ηv, subfigures (a),
(b) and (c) represent them, respectively.

model is satisfying. In the prediction of the data set from October 15 to October 20, 2021, MAPE is
0.047%, and the prediction effect is satisfactory, which also shows that the model is feasible. Numerical
simulations indicate that it is essential to implement strict quarantine measures and strengthen contact
tracing for combating the spread of COVID-19. Meanwhile, increasing vaccination rate and getting
the vaccines with more effective and the longer duration of vaccine immunity have positive impact on
the prevention of pandemic transmission.

However, there are still many issues worthy of further study. For instance, most parameters (such as
quarantine rate and vaccination rate) are dynamically changing during the development of COVID-19,
but these characteristics are not taken into account in the current model. Thus, dynamic model with
stochastic parameters deserves further study. Besides, the severity of infection is different in reality, so
we can consider further the confirmed individuals with common and severe symptoms. These problems
are of great interest which can be left for studying in the near further.
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