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Abstract: In the paper, we propose the modified generalized neo-fuzzy system. It is designed to 
solve the pattern-image recognition task by working with data that are fed to the system in the image 
form. The neo-fuzzy system can work with small training datasets, where classes can overlap in a 
features space. The core of the system under consideration is a modification of multidimensional 
generalized neuro-fuzzy neuron with an additional softmax activation function in the output layer 
instead of the defuzzification layer and quartic-kernel functions as membership ones. The learning 
procedure of the system combined cross-entropy criterion optimization using a matrix version of the 
optimal by speed Kaczmarz-Widrow-Hoff algorithm with the additional filtering (smoothing) 
properties. In comparison to the well-known systems, the modified neo-fuzzy one provides both 
numerical and computational implementation simplicity. The computational experiments have 
proved the effectiveness of the modified generalized neo-fuzzy-neuron, including the situation with 
shot training datasets. 

Keywords: medical diagnostic; neo-fuzzy neuron; online learning; small training set; overlapping 
classes; membership functions 
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1. Introduction  

Nowadays, approaches that are based on computational intelligence [1–3] have become 
widespread due to their effectiveness in solving various tasks in many fields. One of them is the 
healthcare field, in particular medical diagnostics tasks and data processing [4–7]. In some cases, 
information can appear in different notations—the input can have image form, leading to the image 
recognition classification problem, and classes (of diagnosis, for example) can overlap in a 
multidimensional feature space. Also, in real-world tasks, the data can be incomplete, or even the 
length of datasets can be small, forming a prior information deficit problem. 

The approaches that proved their efficiency, including universal approximating properties and 
high-quality classification, in this field, medical diagnostic tasks are artificial neural networks, 
including both shallow neural networks [8] and deep ones [9,10]. Even though these systems are 
good classifications, they are crisp and can work only under conditions when classes can be 
separated in the features space. 

In the fuzzy classification class of tasks, the approaches that proved their effectiveness are 
neuro-fuzzy systems [3,11–13]. They are designed as hybrid systems that combine the artificial 
neural network properties and fuzzy inference systems. Nevertheless, they require long training 
datasets to train the system correctly, and as was mentioned earlier, plenty of prior information is not 
always available during the diagnostic task solving. 

Under conditions of a limited number of prior information, the probabilistic neural networks 
(PNNs) [14,15] can be used instead of multilayer neural networks and have shown good results in 
solving medical diagnostic tasks under described conditions. These networks tune according to the 
paradigm of lazy learning [16], based on the principle “Neurons at data points” [17] that means in the 
pattern layer of probabilistic neural networks, coordinates of centers of kernel activation functions 
coincide with coordinates of the observations from the training dataset. According to the classical 
architecture, these systems have to use all prior information from the training dataset, which is the 
main drawback of the system: when a new observation from the training dataset feeds into the 
system, a new neuron in the pattern layer is formed, restructuring the system. Of course, taking into 
account all useful information is a necessary step; however, this process is time-consuming and leads 
to the well-known problem Curse of dimensionality. 

Considering situations of limited prior information in the training dataset and processing the 
data in the learning mode, the neo-fuzzy systems [18–21] have shown their effectiveness because 
they have good approximating properties, thus the learning procedure can be performed in real-time 
with a high learning speed [22]. 

Despite significant advantages, the recognition system, which is based on the neo-fuzzy neuron, 
cannot work under conditions of multiclass classification [23]. Also, the system contains too many 
activation functions and parameters, making it cumbersome for computational implementation. 

To overcome this problem, we can use the idea of a generalized neo-fuzzy neuron [24]. In the 
general case, it is a multidimensional approximating system, however, it is not designed to solve 
classification problems, we propose to introduce the generalized neo-fuzzy neuron modification to 
solve pattern recognition-classification problem under conditions of a limited dataset and 
overlapping classes with high classification accuracy and speed. 
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2. Materials and methods 

2.1. Architecture of modified neo-fuzzy-neuron for fuzzy classification 

The architecture of the system for pattern recognition under the conditions of overlapping 
classes is shown in Figure 1, and contains four layers of information processing:  the input (zero) 

layer receives a vector of features  1( ) ( ),..., ( ) ,..., ( ) R
T n

i nx k x k x k x k 
 
(here— 1, 2,...,k N or the 

observation number in the training sample or the time of the discrete-time in the case when the 
information comes in a sequential online mode). 

 

Figure 1. Architecture of modified generalized neo-fuzzy neuron for pattern recognition task. 
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This vector feeds into the first fuzzification layer, formed by 
1

n

ii
h h


   membership 

functions ( ),li ix  as in traditional neuro-fuzzy systems, such as ANFIS or the Takagi-Sugeno-Kang 

system. Fuzzified signals are fed to the second layer of tuned synaptic weights jliw , the total number 

of which is mh parameters. The system is trained by adjusting these weights in the optimization 
process (either batch or recurrent in online mode) of adopted criterion for the goal function learning. 
The third layer is formed with m(n + 1) of elementary adders, on the output of which vector signal 

 1( ) ( ),..., ( ) ,..., ( ) R
T m

j mo k o k o k o k   feeds to the input (fourth layer), formed by softmax 

activation functions [11]. Then on the outputs of the system appears the vector signal

. It sets the level of fuzzy membership of the observation 

vector to all classes , 1,2,...jCl j m —in the form: 

 

1

1

ˆ ( ) softmax ( ) exp( ( )) exp( ( )) , 1,2,... .
m

j j j p
p

y k o k o k o k j m





 
   

 
  (1) 

Thus, the system under consideration implements a nonlinear transformation 

    ˆ ( ) ( ) ( 1) ( )jy k SM k w k x k    (2) 

where,  1( ) softmax ( ),...,softmax ( ),...,softmax ( ) ,
T

j mSM k o k o k o k  × is the symbol of direct 

product,  ( 1)w k m h     is the matrix of adjusted synaptic weights that were obtained from the 

training dataset’s observations,
  11 1( ( )) ( ( ( )),x k x k    21 1( ( )),x k ...,

11 1( ( )),h x k   ...,   ( ( )),li ix k  

...,   ( ( ))) .
n

T
h n nx k  

Triangular kernel functions are usually used as membership functions in neo-fuzzy neurons and 
satisfy the Ruspini unity partition conditions. This leads to the fact that in the features space, the 
separating hypersurfaces are approximated by piecewise linear functions. However, this type of 
functions does not always provide the required accuracy of the approximation. At the same time, on 
each learning step, only two neighboring functions are “fired” at each input, and only 2n is adjusted 

instead of 
1

n

ii
h h


   synaptic weights, which naturally speeds up the learning process and is 

undoubtedly, is an advantage. Also, it is possible to increase the approximation accuracy by using 
B-splines, which provide the unity partition conditions as well. However, the number of adjusted 
weights at each step increases significantly.  

The necessity for meeting the Ruspini partitioning conditions is because both the neo-fuzzy 
neuron and the generalized neo-fuzzy neuron do not have an output defuzzification layer, which is 
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always present in traditional neuro-fuzzy systems. 
In the system under consideration, softmax-activation functions form the output layer that not 

only solves the defuzzification problem by ensuring that the condition is met but also provides a 
solution to the problem of pattern recognition: 

 
1

ˆ ( ) 1
m

j
j

y 


  (3) 

In other words, unity partition conditions do not impose on membership functions. 
Indeed, it is possible to take traditional Gaussians or Cauchyans as membership functions that are 

used in neuro-fuzzy systems. However, at the same time, it would be necessary to tune absolutely all 
synaptic weights on each step that sophisticates the implementation. 

Thus, we propose to use the fourth-degree polynomials—so-called quartic-kernel functions as the 
membership functions, which are shown in Figure 2. 

 

Figure 2. Quartic kernel functions as membership functions of modified neo-fuzzy-neuron. 

Here,    ,i min i maxx x is the interval for changing the signal at the i-th input of the system, 

    

1
i mi a

i

n i m x
i

x x
r

h





 (4) 

is the distance between two neighbouring centers of membership functions at i-th input, 



8008 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8003–8018. 

 
 

22

2
( ) 1

i

i li
l i

i

x c
y x

r


     
    

 (5) 

lic   is the parameters of the membership functions centers,    max 0,     is the projector on 

positive ortant. 
In the general case, they are arbitrarily placed on the absciss as shown in Figure 3. 

 

Figure 3. Unsymmetrical quartic kernel functions. 

These functions in the analytical interpretation have a form 

 

 
 

 
 

2
2

2

1,

2
2

2

1,

( ) 1 ,

( ) 1
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l i li

i li
liR i

l i li

x c
y x

c c

x c
y x

c c







            


       
     

 (6) 

where, the indices L, R mean “left”, “right”. 
It is easy to see that these functions are close to splines in terms of their precision properties. At the 

same time, on the inputs of the system, only two synaptic weights need to be tuned per learning step. 
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2.2. The leaning of modified generalized neo-fuzzy-neuron for fuzzy pattern recognition 

The learning procedure of the system under consideration is implemented by optimizing the 
cross-entropy criterion. It nowadays is widely used in the problem of image-pattern recognition using 
deep convolutional neural networks [10]. This criterion has a form: 

 
1 1 1

ˆ( ) ( ) ( ) ln ( ) ( ) ln softmax ( )
m m m

j j j j j
j j j

E k E k y k y k y k o k
  

        (7) 

here, ( )jy k   is where an external training signal that can take only two values  

 
1 ( ) ,

( )
0

j

j

if x k Cl
y k

otherwise


 


 (8) 

the so-called “one-hot coding”. 

Correspondingly, in the vector of these signals  1( ) ( ),..., ( ) ,..., ( ) ,
T

i my k y k y k y k   there is 

only 1 unit, and all other components are zero. The optimization process in the general case can be 
written in the form 

  ( ) ( 1) ( )( ( ) ( 1) ( ( ))) ( ( )),Tw k w k k y k w k x k x k        (9) 

where, ( )k is a learning rate. 

The speed optimization of this procedure [25] leads to the algorithm: 

 
2

( ) ( 1) ( ( ))
( ) ( 1) ( ( ))

( ( ))

( 1) ( ( ) ( 1) ( ( ))) ( ( ))

Ty k w k x k
w k w k x k

x k

w k y k w k x k x k

 


  

 
   

    

 (10) 

where,   is a symbol of pseudoinversion according to Moore-Penrose. 

It is easy to see that the Kaczmarz-Widrow-Hoff algorithm [26,27] is a generalization of the 
matrix version in the artificial neural networks theory optimal algorithm for learning. 

Filtering (smoothing) properties in the case of distorted perturbations of input observations can 
be added to the training procedure using a matrix modification of the so-called exponentially 
weighted stochastic approximation [28] in the form 

 

1

2

( ) ( 1) ( )( ( ) ( 1) ( ( )) ( ( ))),

( ) ( 1) ( ( )) ,0 1

Tw k w k r k y k w k x k x k

k k x k

 

   

     


    
 (11) 

where, is the forgetting factor. When 1,    the algorithm is converted into a matrix version of the 



8010 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 8003–8018. 

Goodwin-Ramage-Caines stochastic approximation algorithm [29]  when 0  the algorithm is 
converted into a matrix version of the Kaczmarz-Widrow-Hoff one. 

When alpha is one, the algorithm transforms into a matrix version of the 
Goodwin-Ramage-Caines stochastic approximation algorithm [28]; when alpha is zero, the algorithm 
transforms into a matrix version of the Kaczmarz-Widrow-Hoff one. 

Generally, not only the synaptic weights can be tuned, but also the location of the membership 
functions centers in the first layer. So, to improve the quality of learning, it is possible to use ideas 
such as lazy learning, which is used in Specht probabilistic neural networks, and Kohonen 
self-leaning [29] on the principle of the Winner takes all (WTA).  

The tuning of the membership function can be described in the form of the following steps:  
• Set the threshold of the inseparability of two neighboring centers. 

  min 1, min
;i li l ic c    (12) 

• feed the observation x(1) at each input, form the first membership functions with centers: 

  1 (1) (1);i ic x  (13) 

• feed the observation x(2), and check the conditions: 

  1 min(1) (2) 1, 2,..., .i i ic x i n     (14) 

Form new centers (2)ic  at these inputs where inequality is violated, and remains only where 

inequality satisfies; 
• check the conditions: 

    1 1 1 1(2) (2) 1 (2) (1)i i i ic c x c    (15) 

and for those inputs where this inequality is true, tune the centers according to the WTA rule; 
• check the conditions: 

  min 12 (1) (2)i i ic x    (16) 

and for those inputs where it is done, form new centers according to the principle Neurons at data points: 

  2 (2) (2).i ic x  (17) 

The process of forming new centers continues until it is formed 

  max i min

min

1i
i

i

x x
h




   (18) 

membership functions at each input. 
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It is clear that as a result of such a lazy self-learning procedure, a different number of 
membership functions will be formed at each input. At the same time, their smallest number is two 
functions that are formed at the inputs that receive binary variables: “yes” or “no”, “0” or “1”, “there 
is a symptom” or “no symptom”, and so on. 

3. Results 

3.1. Dataset overview 

Pneumonia is a serious disease in which inflammation occurs in the lungs. Children are much 
more likely to develop severe complications than adults, and in general, this disease often proceeds 
with difficulty due to various reasons. Also, the pneumonia mortality rate is higher than HIV/AIDS, 
malaria, and measles combined [30]. According to the latest reports of the World Health 
Organization (WHO), it kills around 2 million children under five years old, making it the leading 
cause of the children mortality, most cases (approximately 95%) of which occur in Southeast Asia 
and Africa. 

The leading causes of pneumonia are bacterial and viral. Both of them require different 
approaches to their management, but the key component in diagnostics of described cases is chest 
X-rays. However, obtaining radiographic data from a young patient is complicated compared to 
adults. In this case, it is hard to standardize the image to show the physiology of the patient on the 
X-ray. At the same time, the rapid interpretation of such results is rarely available in countries where 
such disease is progressing. 

Data on medical image classification comes from the work [31] and contains pediatric X-ray 
images collected in a “Chest X-ray Images” dataset. It has two folders under the titles of two 
categories of chest X-ray images Normal and Pneumonia. In the second folder, two types of 
Pneumonia are specified by the file name: Bacteria and Viruses. 

Table 1. The propositions of the “Chest X-ray Images” dataset. 

 Training set Test set 

 Observation Present Observation Present 

Normal 1349 25.78 234 37.5 

Bacteria 2538 48.51 242 38.78 

Virus 1345 25.71 148 23.72 

Total 5232 100 624 100 

The total number of X-ray images in the training set is 5232, and the test set contains 624 
observations and proportions of the train-test split considering the two types of pneumonia presented 
in Table 1. 

Figure 4 shows observation from the dataset represents class Normal and shows clear lungs 
without any abnormal foggy areas. 

Figure 5 shows observation from the dataset that represents classes “Bacterial pneumonia” (left) 
typically characterized by consolidation and air bronchogram sign, whereas “Viral pneumonia” (right) 
manifests with a Tree-in-bud sign and air tapping. 
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Figure 4. Example of chest X-ray from class Normal. 

  

Figure 5. Example of chest X-ray from class “Bacterial pneumonia” (left), and class 
“Viral pneumonia” (right). 

3.2. Models for comparison overview  

Machine learning algorithms are widely used as classificators in the medical diagnostic field, 
for example, in reference [32], the support vector machines (SVM) using local binary patterns (LBPs) 
as features are classified the whole medical image, achieving state-of-art accuracy. In [33], the 
authors use not just linear but also RBF SVM for brain tumor detection, considering the situation 
where classes cannot be separated with a straight line, in other words, fuzzy case. Both SVMs 
showed great results, but the accuracy of RBF SVM is higher by around 4%. In [34], the polynomial 
SVM was used in the classification task of medical implant materials and showed high accuracy, 
however, the proposed method was time-consuming compared to the basic method. 

The CNN-based deep neural system is popular in the medical classification task [35–37]. 
Among various architectures of CNN, ResNet characterizes by high accuracy and the ability to work 
with relatively small training sets. Also, according to the architecture, there is no need to fire all 
neurons in every epoch, improving accuracy and reducing learning time.  
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The distinctive feature of the Capsule Neural Networks [38–41] is equivariance, keeping the 
spatial relationship of objects in an image, and at the same time, the result does not impact the 
object’s orientation and size. In [39], Capsule Neural Networks classified brain tumors on Magnetic 
Resonance Imaging (MRI) images and got 86.56% prediction accuracy. Moreover, the reference [38] 
presented a Capsule Neural Networks are based solution to classify four types of breast tissue biopsies 
from breast cancer histology images. They achieved 87% accuracy with the same high sensitivity.  

So, as the baseline, for the traditional method Linear SVM, RBF SVM, polynomial SVM as the 
classifier, the ResNet and the Capsule Network with optimal configuration as CNN-based algorithms. 

3.3. Environment setup  

The hardware setup is the following: for SVM classification, an ordinary high-performance 
computer is enough, like 8G memory, i7 (2.70 GHz), and a 256G solid-state drive (SSD) disk. 
However, training both shallow and deep neural networks should use GPU to accelerate the process. 
In this paper, we used a Google Cloud GPU with standard configurations. Also, we used a virtual 
machine instance with one core of CPU, 16 G memory, and an Intel(R) Xeon(R) CPU@2.20GHz. 

The software setup is the following: to test all three modifications of SVM classificators on 
the “Chest X-ray Images” dataset was developed with Python and ran on a laptop. The Capsule 
network and ResNet python implementations were run on a VM in Google GPU Cloud to test 
their performance. 

3.4. Data pre-processing 

This paper focuses on the image classification where observations are supposed to be typical, 
the same size, but, as can be seen from Figures 4 and 5, all images have different sizes. Also, the 
initial X-ray images have a different quality that typically depends on scattering radiations, receptor 
contrast, and contrasts themselves [42]. Thus, an image should be processed with Value Of Interest 
(VOI) transformation. 

Some potential bias appears if we consider the variety of calibrations and range of dynamics. 
Hence, to make the image uniformly dynamic, histogram equalization was used. Then an image 
intensity was normalized in the range [0, 1] and standardized, so all observations in the dataset have 
the same size. 

3.5. Experiment design and results 

In the medical diagnostic field, it is hard to collect enough observations to form a long enough 
dataset for it to be used to train deep neural networks to obtain high classification accuracy. Hence, to 
analyze the ModGNFN performance on different size datasets, we split the original dataset “Chest 
X-ray” into subsets of the sizes 50, 100, 200, 400, 800 and 1600. The following experiment aims to 
process small datasets along with extremely small ones. 

We observe all SVM models provide the lowest classification accuracy on the small number of 
samples. Methods this group poly SVM has an insignificant advantage. However, SVMs can train on 
a computer with a minimal configuration described in Section 3.3., a short training time, within 2 
hours for the considered hardware configuration. It took more than 22 hours for the CapsNet to train, 
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which is the longest time. This network also requires the most memory for training. At the same time, 
the advantage of the proposed networks is at each moment k, only two neighboring functions are 
fired, so only two synaptic weights are tuned at each input. This property speeds up the learning 
procedure leading, so the time consumption of the system is less than 4 hours on the small datasets. 

Table 2. The comparative analysis of the obtained results. 

Methods 
Chest 

X-ray50 

Chest 

X-ray100 

Chest 

X-ray200 

Chest 

X-ray400 

Chest 

X-ray800 

Chest 

X-ray1600

RBF SVM 0.379 0.436 0.501 0.565 0.581 0.679 

Linear SVM 0.345 0.408 0.449 0.513 0.623 0.698 

Poly SVM 0.418 0.475 0.536 0.587 0.670 0.712 

ResNet-18 0.485 0.617 0.701 0.842 0.816 0.853 

ResNet-20 0.527 0.641 0.735 0.867 0.895 0.922 

CapsNet 0.510 0.597 0.698 0.750 0.792 0.869 

ModGNFN 0.625 0.702 0.776 0.824 0.840 0.856 

Table 3. The comparative analysis of the obtained results with augmentation. 

Methods 
Chest 

X-ray50 

Chest 

X-ray100 

Chest 

X-ray200 

Chest 

X-ray400 

Chest 

X-ray800 

Chest 

X-ray1600

RBF SVM 0.413 0.481 0.547 0.622 0.648 0.712 

Linear SVM 0.372 0.454 0.536 0.570 0.654 0.703 

Poly SVM 0.523 0.552 0.585 0.657 0.714 0.781 

ResNet-18 0.592 0.664 0.752 0.846 0.875 0.908 

ResNet-20 0.657 0.708 0.763 0.873 0.903 0.915 

CapsNet 0.564 0.631 0.716 0.784 0.835 0.892 

ModGNFN 0.710 0.748 0.825 0.839 0.846 0.885 

However, on extremely small datasets, in terms of accuracy, the network yields both the 
proposed generalized neo-fuzzy-neuron system (ModGNFN) network and the ResNet network. Both 
networks show comparable recognition accuracy, but the proposed network has an advantage on very 
small (up to 400 elements) sets. 

A comparison of Tables 2 and 3 shows that augmentation improves the accuracy of 
classification based on the increase in the amount of data online due to the transformation of the 
original image. 

4. Discussion 

Medical image is a unique field formed with tomography (ultrasound), radiographic projection 
(X-ray), and photography (dermatology) that contain elementary structures and show characteristics, 
distinct features, relative location of organs, and, in general, diagnostically relevant information [43]. 
Medical images consist of various geometrical forms shaping together an organ as well as its relative 
location and showing characteristics and distinct features. The main trait that helps recognize these 
patterns uses texture measurements, edge orientation, histograms of a hue, intensity and saturation. 
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Therefore, medical images contain overlapping patterns, representing classes that can overlap in 
features space. 

The proposed diagnostic system is based on the modified generalized neo-fuzzy-neuron and 
focuses on highlighting such overlapping patterns. As inputs, the system uses a vector of features that 
is pre-processed image input, for example, with VGG16. In the first hidden layer, two quartic-kernel 
membership functions are fired, which allow filtering of the most vital features of patterns in the 
image. In this system, quartic-kernel functions allow narrowing down training time, speeding up 
processing procedure. The system includes two summation layers: the first one group together 
features of initial images with similar membership levels, which help to unite complex pattern 
elements that describe the shape and location of the organ. The obtained simple patterns can have 
different intensity levels on the initial image, and the aggregation of a group of such patterns allows 
to find a part in the image showing organ damage. Figure 5 shows an example of such a pattern. The 
second hidden layer is formed with adders where obtained outputs from the previous layer are 
grouped in a united pattern of features that provide further diagnostics. Then, in the output layer, 
obtained results from the second layer are deffuzified, computing the membership levels of an image 
to each class. This architecture combines quartic-kernel membership functions, and summation of 
obtained features allows getting base patterns and classifying them under conditions of the small and 
extremely small dataset with an accuracy of 0.776. The ensemble approach in ResNet showed its 
advantages with a further dataset increase from 400 elements. The system under consideration, on 
long datasets, obtains classification accuracy from 0.895 and more. Thus, the proposed modified 
generalized neo-fuzzy-neuron is designed for fast classification of medical images on small and 
extremely small datasets that allows using it in online mode. 

The further development of the considered approach can be implemented by combining the 
classification and forecasting, particularly for the epidemic disease (such as COVID pandemic) in its 
early stages as well as its duration using the GROOMS [44] methodology. 

5. Conclusions 

In the paper, we considered the medical diagnostic problem under the conditions of overlapping 
classes and a small training dataset. We introduced the modified neo-fuzzy neuron. Its distinctive 
feature is an additional softmax layer, which allows simultaneously solving classification problems 
and implementing defuzzification of output signals. The usage of quartic-kernel functions as a 
membership allows the function to reduce the number of adjusted parameters at each learning stage. 
To optimize the algorithm by speed is to narrow down the number of training samples, which is very 
important under conditions of prior information that happens quite often in the medical field. The 
proposed system characterizes by the high accuracy and speed of simple numerical implementation, 
which the experiment results with real medical data confirms. 
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