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Abstract: Agent-based negotiation aims at automating the negotiation process on behalf of humans to
save time and effort. While successful, the current research considers communication between negoti-
ation agents through offer exchange. In addition to the simple manner, many real-world settings tend
to involve linguistic channels with which negotiators can express intentions, ask questions, and discuss
plans. The information bandwidth of traditional negotiation is therefore restricted and grounded in the
action space. Against this background, a negotiation agent called MCAN (multiple channel automated
negotiation) is described that models the negotiation with multiple communication channels problem
as a Markov decision problem with a hybrid action space. The agent employs a novel deep reinforce-
ment learning technique to generate an efficient strategy, which can interact with different opponents,
i.e., other negotiation agents or human players. Specifically, the agent leverages parametrized deep
Q-networks (P-DQNs) that provides solutions for a hybrid discrete-continuous action space, thereby
learning a comprehensive negotiation strategy that integrates linguistic communication skills and bid-
ding strategies. The extensive experimental results show that the MCAN agent outperforms other
agents as well as human players in terms of averaged utility. A high human perception evaluation is
also reported based on a user study. Moreover, a comparative experiment shows how the P-DQNs
algorithm promotes the performance of the MCAN agent.

Keywords: multi-agent systems; cooperative games; reinforcement learning; deep learning;
human-agent interaction

* This article is a substantially extended version of our paper [1] presented at the IEEE International Conference on Tools with Artificial
Intelligence (ICTAI 2021). The extension concerns both the description and evaluation of the agent. As regards the description, all
relevant aspects of our approach are shown in detail. As regards the evaluation, the experimental technicalities including negotiating
opponents have been extended significantly. Moreover, a user study is conducted to evaluate how human players like the MCAN agent
using the evaluation metric of [2] and a high human perception evaluation is reported based on a user study. Furthermore, a comparative
analysis shows how the P-DQN algorithm promotes the performance of the MCAN agent.
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1. Introduction

Negotiation provides a fundamental and powerful mechanism for managing interaction among com-
putational agents [3], and it plays a central role in the field of distributed artificial intelligence. Effec-
tive communication is crucial in a negotiation [4–7], as the negotiators need to exchange information
about their desires, infer their opponent’s desires from communication, and balance between the two.
To reach a successful negotiation, negotiation agents are thus required to employ a comprehensive
strategy that integrates linguistic communication skills and bidding strategies, especially when inter-
acting with humans. However, most work in the field of automated negotiation [8–11] typically uses
offers/counter-offers to simplify the process, thereby ignoring linguistic communication in negotiation.
While some work [12–15] considers negotiation with linguistic communication, those studies focus on
the dialogue system that generates negotiation dialogues using natural language processing and incor-
porates the offer generation as a low-level strategy. This kind of work regards linguistic communication
as a medium for conveying offer information and ignores the ability of linguistic communication to ex-
press other aspects, such as emotions and intentions. As a matter of fact, a high degree of linguistic
communication skills can bring good negotiation experience and help express intentions better, thus
speeding up the negotiation process.

Therefore, to model a negotiation that both supports offer and linguistic communication channels,
this work follows a variant of the alternative offer protocol [16, 17] where the negotiators can simul-
taneously exchange offers and linguistic information (in terms of cheaptalk). Based on this protocol,
we propose a novel framework called multiple channel automated negotiation (MCAN) that lever-
ages parametrized deep Q-networks (P-DQNs) to learn a comprehensive negotiation strategy which
integrates linguistic communication skills and bidding strategies at the same time. Combining the
advantage of deep Q-networks (DQNs) and a deep deterministic policy gradient (DDPG), P-DQNs,
which learns the optimal bidding strategy on each kind of linguistic communication skills and then
chooses the co-optimal one, is suitable for this dual optimization problem. Unlike other algorithms
that learn linguistic communication skills and bidding strategies separately, P-DQNs learns these two
at the same time, which enables linguistic communication skills learning and bidding strategy learning
to share all useful information without the need to exchange information between separate networks.

The framework is shown in Figure 1, which models the negotiation process as a Markov decision
process (MDP). The MCAN agent takes the opponent’s proposal (e.g., cheaptalk and offer) as input
and sends it to the proposal resolver. After updating the state, the deep reinforcement learning (DRL)
policy outputs an action to the proposal generator guiding the optimal proposal. To train this agent, we
designed several rule-based negotiation agents depending on classic bidding strategies and different
linguistic communication skills. The experimental results show that the MCAN agent outperforms
those handcrafted agents according to the averaged utility. Furthermore, user studies are conducted
in a GUI human-agent negotiation environment. We evaluate the MCAN agents and other rule-based
negotiation agents based on the metrics introduced in [2]. The experimental results of negotiation with
human negotiators show that the MCAN agent has successfully learned a comprehensive negotiation
strategy that integrates linguistic communication skills and bidding strategies, even trained with simple
rule-based agents.

The main contributions of the work are as follows:

• To the best of our knowledge, the first DRL-based negotiation agent MCAN is proposed which
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Figure 1. The overall architecture of the MCAN framework.

allows learning linguistic communication skills and bidding strategy simultaneously.
• We implements a negotiation environment where the human or agent negotiators can negotiate

through both offer and linguistic channels.
• The extensive experiments show that even under the training of only simple rule-based agents,

the MCAN agent can outperform human players, and the human perceptions of the MCAN agent
are significantly higher than those of other agents.

2. Related work

Learning is important for automated negotiation and can significantly increase the performance
of negotiation agents and their decision-making model. For the past decade, a variety of learning
methods has been deployed in a range of negotiation scenarios. For example, Chen et al. [18] employed
Gaussian process regression to approximate the opponent’s model given no prior knowledge about their
opponents’ preferences and strategies. To tackle the problem of limited experience available in every
single session, Chen et al. [19] developed a strategy that transfers knowledge efficiently from previous
tasks on the basis of factored conditional restricted Boltzmann machines.

Reinforcement learning (RL) techniques, among others, have received increasingly more attention
and been deployed in many negotiation tasks, like Q-learning [8]. More recently, deep learning has
shown impressive performance in a number of areas [20–23]. RL has also been applied successfully
in conjunction with deep learning, negotiation agents based on deep reinforcement learning (DRL)
have gradually emerged to further improve agents’ decision power. The authors of [9] have used an
actor-critic algorithm for training both bidding and acceptance strategies in continuous state and action
spaces. Sengupta et al. [11] use deep deterministic policy gradient (DDPG) [24] and soft actor-critic
(SAC) [25] to learn a target utility for bidding strategy, which restricts the problem in continuous state
and action spaces. These efforts, although successful, have considered negotiations in the form that
information exchange between parties is only dependent on offers. As many real-world settings also
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involve linguistic channels to express intentions, ask questions, discuss plans and so on, the information
bandwidth is therefore restricted and grounded in the action space of negotiation.

There exists some research on linguistic communication in negotiation. Mell et al. [26] used ef-
fective conversation tactics to create value over repeated negotiations, and Oudah et al. [2] studied the
impact of different talking styles on human opponents. These two methods used rule-based communi-
cation strategies which need to be pre-programmed by experts beforehand. Cao et al. [27] employed
a deep neural network to negotiate on both proposal and linguistic channels, but the communication
is implicit and cannot have support for human-machine interaction. Other studies focused on negotia-
tion dialogues generation based on natural language processing [12, 13, 15]. He et al. [12] decoupled
strategy and generation in negotiation dialogues using a two-layer architecture. Zhou [15] created a
dynamic strategy coach to give tips and analyze during negotiation. Joshi et al. [13] incorporated graph
neural networks as a strategy-graph network to predict the next optimal strategies. This kind of work
only regards linguistic communication as a medium for conveying an offer and ignores the ability of
linguistic communication to express important and useful information like emotions and intentions.
The MACN agent can influence opponents and express its intentions by linguistic communication in
terms of cheap talk, and learns linguistic communication skills and bidding strategy explicitly and it
has generalization ability when facing different negotiators in different domains. To achieve that, the
proposed agent must make decisions in a hybrid discrete-continuous action space, requiring a new al-
gorithm for this problem. Therefore, this work employs parametrized deep Q-networks (P-DQNs) [28]
to learn a target utility for a bidding strategy, and linguistic communication skills with the opponent.
The P-DQNs is able to support hybrid discrete-continuous action space where every discrete action
followed by a continuous parameter, by combining the advantages of DQN and DDPG.

3. Preliminaries

3.1. Negotiation settings

A negotiation setting contains a protocol, domain and agents. The negotiation protocol determines
the rules of how agents interact with each other. The negotiation domain determines an outcome space
Ω, where the agents negotiate for a win-win offer ω ∈ Ω. The negotiation domain can have single or
multiple issues, where issues refer to the resources under contention, such as the price of an object or
the level of the quality. The agents are the negotiators participating in the negotiation. The negotiation
between two negotiators is called bilateral negotiation.

A large number of works [3,29,30] adopt the alternative offer protocal [17] for bilateral negotiation.
During negotiation, the two negotiators in turn make offers and counter-offers until one accepts the
other or the negotiation is terminated due to time-out. Another key aspect of a negotiation model is
how an agent evaluates the utility of an offer. Formally, given an offer ω, which contains the value of
each issue, let i denotes agent i, v j denotes the value of issue j in the ω, and wi

j denotes the weighting
preference which agent i assigns to issue j (i.e.,

∑n
j=1 wi

j = 1, 0 ≤ wi
j ≤ 1 where n denotes issue

numbers). Therefore, the utility of the offer ω for agent i is defined as:

U i(ω) =
n∑

j=1

(
wi

j · V
i
j

(
v j

))
(3.1)
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where V i
j is the evaluation function of agent i, mapping the value of issue j to utility.

In order to get a good deal, agents are equipped with various bidding strategies [31]. At every
round, the agent calculates its target expected utility, which determines whether it accepts an offer or
not using these strategies. Among them, two strategies are commonly used: time-dependent strategies
and behavior-dependent strategies [32]. Time-dependent strategies produce offers solely based on time.
As time goes by, these strategies decrease the target expected utility gradually. Behavior-dependent
strategies make offers depending on how opponent makes offers. The most well-known behavior-
dependent strategy is tit-for-tat, which treats the opponent the same way it is treated.

3.2. Reinforcement learning

The reinforcement learning [33–35] problem can be formulated by a Markov decision process
(MDP) defined as a 5-tuple (S,A,P,R, γ), where S and A denote the sets of states and actions,
respectively, P denotes the transition function: S ×A × S → [0, 1], R denotes the reward function:
S ×A × S → R, and γ ∈ [0, 1) denotes the discount factor. At the step t, the agent observes state
st ∈ S and selects action at from the action space A following a policy π, which is a mapping from
state space to action space. After taking the action, the agent receives reward rt. The goal of the agent
is to find a policy π that maximizes the expected discounted cumulative return,

Gt =

T∑
t=0

γtrt+1 (3.2)

where T is the length of the whole episode.
Deep learning has been used widely recently [23, 36–38]. Combined with deep learning, deep

Q-networks (DQNs) [39, 40] use the Bellman equation to approximates the optimal Q∗ for discrete
action space problems. For continuous action space problems, deep deterministic policy gradients
(DDPGs) [24] consider the action-value function Qπ(st, at) as a critic denotes how good it is when
taking action at in st, where at is generated by deterministic policy µθ : S → A. However, to deal with
negotiation with offers and linguistic communication channels, the hybrid discrete-continuous action
space is required to build the negotiation agent. In the following, the parametrized deep Q-networks
(P-DQNs) is thus introduced.

3.3. Parametrized deep Q-networks

As for the hybrid discrete-continuous action space where every discrete action is followed by a
continuous parameter, parametrized deep Q-networks (P-DQNs) combines the advantages of DQN
and DDPG and gives a general solution to this problem. We focus on a discrete-continuous hybrid
action space

A = {(k, xk) | xk ∈ Xk for all k ∈ K} (3.3)

where k is the k-th discrete action from discrete action set K, and xk is the continuous parameter
corresponding to discrete action k from k-th continuous action set Xk. Therefore, the action value
function is denoted as Q(s, k, xk), where s ∈ S, k ∈ K, and xk ∈ Xk. Let kt be the discrete action selected
at time t and let xt be the associated continuous parameter. Then, the Bellman equation becomes

Q (s, k, xk) = E
r,s′

[
r + γmax

k′
Q
(
s′, k′, xQ

k′
(
s′
))
| s, k, xk

]
. (3.4)
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P-DQNs first solve x∗k = argsupxk∈Xk
Q (st+1, k, xk) using a deterministic policy network xk(s; θx) : S →

Xk, where θx denotes the network weights of the policy network, and then take the largest Q(st+1, k, x∗k)
using a deep neural network Q(s, k, xk; θQ), where θQ denotes the network weights. With this formula-
tion, it is easy to apply the standard DQN approach of minimising the mean-square Bellman error to
update the Q-network using mini-batches sampled from the replay buffer.

LQ
(
θQ
)
= E

(s,k,xk ,r,s′)∼D

[
1
2
(
y − Q

(
s, k, xk; θQ

))2] (3.5)

where y = r + γmaxk′∈[K] Q
(
s′, k′, xk′ (s′; θx) ; θQ

)
is the update target derived from Eq (3.4). Then the

loss for the actor network in P-DQNs is given by the negative sum of Q-values:

Lx (θx) = E
s∼D

− K∑
k=1

Q
(
s, k, xk (s; θx) ; θQ

) . (3.6)

Through these two loss functions, we can calculate the policy gradient as

∇θxx (s; θx) = −
K∑

k=1

∇xQ
(
s, k, x (s; θx) ; θQ

)
∇θxx (s; θx) . (3.7)

Using Eq (3.7), the policy network weight can be updated, and then the hybrid discrete-continuous
action space problem can be solved. The P-DQN framework given in [28] can be found below.

Algorithm 1 Parametrized Deep Q-Network (P-DQN)
Require: Step sizes {αt, βt}t⩾0 , exploration parameter ϵ, minibatch size B, a probability distribution ξ.

Initialize network weights ω1 and θ1.
for t = 1,2,...,T do

Compute action parameters xk ← xk(st, θt).
Select action at = (kt, xkt) according to the ϵ − greedy policy.

at =

{
a sample from distribution ξ with probability ϵ,
(kt, xkt) such that kt = arg maxk∈[K]Q(st, k, xk;ωt)with probability 1 − ϵ.

Take action at, and observe reward rt and the next state st+1.
Store transition [st, at, rt, st+1] intoD.
Sample B transitions {sb, ab, rb, sb+1}b∈[B] randomly fromD.
Define the target yb by

yb =

{
rb if sb+1 is the terminal state,
rb + maxk∈[K]γQ(sb+1, k, xk(sb+1, θt);ωt)if otherwise.

Use data {yb, sb, ab}b∈[B] to compute the stochastic gradients ∇ωℓ
Q
t (ω) and ∇θℓΘt (θ).

Update the weights by ωt+1 ← wt − αt∇ωℓ
Q
t (ωt) and θt+1 ← θt − βt∇θℓ

Θ
t (θt).

end for
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4. The design of the MCAN agent

4.1. Negotiation environment

We consider the bilateral multi-issue negotiation scenario where a buyer and a seller bargain for a
piece of goods with communication. We follow the process of the alternative offer protocol except that
we use both offer and cheaptalk while the origin protocol only uses offer. This protocol assumes an e-
market environment where agents can communicate with opponents using cheaptalk while offering an
offer. A buyer b always starts the negotiation by sending a proposal to seller s. During the negotiation
both sides make proposals and counter-proposals in turn until one accepts the other, or the negotiation is
terminated due to time-out. We are using the utility function defined in Eq (3.1). The cheaptalk refers
to the views on negotiation that the agent wants to express to the opponent. In actual negotiations,
linguistic communication can better convey the willingness to negotiate and speed up the negotiation
process. Here we present a summary of the nine events that usually occur in nogotiation, as shown in
Table 1.

Table 1. The negotiation events used in our framework.

Negotiation events Category index
Accept the opponent’s proposal 0

Promise to the opponent to make concessions 1
Request opponent to give a concessions 2

Show bottom line to opponent 3
Belief that both sides can get a win-win result 4

Greeting opponent for starting negotiation 5
Punish opponent for breaking its word 6
Forgive opponent for breaking its word 7

Threaten opponent for no conceding 8

Combining these events with different personas (nice, tough), we defines 18 different cheaptalk
template for negotiators to choose. The nice persona seeks to avoid criticizing, complaining, or con-
demning its opponents, while respectfully building them up. On the contrary, the tough persona
seeks to pull others down rather than build them up and advocates to be mean to others. The ex-
amples are given in Table 2. Besides, according to whether cheaptalk and offer are consistent, the
negotiators can be honest or dishonest. For example, a dishonest negotiator will choose the event
promise to the opponent to make concessions while giving an offer without concessions.

4.2. Proposed negotiation framework

We model this negotiation problem as an MDP, and the overall architecture is shown in Figure 1.
To simplify and highlight the core of our work, cheaptalk is presented by its cheaptalk index in the pre-
defined templates in Table 2. The MCAN agent receives the proposal from the opponent and uses the
proposal resolver, which resolves the offer and cheaptalk index from the proposal. After calculating
the utility of the offer, the information is added to the utility history memory and cheaptalk history

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7933–7951
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Table 2. The negotiation events used in our framework.

Category Example cheaptalk for nice persona Example cheaptalk for tough persona

0 Hi, I think this proposal is really nice. I
accept it.

Oh, this barely satisfies me, but I accept
it.

1 Well, I think we can cooperate, and here
I will give a concession for sincerity.

...sigh. OK, for your pitiful sake, let me
give you a little concession.

2 Hi, I know that everyone has difficulties,
but it is a little unfair to me. Can you
concede a bit?

Oh!!! You are such a mean person. Give
me some concession.

3 My partner, this is the lowest bottom line
I can accept. Let’s understand each other.

This is my bottom line, deal or not deal!!!

4 Let’s explore other options that may be
better for us.

Well, you have to do what I said, and
both sides can be good.

5 Hello my partener. Let’s have a pleasant
negotiation.

Hello.

6 I will punish you next turns, but I hope
both sides can cooperate.

You selfish person, I will punish you.

7 What you did is totally understandable,
though it will not benefit you in the long
run.

You have been unimaginably selfish, but
I will look past it for now.

8 I’m sorry that I can only start punishing
you if you don’t concede

You will regret it if you don’t concede.

memory, respectively. The state is then generated by concatenating the current time, utility received
history, utility proposed history, cheaptalk received history and cheaptalk proposed history. After
that, the MCAN agent uses the DRL policy to generate an action which contains the best responding
cheaptalk index and the corresponding target expected utility. After checking the acceptance condition,
the counter-proposal is made by proposal generator.

4.2.1. Proposal resolver and proposal generator

The proposal resolver and the proposal generator are similar, since they’re the reverse process of
each other. The proposal resolver uses a sentence from the opponent as input and outputs the core of
the proposal in the form of a dictionary while the proposal generator uses the proposal in dictionary
form as input and outputs the responding sentence to the opponent. Using the pre-defined cheaptalk
template, we can easily classify the sentence paradigm and extract the offer and cheaptalk index. The
offer generator in the proposal generator is defined as

Oi
(
utarget

)
= argmin

ω

(
U i(ω) − utarget

)2
(4.1)
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where utarget denotes the target expected utility the agent wants to attain, and ω denotes any outcome
in the outcome space Ω.

4.2.2. Utility history and cheaptalk history

Utility history and cheaptalk history are used to record the proposals proposed and received in the
negotiation history. After resolving the proposal from the opponent, the utility of the offer will be
calculated using Eq (3.1). It is then added to the utility received history. Meanwhile, the cheaptalk
index will be added to the talk received history. After the MCAN agent makes a proposal, the utility
proposed history and cheaptalk proposed history will be updated.

4.2.3. DRL policy

DRL policy is aiming to give the best cheaptalk index and the corresponding target expected utility
for an offer at a certain state. We adopt the P-DQN algorithm here, as P-DQN gives a general solution to
the hybrid discrete-continuous action space problem. It adapts well to our negotiation settings because
it is able to calculate the target utility and cheaptalk index at the same time, which solves the problem
of mutual influence between cheaptalk index action and target expected utility action.

The state is concatenated by the current time, utility received history, utility proposed history,
cheaptalk received history and cheaptalk proposed history. For a negotiation session with time limit
T , we use upropose[t − i, t] to denote the utility proposed history from t − i to t, where i ∈ [0, t − 1].
Similarly, ureceive[t − i, t] denotes the utility received vector. cpropose[t − i, t] denotes the cheaptalk index
proposed from t − i to t, and creceive[t − i, t] denotes the cheaptalk index received from t − i to t. After
defining these, the state and action can be defined as

st = {tr, upropose[t − 2, t], ureceive[t − 2, t],
cpropose[t − 2, t], creceive[t − 2, t]}

at =
{
c, utarget

}
where tr denotes the relative time (tr = t/T ). The action outputs the cheaptalk index and the target
expected utility. By checking the acceptance condition as (Eq (4.2)), the agent decides to use the
proposal generator or accept the opponent’s proposal.

choice =

accept utarget <= ut
received

counter-proposal utarget > ut
received

(4.2)

The goal of the DRL agent is to maximize the utility of the agreement offer, so the reward function
is defined as

r =

 U (ωa) if there is an agreement ωa

0 for no agreement

where U(ω) means the self utility of the offer ω.
The main algorithm is shown in Algorithm 2. Before training, an opponent pool is prepared for

the MCAN agent to negotiate with. In every episode, the algorithm randomly chooses an opponent
from the opponent pool Π. Then, the MCAN agent and the chosen opponent are asked to start a
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Algorithm 2 The training process of MCAN agent
Require: Episodes K, exploration parameter ϵ, replay bufferD, opponent pool Π, max round T

1: for k = 1, 2, ..,K do
2: Uniformly sample an opponent from opponent pool Π.
3: for t = 1, 2, ...,T do
4: Update state st based on the history information.
5: Select action at = (c, utarget) according to the ϵ-greedy policy.
6: Check the acceptance condition according to (Eq (4.2)) and generate a choice.
7: Received proposal from opponent and observe reward rt, next state st+1.
8: Store transition [st, at, rt, st+1] intoD.
9: Update the history information based on action at and opponent’s proposal.

10: MCAN agent updates the Q actor network and param actor network weights according to 3.7.
11: end for
12: end for

negotiation. During the negotiation, the MCAN agent collects the history information and updates
the state s. Using the ϵ-greedy policy, the MCAN agent generates the current target expected utility
and corresponding cheaptalk index. After checking the acceptance condition, the proposal is sent to the
opponent. Through the alternative proposal, the MCAN collects the experience in the replay buffer and
uses them to update the Q actor network and parameter actor network weights. After several rounds of
training, the policy converged.

5. Experiments

In this section, we present the experimental settings and results of the MCAN agent against op-
ponents. We begin with the experimental technicalities, which are given in Section 5.1. Section 5.2
compares the performance of our agent against the rule based negotiation agents. Then, a user study
is conducted to obtain human evaluation in Section 5.3. A GUI human-agent negotiation environ-
ment is developed to facilitate interaction between agents with human players. Section 5.4 reports a
comparative experiment to show how the P-DQN algorithm promotes the performance of the MCAN
agent.

5.1. Experimental setup

We first design several rule-based negotiation agents and use them to train our MCAN agent. The
rule-based negotiation agents are designed by integrating the linguistic communication skills of hu-
mans and classic bidding strategies. Here, we named the nice persona as friendly and the tough
persona as unfriendly. Besides, according to whether the negotiator is honest, we divide linguistic
communication skills into four types. The classic bidding strategies we used here are time-dependent
Boulware agent and behavior-dependent tit-for-tat agent. We combine the linguistic communication
skills and bidding strategy by using the target expected utility. Each round, the bidding strategy out-
puts a target expected utility based on utility history information and time, and the target expected
utility is modified based on different linguistic communication skills. Besides, friendly agents will
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7943

choose the left column of Table 2, and unfriendly agents choose the right side. The honesty will decide
whether the offer and cheaptalk have consistent performance. We named these 8 rule-based negotiation
agents as friendly honest time-dependent Boulware (fht), friendly dishonest time-dependent Boulware
(fdt), unfriendly honest time-dependent Boulware (uht), unfriendly dishonest time-dependent Boul-
ware (udt), friendly honest behavior-dependent (fhb), friendly dishonest behavior (fdb), unfriendly
honest behavior-dependent (uhb) and unfriendly dishonest behavior-dependent (udb), respectively. For
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Figure 2. In the training process, the MCAN agent is trained against the 8 rule-based agents
by randomly choosing one opponent per episode. In the evaluation process, the MCAN agent
is evaluated againsts the 8 rule-based agents, respectively.

the MCAN agent, we use the implement of the P-DQN from [28]. The only difference in the network
architecture is that we added a layer activation function of tanh at the end of the actor parameter net-
work to limit the output to between –1 and 1. The hyperparameters are set as follows: batch size =
128, discount = 0.99, Q-networks update parameter = 0.1, actor parameter networks update parameter
= 0.001, replay buffer size = 100000. The optimizers for Q-networks and the actor parameter network
are both Adam, with learning rates 0.001 and 0.0001, respectively.

All the experiments were conducted using our self-developed Python environment. Among the ne-
gotiation settings, the reservation price is set as 0.1,and the maximum number of round in one episode
is 28–32 rounds to avoid possible exploitation. We used min-max normalisation for making the utility
values between 0 and 1.

5.2. Performance against rule-based negotiation agents

We trained the MCAN agent for 1,000,000 episodes, and the learning curve and evaluation curve
of the first 500,000 episodes are shown in Figure 2. In the training phase, in each episode the MCAN
agent will face an opponent randomly sampled from 8 rule-based negotiation agents. In the evaluation
phase, the MCAN agent will have negotiations with all 8 opponents one by one. We can find that the
MCAN agent converged at around 200,000 episodes with a reward of 0.68. Through the evaluation
result graph, we can find that there is an obvious advantage in the negotiation with fht and fhb. These
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two agents are more likely to make concessions first, which makes the MCAN agent achieve a good
deal easily. For negotiation with ufht and ufhb, the MCAN agent can gain a slight advantage by
reasonable using of cheaptalk signals since they are honest. For the remaining four agents, the MCAN
agent will try to reach a tie as much as possible. With the addition of the MCAN agent, there are a total
of 9 agents. We let these 9 agents negotiate in pairs, each pair carries out 1000 evaluations. Then, we
calculated the averaged agreement utility over 1000 evaluations as the evaluation metric for one pair.
Fht and fub are equipped with the friendly and honest talk strategy. When facing other agents, they are
likely to concede first. This leads them to reach negotiations with all agents, but the agreement utility
of the negotiation is mostly below 0.5. The other six agents are either dishonest or tough, which leads
them to be unable to reach a deal. We averaged the results of one agent against 8 other agents, and the
result is shown in Figure 3.
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Figure 3. The averaged utility attained of 9 agents in the tournament.

It can be seen that the MCAN agent reached the highest average utility of 0.59, followed by fht
and fhb, with 0.46 and 0.41, respectively. The remaining four agents are relatively close, all around
0.2. Through the above experiments, we can find that the MCAN agent can obtain a relatively good
advantage when negotiating with the rule-based negotiation agents.

5.3. User study

To evaluate the negotiating performance against human participants, a GUI human-agent negotia-
tion with talk environment was developed to enable agents to negotiate with humans. In this environ-
ment, we invited 200 volunteers from the College of Intelligence and Computing, Tianjin University, to
conduct a human-agent negotiation test. Human volunteers are invited to be a party to the negotiation
(buyer or seller), and their tasks are to get the highest possible agreement utility of negotiation. For the
convenience of the volunteers, we used single-issue negotiation instead. Each volunteer participated
30 tests. For every 10 tests, they faced one agent randomly sampled from those 9 agents to fill out
a questionnaire. We used the two evaluation metrics introduced by Oudah [2]. The first one is the
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(a) The standard z-score of utility attained by each player
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Figure 4. The results in the user study. (a) denotes the quality of bidding strategy, and (b)
denotes the ability of agents’ human-agent friendless.
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Figure 5. A summary of the user study.
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average utility made between a volunteer and an agent, and the second one is the degree to winning
friends, which is quantified through the questionnaire. The volunteers are asked (using a 5-point Lik-
ert scale) the degree to which they understand their opponent’s intentions to what degree it is likable,
intelligent, cooperative, friendy and willing to negotiate again. To compare the relative performances
of the agents, we used the standardized z-score for each metric.

The results are shown in Figure 4. From Figure 4(a) we can find that the averaged utility obtained
by the MCAN is the highest among the 9 agents, and it even slightly surpassed the performance of
humans. We have found that maintaining honesty is an important reason for obtaining higher averaged
utility since the fht, ufht, fhb and ufhb will maintain good credit in the negotiation. Besides, the
performances of fht and fhb far exceeds other agents, which shows that keeping a nice persona will
better than a tough persona. The results of Figure 4(b) are quite similar to Figure 4(a). The MCAN
obtained the highest score among all agents, which shows that it is more capable of winning friends
compared to the other rule-based agents. In the Figure 4(b), an interesting result is that the score of
ufht and ufhb is not as positive as in Figure 4(a), which implies that the friendliness and honesty are
both important. The Figure 5 summarizes the results of the study by showing the relative performance
of the 9 agents in terms of averaged utility and score of winning friends.

According to Figure 5, it can be found that the MCAN agent learned the linguistic communication
skills and bidding strategy successfully. To further analyze the behaviors learned by the MCAN agent,
we visualized the cheaptalk MCAN has used in the negotiation with human volunteers, which is shown
in Figure 6. The horizontal axis denotes the cheaptalk classes. Among them, the first 9 are the cheaptalk
under the nice persona in the order of Table 2, while the last 9 are based on the tough persona. The
results shows that the MCAN agent learns to behavior based on the the nice persona and is more likely
to use indices 1, 2 and 3. This phenomenon shows that MCAN agent knows to show sincerity by
expressing concessions to opponents in order to build trust between both parties and express its needs
politely. These three cheaptalk actions are also worthy of attention, and they can be used to provide
references for future linguistic design.

5.4. Analysis of P-DQN

In this section we will study the effect of the P-DQN by conducting a comparative experiment. The
P-DQN takes the utility history and cheaptalk history as input and outputs the best cheaptalk index and
the corresponding target expected utility. To evaluate the P-DQN’s output, we made two variants of
the P-DQN by replacing either the cheaptalk index side or the target expected utility side with random
output, called the TP-DQN and OP-DQN, respectively. Then we carried out two other tournaments like
we did in experiment 1 by replacing the P-DQN with our two variants. Then, we calculated the self
utility attained against the 8 rule-based agents and the opponent average utility attained. The results are
shown in Figure 7, and it can be found that the performances of the TP-DQN and OP-DQN plummet,
which implies that the P-DQN’s output is indivisible. The combined effect of cheaptalk index and
target expected utility gives the P-DQN a great advantage.

6. Conclusion and future work

This work proposes a novel framework MCAN that leverages P-DQNs to learn a comprehensive
negotiation strategy which integrates linguistic communication skills and bidding strategies. The P-
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Figure 6. The visualization of the policy learned by the MCAN agent. The results shows
that the MCAN agent learns to use the nice persona and is more likely to use indices 1, 2 and
3. From this phenomenon, we can infer that the MCAN agent knows to show sincerity by
expressing concessions to opponents in order to build trust between both parties and express
its needs politely.
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Figure 7. The comparative experimental results with TP-DQN and OP-DQN.
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DQNs algorithm, which learns the optimal bidding strategy on each kind of linguistic communication
skills and then chooses the co-optimal one, is suitable for this dual optimization problem. The experi-
mental result shows that the MCAN agent outperforms the rule-based agent according to the averaged
utility of negotiation. According to the user study, we also evaluated the MCAN agent and rule-based
agents based on the metrics of winning friends in addition to utility metrics. The user study on nego-
tiation with humans depicts that the MCAN agent has learned a comprehensive negotiation strategy
which integrates linguistic communication skills and bidding strategies.

The exceptional results justify investment in further research efforts into this approach. In the future,
we plan to explore how to learn more sophisticated linguistic communication skills to achieve a more
application-oriented architecture. Second, the extension of the framework to other negotiation settings,
such as concurrent negotiation or multi-lateral negotiation, is another interesting avenue to exploit. It
is also of great interest to investigate how to train negotiation skills of human participants based on
the framework. Last but not least, to further aid the learning performance in a different negotiation
domain, incorporating transfer learning techniques into the proposed approach is believed to lead to
improvement in negotiation power.
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