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Abstract: Since the emergence of new coronaviruses and their variant virus, a large number of 
medical resources around the world have been put into treatment. In this case, the purpose of this 
article is to develop a handback intravenous intelligence injection robot, which reduces the direct 
contact between medical staff and patients and reduces the risk of infection. The core technology of 
hand back intravenous intelligent robot is a handlet venous vessel detection and segmentation and the 
position of the needle point position decision. In this paper, an image processing algorithm based on 
U-Net improvement mechanism (AT-U-Net) is proposed for core technology. It is investigated using 
a self-built dorsal hand vein database and the results show that it performs well, with an F1-score of 
93.91%. After the detection of a dorsal hand vein, this paper proposes a location decision method for 
the needle entry point based on an improved pruning algorithm (PT-Pruning). The extraction of the 
trunk line of the dorsal hand vein is realized through this algorithm. Considering the vascular 
cross-sectional area and bending of each vein injection point area, the optimal injection point of the 
dorsal hand vein is obtained via a comprehensive decision-making process. Using the self-built 
dorsal hand vein injection point database, the accuracy of the detection of the effective injection area 
reaches 96.73%. The accuracy for the detection of the injection area at the optimal needle entry point 
is 96.50%, which lays a foundation for subsequent mechanical automatic injection. 

Keywords: image processing; dorsal hand vein; automatic injection; needle entry point; location 
decision 
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1. Introduction 

During the COVID-19 (corona virus disease 2019) pandemic, health care workers have been 
vulnerable to exposure due to direct contact with patients with infectious diseases. When dealing 
with such cases, medical staff need to wear protective clothing, goggles, etc., resulting in 
inconvenient movement and difficult veinpuncture operation. Furthermore, there is a shortage of 
protective clothing and other protective equipment, which cannot be reused. It is difficult to address 
these physiological problems of medical staff [1–2]. The intravenous injection of a dorsal hand vein 
is a routine part of patient care for medical staff. The success rate of intravenous insertion by 
clinicians is 40% in hard-to-reach patient groups [3]. An automatic hand vein injection robot can 
effectively replace nursing staff to complete daily nursing tasks and effectively reduce their burden 
and risk of infection. 

After the outbreak of the pandemic, how to effectively reduce the risk of infection of medical 
staff has become one of the most important research topics in the industry. A number of research 
teams at home and abroad have invested in the application field of automatic robotic injection. A 
team led by Rutgers University has created a blood collecting robot and conducted the first human 
clinical trial of an automated blood collection and testing device [3]. The team of Qi et al. in Tongji 
University in Shanghai developed an automatic needle and blood collection robot to meet the clinical 
needs of the pandemic, which not only reduces cross-infection but also carries out large-scale needle 
and blood collection work [4]. 

This paper focuses on the realization of the core functions of a dorsal hand vein injection robot 
by adopting a modular design approach. The non-contact dorsal hand vein injection system was 
decomposed into five modules according to different functions: dorsal hand vein imaging, dorsal 
hand vein detection and segmentation, deciding on the needle insertion location, mechanical arm 
control, and injection feedback. Dorsal hand vein imaging and dorsal hand vein detection and 
segmentation are the basis and prerequisite for a successful decision on the insertion point location. 
Therefore, this paper focuses on dorsal hand vein imaging, dorsal hand vein detection and 
segmentation, and insertion point location decision modules. 

In view of the above problems, the purpose of this paper is to develop a hand-back vein 
injection intelligent machine, which is mainly focused on the detection and segmentation of the hand 
back, and the function of the decision. This paper mainly makes the following contributions: 

(1) For the problem of lack of hand vein and vascular information and depth points, a collection 
device was set up to establish information databases of different age groups. The database covers 
dorsal hand vein images of patients aged 20 to 79 years, and images of dorsal hand veins of patients 
of different ages can better test the robustness of the proposed algorithm. 

(2) In view of the problem that the texture of the back of the hand cannot be segmented, the 
AT-U-Net semantic segmentation model is proposed by combining the improved U-Net and 
non-local attention mechanism and upgrading the U-Net network. By introducing non-local, this 
increases the connections between feature points on the map, expands the field of vision between 
veins and blood vessels by mapping neural network characteristics of the hand, increases the 
connections between long-distance veins and blood vessels, and facilitates the separation of 
long-distance veins and blood vessels. Through the U-Netdown structure, the information of feature 
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layer can be deeply fused, and the enhanced feature extraction network has better universality. 
(3) In order to fully extract the skeleton of dorsal palm vein image, an improved Pruning 

algorithm, Pt-Pruning, was proposed. The entry and exit points were calculated by multi-factor 
comprehensive evaluation. It mainly calculates the cross section size of vein vessels, length of dorsal 
hand vein vessels and bending value, and calculates the score of each insertion point by weighting, 
so as to evaluate and find the most effective insertion point of vein injection and later insertion point, 
laying a solid foundation for automatic injection of dorsal hand vein image. 

2. Related work 

2.1. Venous detection 

At present, many auxiliary methods have been developed for venous imaging technology at 
home and abroad. Infrared imaging technology is widely used in the medical field because the 
difference of infrared light reflection and absorption characteristics between blood and surrounding 
tissues is much greater than that of visible spectrum [5–13]. Infrared light source is used to provide 
imaging conditions for intravenous injection. After projection, blood vessel images on human tissues 
can be clearly displayed. With the rapid development of infrared imaging technology, the related 
applications gradually increase. Infrared imaging has two advantages compared with other 
technologies. On the one hand, infrared light easily penetrates the skin, revealing detailed 
information under the epidermis, especially information about subcutaneous tissues. On the other 
hand, compared with the absorption and reflectance of the visible spectrum, infrared light has a more 
prominent effect, and currently medical infrared imaging systems are imaging through this 
characteristic. Researchers and research teams have developed a variety of intravenous AIDS using 
infrared imaging technology, combining image recognition operations in the medical field with 
artificial intelligence. For example, veinlite LEDX, a vein developer developed by TransLite, uses this 
optical imaging feature to display the body’s shallow veins, but the device requires a healthcare worker 
to hold it in hand. Complicated operation procedures, unstable vascular display effect, high cost and 
many other factors are the reasons why the equipment has not been widely promoted and used. 

The near-infrared vein projector is similar to that of the near-infrared imager. The near-infrared 
image information of the body surface is obtained through the infrared imaging technology, and then 
the processed algorithm is projected to the corresponding area, for example, the veins and blood 
vessels are displayed on the skin surface. This design greatly facilitates the progress of vein 
identification technology to a certain extent and facilitates the operation of venipuncture by medical 
workers. Such as vein viewer (Christie Medical) and vein detection eye wear (Evena Medical) 
developed by foreign teams [14], such equipment has clear imaging and very fast imaging speed. 
However, due to its high procurement cost, Therefore, it has not been widely promoted and applied 
in China. 

Compared with near infrared imaging, ultrasonic vein imaging is also widely used. Due to the 
limitations of human hearing, the range of hearing perception is usually 20–20,000 Hz. Other sounds 
beyond that range are inaudible to the human ear and are therefore called ultrasound. Like ordinary 
sound, ultrasonic waves can travel in a certain direction and can penetrate specific objects. When 
ultrasonic waves encounter obstacles, they will form echoes. Ultrasonic waves produce different 
echoes when they encounter different obstacles. The instrument collects echo related data 
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information and displays it on the screen, based on which the internal structure of the object can be 
fully understood. The medical field usually uses ultrasound to assist doctors in the treatment of 
diseases. There are many different types of ultrasound used in medical diagnosis [15]. Among them, 
B-type ultrasound is widely used. It can be detected by B-mode ultrasound to obtain the profile of 
human organs. This method has low cost and no adverse reactions, so repeated examination can be 
carried out. For B-ultrasound image and related processing algorithm, color ultrasound system is 
widely used in hospitals. 

Color doppler ultrasound is a method of imaging tissue in the body using sound waves. It 
generally consists of two parts: color ultrasonic phenomenon and two-dimensional ultrasonic 
imaging. Ultrasound has many advantages and has been used to guide venipuncture by combining 
with ultrasound [16]. However, only clinicians with high puncture techniques and skilled ultrasound 
devices can successfully guide the final process of venipuncture. The procedure requires two health 
care workers, one to attach the probe to the relevant part of the patient and the other to operate on the 
ultrasound information. In ultrasonic images, due to the irregular characteristics of metal materials, it 
is easy to scatter, and it is difficult to observe the specific location information in real time according 
to the information. In order to shorten the distance between the ultrasonic instrument with the patient, 
the researchers designed a sonic flashlight device [17], the device will display the image directly on 
the patient's skin, but monitors and other devices installed on the ultrasonic probe, the technology is 
relatively limited, in the figure to match, need to pass the real anatomy ratio shows that the 
organizational structure, This operation will result in the image displayed in the relevant part of the 
patient is too small and difficult to see, and it is usually impossible to judge the relative position and 
perform effective puncture. Sonic window (BK Ultrasound, Analogic, Inc), a handheld device 
constructed in C-mode Ultrasound imaging, mainly punctures the arm and displays a vertical view of 
the container on the user interface directly above [18]. With the device, images can be displayed to 
realistic anatomical proportions to help medical staff perform venipuncture operations. The device 
has major advantages in real-time performance. It can automatically adjust the scanning depth 
according to the depth of blood vessels, so as to achieve the effect that blood vessels can be 
displayed in the center of the image and achieve better visibility. However, the device can only 
effectively identify thick blood vessels, and cannot recognize thin blood vessels in the application. 
On the other hand, because the display screen is small and the magnification of the device is too 
small, it has certain limitations in practical application. 

In the field of dorsal hand vein segmentation, many research teams and experts have built 
databases for biometrics and tested algorithms in the database. Algorithms during testing, different 
algorithms have different results. Zhao [19] et al. used the filter to smooth the image and protect the 
edge after the operation of the filter. After filtering, the image can avoid part of the fuzzy situation. 
Then the image is enhanced by Gaussian filtering. The image is further enhanced by histogram 
equalization. For the study of venous vessels, Zhang [20] studied the problem of venous 
enhancement, and discussed and verified the influence and effect of histogram correction, fuzzy 
algorithm and wavelet transform on images. Traditional local threshold segmentation methods 
include Niblack, iterative threshold segmentation, Ostu algorithm and so on. Miura Naoto proposed 
the maximum curvature algorithm successively [21]. 

At present, most teams are focused on the detection of elbow veins. Jie et al. proposed an 
algorithm for semi-automatic blood collection by extracting precious veins from elbow [11]. The 
algorithm uses homomorphic filtering, contrast limiting adaptive histogram equalization to remove 
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noise and enhance image contrast, and then realizes elbow vein detection by adaptive threshold 
segmentation, hole filling and open and close operation. Due to the different distribution of hand 
elbow vein and hand dorsal vein, the number of blood vessels in hand elbow vein is relatively small, 
the cross-sectional area of blood vessels is large, and the direction of blood vessels is relatively 
single. The number of dorsal hand veins is relatively large, the cross-sectional area of blood vessels 
is small, and the direction of blood vessels is complex. 

The algorithmic flow of the elbow vein semi-automatic blood collection approach is shown in 
Figure 1. 

Input

Homomorphic filter

Contrast Limited 
Adaptive histgram 

equalization

Adaptive threshold 
segmentation

Morphological 
processing

Closing operatopn

output

 

Figure 1. Vein detection algorithm for semi-automatic blood collection. 

2.2. Insertion point decision for dorsal hand veins 

For intravenous injection into the needle point in the location decision making problems, Xun et 
al. put forward a kind of used for image of hand vein injection automatic detection and labeling 
algorithms [16], this algorithm in segmentation longest vein image information loss, segmentation 
effect is not obvious, and there is no consideration of factors such as the veins cross-sectional area of 
the needle point location decisions. The experimental database of dorsal hand vein in this algorithm 
contains 150 pictures of dorsal hand vein, a relatively small number, and the acquisition equipment is 
greatly affected by external interference light source and light source angle. There are problems of 
image information loss and inadequate segmentation in the segmentation of the longest vein, and the 
influence of the cross-sectional area of veins on the insertion point is not taken into account. 
Nowadays, deep learning extensive research greatly promoted the development of artificial intelligence 
and machine learning, deep learning in many important areas of social development has its place, made 
a number of technical tasks have a breakthrough, especially in view of the great application prospect in 
medical areas, thus allowing more into depth study of the research team [22–25]. 

The flow of the algorithm for the automatic detection and labeling of dorsal hand vein images is 
shown in Figure 2. 
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Figure 2. Automatic detection and annotation of dorsal hand vein injection images. 

3. Materials and method 

3.1. AT-U-Net semantic segmentation network model 

As a convolutional neural network, U-Net can enhance the data and achieve a better image 
segmentation effect through a few images [26]. Compared with traditional neural networks, U-Net 
brings better generalization ability while reducing complexity. Based on this, the medical image 
processing network develops it as the basic network. However, it is difficult to obtain the semantic 
features between long-distance veins and vessels with different shapes in the dorsal part of the hand 
[27–36]. In view of this problem, this paper proposes AT-U-Net. All the databases used are self-built 
dorsal hand vein databases. For details, see Section 4.1.1. 

The AT-U-Net model consists of four parts: Figure 3 provides the model structure. 
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Figure 3. AT-U-NET model structure. 
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Feature extraction using the backbone feature extraction network gives a total of five 
characteristics of the layer: feat1, feat2, feat3, feat4, and feat5. Firstly, the 64-channel convolution of 
[3,3] is carried out twice to obtain a preliminary effective feature layer of [512,512,64], and then 2´
2 maximum pooling is carried out to obtain a feature layer feat1 of [256,256,64]. Then, the 
convolution of 128 channels [3,3] is carried out twice to obtain a preliminary effective feature layer 
of [256,256,128], and then 2´2 maximum pooling is carried out to obtain a feature layer feat2 of 
[128,128]. Then conv3: convolved 256 channels three times [3,3] to obtain a preliminary effective 
feature layer of [128,128,256], and then 2´2 maximum pooling to obtain a feature layer feat3 of 
[64,64,256]. Then: a preliminary effective feature layer of [64,64,512] is obtained by three 
convolution of 512 channels [3,3], and then a feature layer feat4 of [32,32,512] is obtained by 
maximum pooling of 2´2. Finally, a preliminary effective feature layer feat5 of [32,32,512] is 
obtained through three convolutions of 512 channels [3,3]. Since deep features of network contain 
many redundant features, which affect the recognition of effective features, attention mechanism is 
introduced in feat5 of deep features of network. 

After feature extraction, feat5 is used to introduce the directed attention mechanism to obtain 
more feature information between the long distances of dorsal hand veins. 

The non-local attention mechanism is mainly used to capture the long-distance dependency 
relationship of dorsal hand veins, establish the relationship between pixels of veins on dorsal hand 
vein images, and find this relationship to better segment the long-distance dorsal hand veins [37]. 

1
( , ) ( )

( )i i j j
j

y f x x g x
C X 

                               (1) 

In formula (1), i  and j  are the spatial positions, ix  is the characteristic layer feat5 of the 

network output, iy  is the residual structure, f  function is to calculate ix  and all related jx , and 

f  function follows non-local mean and double edge filtering. ( )jg x  is the eigenvalue 

corresponding to the corresponding position, ( )C X  is the normalization parameter. 
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Figure 4. Non-local structure. 
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The non-local structure is shown in the figure. T is the number of video frames, H and W are 
spatial resolution,  ,   and g  are the number of convolutions. And for the matrix multiplication
 and , the dimension after the operation, after the softmax operation, the matrix multiplication 
operation is performed with the third branch, and the dimension is restored to the same dimension as 
the input, and the operation of the formula (2) is performed. 

i z i iz W y x                                         (2) 

In the formula, iZ  is a data stream, iy  represents the residual structure, zW  is usually 

convolved with 1x1, which becomes the same dimension as the original feature graph ix , and ix  is 

the feature layer feat5.In the enhanced feature extraction network, the U-Netdown operation is 
introduced to replace the original operation of copy and crop, so that the enhanced feature extraction 
network has better universality. Figure 5 shows the network structure of the U-Netdown module. 

Input1

Input2

Conv Conv Outputs

DownSampling

 

Figure 5. U-Netdown module structure. 

As shown in Figure 5, U-Netdown has two inputs, corresponding to initial effective feature 
layer feat4 and feat5. The upper effective feature layer corresponds to Input1, and the lower effective 
feature layer corresponds to Input2. First, input1 is downsampling, and then Input1 and Input2 are 
stacked. After the operation is completed, two convolution operations are carried out to complete the 
construction of a U-Netdown module, that is, the feature fusion of two effective features is 
completed. Figure 6 shows the enhancement feature extraction network. 

In Figure 6, block1 performs the upsampling operation, block2, block3, and block4 are the same, 
which are all upsampling operations after U-Netdown, and block5 is the U-Netdown operation. 
U-Netdown feature fusion is beneficial to improve the prediction performance of the prediction 
network. 

In the prediction network, when the input image is rectangular, its shape needs to be changed to 
a square. If the resize operation is performed directly, the image can easily be distorted. In this case, 
the input image is called letterbox_image to ensure that it is not distorted. The letterbox_image 
operation gives the input image a gray bar that needs to be cut off before output. After this, we judge 
the type of each pixel, assign a specific color to each pixel, and convert the format of the segmented 
image to obtain the final prediction result. 

The segmentation effects of the venous and vascular semantic segmentation network model are 
shown in Figure 7(a),(b). Figure 7(a) is the original picture of dorsal hand veins and vessels and 
Figure 7(b) is the dorsal hand veins and vessels segmentation map obtained by invoking the 
AT-U-Net semantic segmentation model.  
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Figure 6. The strengthened feature extraction network. 

     
(a) Original map             (b) Segmentation map 

Figure 7. Segmentation effect of dorsal vein. 

3.2. PT-Pruning: deciding on the dorsal hand vein insertion location 

For dorsal hand vein injection, medical staff should tighten the skin at the lower end of the 
patient's vein with their left thumb and fix it, hold the syringe with their right hand, and insert the 
needle along the vein direction with an angle of 15°～20°, up to the skin. According to the analysis 
of puncture characteristics, a suitable vein for injection has three main conditions: 1) The vein has a 
certain length; 2) The degree of venous curvature is small; 3) The cross-sectional area of venous 
vessels is large. The three conditions can be matched to meet the requirements of the injection. 

After the dorsal hand vein and blood vessel segmentation map is obtained, the veins and blood 
vessels are striped and labeled, and PT-pruning is used to make the decision on the insertion point. 
First, PT-pruning is used to remove burr branches from the refined vascular skeleton image to obtain 
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the longest vein vascular skeleton main line. Then, the straightest area is extracted and its bending 
value is calculated by traversing the main artery of the vascular skeleton through a sliding window of 
fixed size. Next, the vascular segmentation map of the corresponding area is extracted and the 
cross-sectional area of the vessels is calculated. The barycentric coordinates of the veins in the 
selected area are taken as the insertion point. An entry point is determined for each blood vessel. 
Finally, the bending value of the corresponding area and the score of the vascular cross-sectional area 
are weighted to calculate the entry point of each blood vessel. The entry point with the highest score 
is selected and recorded as the optimal entry point of the dorsal hand vein, while the other entry 
points 0pt  are recorded as effective entry points 1pt , 2pt , 3pt . 

Figures 8 and 9 show the specific flow chart of PT-Pruning. 
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Figure 8. PT-pruning flowchart. 
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Figure 9. Pruning flowchart. 

The basic idea of PT-pruning is as follows: First, the nibbling method is used to determine the 
endpoints, solitary points, and encounter points in the skeleton, an undirected weighted graph data 
structure is used to store and refine the skeleton image, and then the longest path of the undirected 
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weighted graph is calculated and determined as the skeleton main line. Here, nibbling is the 
elimination of a skeleton point in the skeleton whenever a skeleton point type is determined. The 
type of skeleton point can be judged by the cross number and striation number in the neighborhood 
of skeleton point 8. The vertex of the skeleton undirected weighted graph structure is the first 
endpoint, solitary point, and encounter point, and the weight of the edge is the length of the path 
between two vertices. The longest path can be determined by calculating the diameter of the 
undirected graph. It is divided into four stages: nibbling stage, calculation stage, reconstruction stage, 
and position decision [38]. 

(1) The nibbling stage. 
The specific process of the nibbling stage is shown in Figure 10. 

Get the 
cannibalization 
starting point

Judgement point 
type

Get the next point

Isolated point Encounter point、Endpoint

Get the next point

 

Figure 10. The cannibalization stage. 

(2) Calculation stage. 
After the nibbling phase is completed, a complete skeleton undirected weighted graph G  will 

be obtained, in which the vertex G  is the first end point, solitary point, and encounter point of the 
skeleton, and the weight of the edge is the length of the path between the two vertices. 

Since the backbone skeleton is generally the longest vessel, the computation of the skeleton can 
be converted to searching for the longest path in the undirected weighted graph G . The distance 
between the two vertices farthest apart in a dorsal hand vein diagram becomes the diameter of the 
graph, so this paper obtains the longest path by calculating the diameter of the undirected graph. The 
algorithm is described as follows: Select any vertex s  in the graph and find the vertex x  farthest 
from it; find the farthest vertex y  of x , the distance between vertex x  and vertex s  is the 

diameter of the graph. 
At the end of the calculation phase, we obtain the vertices contained in the longest path longeste  

of the undirected weighted graph which are also contained in the backbone of the vascular skeleton. 
(3) Reconstruction stage. 
In the nibbling stage, all non-zero pixels in the image will be nibbled away, so we get a blank 
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image after nibbling. In the reconstruction phase, we start from the first vertex v  of longeste , visit the 

edge longeste  (adjacency list node) of the vertex that is adjacent to v  and belongs to e , read the 

pixel set pts  contained in this path from e , and set all pixel points pts  H to 255. This process 

continues until the last vertex of longeste  is reached. The vascular pruning effect for the dorsal hand 

vein is shown in Figure 11(a),(b). 

               
(a) Vein segmentation figure          (b) Main line of vascular skeleton 

Figure 11. Extraction of skeleton trunk line of dorsal vein by PT-Pruning. 

Figure 11(a) is a vessel in the dorsal vein of the hand, and Figure 11b is the arterial vein 
skeleton after PT-Pruning. 

After the arterial vein skeleton is obtained, the number of pixels contained in it is denoted as the 
length of venous vessels, X . Then, a fixed size sliding window is used to traverse the skeleton trunk 
line, and the bending value of blood vessels in the sliding window is calculated. The calculation 
method is as follows: the main vein skeleton in the sliding window area is fitted into a straight line, 
and formula (3) is used to calculate the sum of distances between points on the skeleton line and the 
straight line, which is defined as the bending value of vessels in this section, denoted as Y . 

2 21

=
n

i i

i

Ax By C
Y

A B=

+ +

+
å                             (3) 

In the formula Y , A , B , and C  are the value of vascular curvature; ix , iy  is the 

coordinate of point i ; n  is the number of points on the skeleton line in the sliding window. 
The original image of veins in the straightest region where the sliding window is located can be 

obtained by sectioning. The number of pixels contained by veins in this region is denoted as the 
cross-sectional area of veins and is denoted as Z . The cross-sectional area of blood vessels is 
determined by the number of pixels contained. The more pixels contained, the larger the 
cross-sectional area of blood vessels in this part. The barycenter of veins in the image of this region 
is selected as the entry point, and one entry point is selected for each vessel. Finally, a decision needs 
to be reached, and a normalized method is used to calculate the bending value and cross-sectional 
area of the straightest area of each vein and vessel according to formula (4), which is based on a 
weighted decision algorithm of the vein and vessel entry point, and the scores are sorted. The 
insertion point with the highest score is denoted as the optimal insertion point ( 0pt ), and the other 

insertion points are denoted as the effective insertion points: 1pt , 2pt , 3pt , ..., ptn  (n is the 

number of veins). 
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In formula (4), pt  is the score of the insertion point; A , B  and C  are the coefficient of the 

linear equation; iX  is the length of the arterial skeleton after pruning algorithm processing; iY  is 

the bending value of the arterial skeleton in the selected specific region; iZ  is the cross-sectional 

area of the arterial veins in the selected specific region; n  is the total number of veins. 
The effective flow of the PT-Pruning algorithm is shown in Figure 12. 

Operation 1

Operation 2

Operation 3

Operation 4

Operation 5

Operation 6

 

Figure 12. Decision of needle entry point position. 

Operation 1 in Figure 12 splits different vessels in the venous vessel segmentation diagram to 
obtain independent venous vessels. Operation 2 removes burr branches of vein vessels by 
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PT-Pruning to obtain the longest skeleton trunk of the vein vessels. Operation 3 uses the sliding 
window of fixed size to traverse the vascular skeleton main line, calculates the distance between the 
skeleton main line and the fitting straight line in the sliding window, obtains its bending value, and 
selects the region with the minimum bending value. The bending value in the left picture is 20.5277, 
and the bending value in the right picture is 20.5056. Operation 4 is the blood vessel image 
corresponding to the region with the smallest bending value, and the cross-sectional area of the 
corresponding blood vessel is calculated. The cross-sectional area of the blood vessel in the left 
picture is 1877.5, and the cross-sectional area of the blood vessel in the right picture is 2356.0. 
Operation 5 takes the center of gravity of blood vessels in the selected area as the insertion point and 
displays its position coordinates in the original image. The insertion point position of the left picture 
is (499, 341), and the insertion point position of the right picture is (597, 210). After obtaining the 
entry points of each vessel, operation 6 sorts the entry points by calculating the bending value and 
cross-sectional area of the entry points of each vessel, and obtains the optimal entry points with 
coordinates of 0pt  (499, 341) and 1pt  (597, 210). The pruning algorithm consumes 10–20 ms. 

4. Experimental verification 

4.1. Dorsal hand vein database 

4.1.1. Setting up the dorsal hand vein collection device 

The core technology of handlet vein injection is venous vessel testing and entry point position 
decision, and the database is the key to overcome the core technology. Since there are few disclosed 
data sets, the data set is constructed based on the multi-optical spectral handlet venous acquisition 
system that is independently developed. 

Hand venous venous imaging is different due to illumination conditions, and its imaging effect 
is also different, and it is ideal for the use of ordinary photographic vein vascular imaging. There is a 
large number of hemoglobin in venous blood vessels, and hemoglobin is more likely to absorb 700–
1000 nm under near-infrared light, and the imaging characteristics is more obvious than the 
subcutaneous tissue below the blood vessel. Under this imaging principle, the experiment was used as 
an image acquisition device using 730, 850 and 940 nm. The specific device is shown in Figure 13. 

 

Figure 13. Dorsal hand vein imaging acquisition equipment. 
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The dorsal hand vein imaging platform consists of four parts. The first part is a CCD black and 
white camera which is used to obtain the dorsal hand vein image. The second part is the band pass 
optical filter, which can reduce the influence of other wavelengths of the other wavelengths of light, 
and reduce the effect of other wavelengths of the light intensity, making the characteristics of the 
blood tube more clear and increasing the accuracy of the camera’s photography. The third part is a 
multi-spectral array and homogeneous plate. The multi-spectral array is uniformly arranged around 
the CCD camera to provide sufficient light source for the imaging of dorsal hand veins. In order to 
prevent the light source from concentrating too much and forming a light spot, a homogeneous plate 
is placed in front of the multi-spectral array. The fourth part is the hand-held infrared light display 
instrument. When collecting venous images, a person puts their palm on the display instrument. 
Infrared light can pass through the palm to improve the vein and vascular imaging performance and 
address the problem of vascular hiding and imaging not obvious in patients. 

Experimental objects are widely distributed, and the agenda is distributed in 204-bit genders, the 
age of 20 and 79 years old, collecting left hand and right hand back vein images, handlet vein image 
data set contains 2456 pictures. The data set was divided according to the ratio of 9:1. Among them, 
the training set contained 2210 images and the test set contained 246 images. A total of 2456 images 
were tagged, and 2456 experiments were conducted for each method. 

The image is shown in Figure 14. 

Original picture of hand veins 

First person Second person Third person Fourth person Fifth person 

 

 

Figure 14. Original dorsal hand vein images. 

4.1.2. Establishment of dorsal hand vein database 

The original images in the database are divided into two parts: vein and blood vessel, and 
background. The label of the former is achieved by marking the vein and blood vessel on the back of 
the hand pixel by pixel. The original database images and label images are shown in Figure 15. 

4.1.3. Establishment of dorsal hand vein insertion point database 

The original pictures in the database were divided into two parts: optimal injection point and 
effective injection point. Each blood vessel was marked with an injection point, and the optimal 
injection area and effective injection area in the dorsal vein of the hand were marked. The optimal 
injection area was marked as, and the effective injection area was marked as 1pt , 2pt , 3pt , etc. The 

original database images and label images are shown in Figure 16.  The data set was divided 
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according to the ratio of 9:1. Among them, the training set contained 2210 images and the test set 
contained 246 images. A total of 2456 images were labeled, and a total of three specialists labeled 
venous entry points. 2456 experiments were performed for each method. The 5 groups of images in 
the figure are collected by experts according to the dorsal hand vein and incorporated into the 
medical knowledge of needle point puncture. The labeled dorsal hand vein enters the needle point. 
The first group was marked with one entry point, which was the optimal entry point; the second 
group was marked with two entry points, one optimal entry point and one effective entry point; the 
third group was marked with three entry points, one optimal entry point and two effective entry 
points. The fourth group was labeled with two entry points, one optimal entry point and one effective 
entry point. The fifth group marked one insertion point as the optimal insertion point. 

Image Label Image Label Image Label 

   

   

   

Figure 15. Original picture and corresponding label. 

 First group Second group Third group Fourth group Fifth group 

Original 

image 
  

Label 

image 
  

Figure 16. Original image and label image. 

4.2. Evaluation indicators 

There are three evaluation indicators of hand back venous blood vessels, respectively: MIOU, 
F1-score, MPA and the calculation formula is: 

( ) ( )
2

TP TN
TP FP FN TP FN FP

MIOU


                    (5) 

2 Pr Re
1
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ecision call
F score

ecision call

 
 


                     (6) 
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( )

_
isum P

MPA
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                            (7) 

In the formula (5), TP and TN are classified correct blood vessels, background pixels. FP and 
FN are categorical erroneous blood vessels, background pixels; F1-score in formula (6) is similarity 
to the handlet vein database, the iP  in the formula (7) is the correct rate of each category, 

_num classes  is the number of categories. 

There are two evaluation indexes for needle entry point position decision, and the calculation 
formula is: 

1

TP
P

TP FP



                               (8) 

2

TP
P

TP FP



                                (9) 

In formula (8), 1P  is the detection accuracy of effective needle entry points, TP is the number 

of valid needle entry points correctly classified, and FP is the number of effective needle entry points 
incorrectly classified. In formula (9), 2P  is the detection accuracy of optimal needle entry points, TP 

is the number of correctly classified optimal needle entry points, and FP is the number of incorrectly 
classified optimal needle entry points. 

4.3. Dorsal hand vein segmentation experiment 

The CPU model of the experimental platform is Intel(R) Core(TM) I5-4590, the memory size is 
8GB, and the GPU model is GeForce GTX1050. 

The segmentation experiment for dorsal hand veins is here divided into two parts. The first part 
is the experiment using the AT-U-Net semantic segmentation model, and the second part is the 
comparative experiment which consists of experimentation involving the traditional algorithm and 
other semantic segmentation models. 

AT-U-Net is used to detect and segment venous vessels in the hand dorsal vein database, as 
shown in Figure 17. 

 First group Second group Third group 

Original 

image 

AT-U-Net 

Figure 17. Detection and segmentation results of AT-U-Net for dorsal hand veins. 

As can be seen from Figure 16, AT-U-Net can segment the dorsal vein vessels of the hand for a 
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long distance, providing a basis for the position decision of the needle entry point in the next stage. 
The second part of the experimentation is a comparative experiment. Through this, it is found 

that the traditional algorithm has higher requirements on hand posture, and the experimental results 
are shown in Figures 18(a)–(f). Figure 18(a) shows the original image of the back of the hand. Figure 
18(b) is the result after homomorphic filtering of the image. Figure 18(c) is the result after CLAHE 
processing. Figure 18d is the result after applying the adaptive threshold segmentation. Figure 18e is 
the image after dealing with the morphology. Figure 18f is the resulting image after dealing with the 
closed operation. It can be seen in the figure that the left side of the blood vessels cannot complete 
extraction. Moreover, the partial distortion of vascular endpoints is serious, with much noise, and the 
effective area is too short, which is not conducive to the later insertion point detection. 

                   

(a) original back of the hand   (b) image after homomorphic filtering 

                   

(c) image after CLAHE processing  (d) image after adaptive threshold segmentation 

                    

(e) image after morphological processing  (f) image after the closed operation 

Figure 18. Traditional hand vein segmentation algorithm. 

Compared with the experimental network model, the PSPNet network is a kind of small and 
sufficient depth feature, but its shallow layer characteristics are not enough, and the detail 
segmentation effect is poor. But the effect of the long distance semantic feature is unknown. SegNet 
can maintain the integrity of the high frequency information, but it also ignores the information 
between adjacent veins when it is treated with a low rate of hand back vein. The inner bending of 
RefineNet means that it has lost some of the details of the back of its hands. PI-Unet is an 
improvement network that is divided into heterogeneous and complex images that can be obtained 
under small amounts of data, which can be applied to low-performance marginal computing devices, 
but the blood tube is longer than the length of the tube, which is not very good for extracting the long 
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distance hand back blood tube. In this paper, the deficiency of the above model, and the blood tube 
of the remote hand vein, can be extracted, and the problem of the uneven distribution of the long 
distance blood tube is solved [39–44]. In order to evaluate the performance of each network model, 
this paper analyzes the evaluation indexes, and the specific records are shown in Table 1. Each 
algorithm in this table has conducted 2456 experiments, and the results shown in this table are the 
average of all experiments. 

Table 1. Performance indexes of different semantic segmentation models for 
segmentation of dorsal hand veins. 

Network model MIOU MPA F1-socre 

PSPNet 61.49 68.35 69.8 

U-Net 67.97 73.84 77.6 

SegNet 67.32 71.53 75.1 

RefineNet 66.63 70.61 74.9 

PI-Unet 75.39 82.46 89.82 

AT-U-Net 79.91 85.42 93.91 

As can be seen from Table 1, using the same dorsal hand vein database, the same initial learning 
rate, the same number of training rounds, and the same batch size, the segmentation performance of 
each semantic segmentation model is different. The AT-U-Net semantic segmentation model 
achieved a high score in all three indexes, which has advantages in the segmentation of long-distance 
dorsal hand veins. 

The model-specific segmentation results are shown in Figure 19. 

Image Label PSPNet U-Net SegNet RefineNet PI-Unet AT-U-Net 

     

     

     

     

     

     

Figure 19. Different semantic segmentation model processing results. 

As can be seen from the predictions in the figure, PSPNet has the lowest performance in vein 
and vessel segmentation, with inaccurate vascular structure segmentation and a large deviation in the 
segmented vessel cross-sectional area compared with real vessels. The width of U-Net vein 
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segmentation is similar to that of real blood vessels, but discontinuous breakpoints will appear when 
it is segmented into long veins. SegNet has poor segmentation performance for adjacent dorsal hand 
veins, RefineNet has incomplete segmentation for the details of the dorsal hand veins, and PI-Unet 
has complete segmentation for details of veins but incomplete segmentation for long-distance vein 
detection. Compared with the segmentation performance of the above models, the segmentation 
performance of the AT-U-Net network model is a significant improvement. The cross-sectional area 
of the veins segmented by the AT-U-Net network model is similar to that of real vessels, and it can 
handle the details of the segmentation between adjacent vessels, which has obvious advantages in the 
segmentation performance of long-distance dorsal hand veins. 

4.4. Decision of insertion point position 

The experimentation concerning the decision regarding the needle insertion position is divided 
into two parts. The first part considers PT-Pruning and the second part is a comparison with the 
automatic labeling and recognition of dorsal hand vein images proposed by Zhang et al. 

After obtaining the segmentation of dorsal hand veins, PT-pruning is called to make the 
decision regarding the needle insertion position, as shown in Figure 20. 

g First group Second group Third group 

Label  

PT-Pruning 

Figure 20. Results for the PT-Pruning needle entry point position decision. 

Figure 20 shows that PT-Pruning can accurately locate the insertion points of dorsal hand veins, 
providing a solid foundation for subsequent automatic injection. 

In order to demonstrate the effectiveness of the algorithm objectively and fairly, 2546 samples 
are verified one by one to identify the effective region and the optimal injection region. By 
comparing with the optimal region and effective region in the database, the obtained insertion point 
location is verified. In detecting whether or not this is in the effective area, the algorithm calculates 
the effective area (including the optimal injection area into the needle point) and this is compared 
with that in the database. The verified the results are shown in Table 2. In order to better detect the 
accuracy of the algorithm, the pin insertion position obtained by the algorithm is compared with the 
database, if the optimal injection point is in the optimal injection region in the database, it is judged 
as a correct identification of the optimal injection point; if it is not in the optimal injection region, it 
is regarded as a wrong identification of the optimal injection point. The verification results are shown 
in Table 3. 



7972 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7952–7977. 

Table 2. Accuracy of needle entry point recognition in the effective area. 

 Detection success times Detection failure times 
1pt  

Automatic labeling and 
recognition of dorsal 
hand vein image 

2387 159 93.75% 

PT-pruning 2463 83 96.73% 

Table 3. Recognition accuracy of the optimal needle entry point. 

 Detection success times Detection failure times 2pt  

PT-Pruning 2457 89 96.5% 

It can be seen from Table 2 that the accuracy of identifying the entry points in the effective 
injection area is 96.73%. It can be seen from Table 3 that the accuracy of identifying the entry points 
in the optimal injection area is 96.5%, indicating that PT-pruning shows good detection performance. 

First 

group 

  

Second 

group 

  

Third 

group 

 

Fourth 

group 

  

Fifth 

group 

 

Figure 21. Optimal needle entry point position decision. 
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In order to make a more intuitive analysis of the performance regarding needle insertion 
position in each experiment, this paper made statistics of the experimental effect diagrams, as shown 
in Figure 21. 

In Figure 21, the first column is the optimal injection area and effective injection area of the 
needle insertion point labeled by the database; the second column is the experimental result of 
automatic labeling and recognition of the dorsal hand vein images; the third column is the 
experimental result obtained by PT-pruning. Through observation, PT-pruning has the following two 
advantages. The first advantage is that PT-pruning can accurately locate the specific coordinates of 
the entry and exit needle points. The second advantage of accurate recognition area, the back of hand 
vein image automatic labeling and identification of block matching blood vessels to the setting of a 
fixed area, not the global detection on veins, PT-pruning by traversal vein injection region extraction, 
can carry on the overall detection to the vein and the vein cross-sectional area as well as the bending 
value comprehensive decision. The needle point area obtained by PT-pruning is more suitable for 
intravenous injection, and has strong effectiveness and practical application. It provides a solid 
theoretical basis for the automatic injection of dorsal hand veins. 

5. Discussion 

It is of great significance to develop and popularize the intelligent robot for hand dorsal vein 
injection in application scenarios. The current stage is for infectious ward research and development. 
In the following stage, other scenarios will be gradually developed for its function of reducing 
excessive medical personnel, such as: in remote areas and wild areas with relatively insufficient 
medical resources, special places such as the space station can be used as emergency first aid tools to 
carry out some basic treatment urgently and quickly, providing sufficient time for follow-up 
professional treatment and preventing life from being in a critical state due to the rapid decline of 
body function. 

In terms of functional development of the intelligent robot for dorsal hand vein injection, the 
current stage is mainly about basic function research and development, and the dorsal hand vein 
database can be improved in the next stage. Due to the current epidemic period, there are sporadic 
outbreaks in various regions. According to the current epidemic prevention policy, and the data 
collection process of infants and young children is cumbersome, so the current database of dorsal 
hand vein does not involve the information of the blood vessels of infants and young children, which 
makes it impossible to evaluate the effect of intelligent injection of dorsal hand vein for infants and 
young children. In the next stage, the vein injection area of the back of the hand can be gradually 
extended to the elbow vein and other locations to further improve the robustness of the intravenous 
robot. According to the distribution of functional modules of the robot, the algorithm is gradually 
transplanted to the robot arm, and the automatic intravenous injection of the back of the hand without 
manual contact is finally realized. The organic combination of internet plus and medical treatment is 
truly realized, so that the intelligent technology can better serve medical treatment. 

6. Conclusions 

During the epidemic, the amount of hand induced by the vein is increased, and this paper 
conducts research on its core issues, opposing the venous blood vessels and the position decision 
problem of the needle point. For hand-venous venous vessel segmentation, this paper proposes an 
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AT-U-Net network model that extracts long-distance handlet venous vessel characteristics and 
divides them. For deciding on the needle point location, in this paper, on the basis of the segmented 
image, a PT-pruning decision method was proposed. The pruning algorithm was used to extract the 
skeleton vein trunk, then the length of the vein skeleton trunk and skeleton were calculated through a 
sliding window traversal. The straightest area was extracted and its bending degree was calculated. 
The blood vessel segmentation map of the corresponding area was further extracted and the 
cross-sectional area of the blood vessels was calculated. The barycentric coordinates of the veins in 
the selected area were used as the insertion point. Finally, the score of the length, curvature, and 
cross-sectional area of each blood vessel was weighted, and the insertion point with the highest score 
was selected as the optimal insertion point; the other insertion points were regarded as effective 
insertion points. However, the algorithm proposed in this paper still has some shortcomings. 
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