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Abstract: With the continuous development of the times, social competition is becoming increasingly 
fierce, people are facing enormous pressure and mental health problems have become common. Long-
term and persistent mental health problems can lead to severe mental disorders and even death in 
individuals. The real-time and accurate prediction of individual mental health has become an effective 
method to prevent the occurrence of mental health disorders. In recent years, smart wearable devices 
have been widely used for monitoring mental health and have played an important role. This paper 
provides a comprehensive review of the application fields, application mechanisms, common signals, 
common techniques and results of smart wearable devices for the detection of mental health problems, 
aiming to achieve more efficient and accurate prediction for individual mental health, and to achieve 
early identification, early prevention and early intervention to provide a reference for improving the 
level of individual mental health. 
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Abbreviation: ACC: Accelerometer; ANN: Artificial neural network; BP: Blood pressure; BVP: 
Blood volume pulse; CNN: Convolutional neural network; DNN: Deep neural network; ECG: 
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Electrocardiograph; EDA: Electrodermal activity; EEG: Electroencephalography; EMG: 
Electromyogram; GSR: Galvanic skin response; HR: Heart rate; HRV: Heart rate variability; IBI: Inter-
beat interval; KNN: K-nearest neighbor: LASSO: Least absolute shrinkage selection operator; PCA: 
Principal component analysis; PPG: Photoplethysmography; RF: Random forest; RR: Respiration rate; 
RBF: Radial basis function kernel classifier; ST: Skin temperature; SVM: Support vector machine 

1. Introduction 

Mental health problems are also known as mental health disorders, and they have become an 
important factor affecting individual growth and social stability [1]. According to the “Global Burden 
of Disease Study”, the global prevalence of mental health disorders has always been above 10%, and 
about 450 million people have mental health disorders [2,3]. Long-term and persistent mental health 
problems increase the risk of cardiovascular disease, which is the leading cause of increased mortality 
worldwide [4]. Mental health disorders not only damage the physical and mental health of individuals, 
but they also increase the overall medical burden on society [5]. It is predicted that the total global 
medical expenditure for mental health problems will reach 16 trillion US dollars by 2030 [6]. Therefore, 
it is imperative to detect the mental health condition of individuals at an early stage and prevent the 
occurrence of mental health problems. 

Smart sensors can accurately detect subtle changes (such as insomnia, headache, rapid heartbeat 
and muscle tension) in the body caused by stress in order to prevent and reduce the adverse effects of 
mental health problems [7,8]. With the increasing need for mental health care, the application of 
portable smart devices for monitoring mental health has received widespread attention and has been 
welcomed by most people [9]. At present, there are many studies on the use of wearable devices for 
mental health monitoring. Previous reviews have integrated the use of wearable sensors to detect 
stress levels, and there is a lack of exhaustive reviews on detection topics such as mental health problems 
or mental illness [8,10–13]. However, although some of the studies covered comprehensive information, 
the classification of detected signals were not described in detail in these reviews [14–17]. To fill this 
gap, this paper analyzes and integrates a large number of studies, covering the types of equipment used 
for data collection, common locations of sensors, common signals, advantages and disadvantages of 
technology, types of mental health states, etc. In this section, we discuss some existing studies. 
Abbreviations of nomenclatures used in this review paper are enumerated at the beginning of the article. 

First, smart wearable devices have been widely used in the study of classifying and identifying 
individuals’ daily stress and mental fatigue. Betti et al. [18] measured the electroencephalography 
(EEG), electrocardiography (ECG) and electrodermal activity (EDA) of healthy adults using wearable 
devices and a support vector machine (SVM) classification algorithm for statistical analysis; the results 
show that the accuracy of the classification algorithm based on salient features can reach 86% for 
detecting individual stress levels. Goumopoulos et al. [19] proposed a method to detect mental fatigue; 
they used a wearable device to collect the heart rate variability (HRV) of healthy subjects, and then 
selected an appropriate machine learning model to predict mental fatigue with high accuracy. 
Additionally, the role of wearable devices in the prediction and classification of mental health 
assessment and emotional states cannot be ignored. Sano et al. [20] explored the relationships between 
the academic performance, sleep quality, stress perception and mental health of college students using 
wearable devices and smartphones; they found that college students’ academic performance, sleep 
quality and stress perception can significantly predict their mental health level, and that the accuracy 
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rate of the algorithm is as high as 92%. Costa et al. [21] found that wearable devices can acquire and 
analyze social signals and identify the current negative emotions of individuals, and that, when it 
identifies a negative emotion, the device activates the emotional regulation system to help the 
individual stabilize their emotions. Overall, wearable devices have been widely used in the field of 
mental health with strong practicability. The main contributions of this paper are given as follows: 

1) Recent artificial intelligence (AI)-based wearable devices methods and techniques are 
reviewed in this paper. This study comprehensively explores the application of AI-based wearable 
devices in the field of mental health, focusing on stress levels, mental health problems and mental 
illness. 

2) This study covers comprehensive and detailed information, including types and application 
mechanisms for AI-based wearable devices, common locations of sensors, common signals, the 
advantages and disadvantages of technology and types of mental health states. 

3) The articles included in this paper are from 2017 to 2022, and the articles are relatively new 
and cutting-edge.  

The remainder of this paper is organized as follows. Section 2 introduces the review of body 
signals and mental health. Section 3 summarizes the methodology and Section 4 gives the literature 
survey. Finally, application, discussion and conclusion are given in Sections 5, 6 and 7. 

2. Body signals and mental health 

The autonomic nervous system has two branches: the sympathetic nervous system (SNS) and 
parasympathetic nervous system (PNS). The SNS can rapidly stimulate some vital organs (such as the 
heart, lungs, and sweat glands), and the PNS can inhibit this excitation; they complement the regulation 
of important bodily functions and maintenance of physiological homeostasis [22]. When an individual 
is stressed, the individual will activate the protective mechanism; the SNS will be activated, the heart 
rate will increase, the breathing will increase, sweat will be secreted and other physiological systems 
will also be affected [23,24]. Additionally, the hypothalamus axis is a hormonal system that is initiated 
in response to stressors and drives a cascade of endocrine responses, culminating in the secretion of 
cortisol [22]. Therefore, individual health, especially mental health, can be known by observing the 
activity of the SNS and hypothalamus axis. Finally, language signals can also reflect an individual's 
mental health condition. Language is the basis for inferring individual thought processes; it provides a 
special perspective for thinking observations [25]. When an individual is in a state of tension, the 
respiratory rate increases and the glottis pressure increases, prompting an increase in the pitch of the 
vocalized part [25]. Therefore, clinicians mainly diagnose and treat mental illness through language and 
pronunciation [26]. As mentioned above, subtle changes in the body caused by stress can be detected by 
sensors connected to the body and hardware devices to accurately predict mental illness [27]. Therefore, 
AI-based wearable devices can collect one or more signals of the individual to identify and analyze 
the mental health level. 

3. Methodology 

3.1. Search strategy 

This review incorporated searches for relevant papers in the databases of Web of Science, Embase, 
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MEDLINE and Engineering Village. The selected papers ranged from 2017 and 2022, which covers 
the recent developments in this area. The basic sets of keywords were “Psychological assessment”, 
“psychological prediction”, “psychological monitoring”, “mental health”, “psychological health”, 
“mental illness”, “psychological disorders” and “wearable device”. A total of 1537 papers were 
retrieved by using all keywords, and 25 papers were finally included. The search methodology for this 
article was designed to provide a detailed review of published research papers on wearable sensor-
based mental health detection. Figure 1 shows a flowchart describing the search strategy used for this 
review article. 

3.2. Inclusion criteria 

1) The date of publication of the selected papers was between 2017 and 2022. 2) Conference 
papers and journal papers were included. 3) The research direction for the paper was mental health 
detection (focusing on stress, mental health problems, mental illness, etc.) and AI-based wearable 
devices for data collection. 

3.3. Exclusion criteria 

1) Research published in a language other than English was excluded. 2) Studies structured as 
editorials, press releases, research highlights or letters, review articles, reviews and technical papers were 
excluded. 3) Duplicate papers, related review papers and papers not related to the topic were excluded. 

 

Figure 1. Flow diagram of the systematic search strategy. 
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4. Literature survey 

4.1. Wearable devices for mental health monitoring 

We use smart/embedded wearable devices, such as smartwatches, that collect signals from the 
body [28]. This data can be processed by sensors on smart/embedded devices. WiFi is used to send the 
collected data to cloud servers [7]. In cloud computing, advanced AI models can be applied to mental 
health monitoring big data to generate simple knowledge through the use of expensive processing 
and advanced AI algorithms [29], such as Welch's algorithm [30], SVM algorithms [31] and period 
graphs [32], for the analysis of data. Using these AI algorithms, then by analyzing the information, we 
will be able to extract sensor data with the appropriate classification characteristics and then classify 
their mental health states [33]. Artificial intelligence algorithms such as information and SVMs are 
used again. The main function of an analog classifier is to classify different classifiers [34]. By ensuring 
the rapidity of calculation, feature patterns are transformed into related classes and the classes most 
suitable for a single feature are predicted. During the classification process, each feature will be 
analyzed to find the most suitable feature [35]. They will be analyzed separately to predict stresses. 
Once the classification is complete, the smart device displays their mental health rating on the screen. 
Therefore, people can improve their mental health through self-management (as shown in Figure 2). 
The virtual reality-augmented reality (VR-AR) based digital twin is the critical element for the 
intelligent development of AI-based wearable devices [36]. Finally, all of the elements are integrated 
into a smart device’s ecology for the future direction framework. 

 

Figure 2. Intelligent ecology flowchart of AI-based wearable devices with data storage, 
transaction, interaction and communication networks. 
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Mental health detection systems based on wearable devices mainly consist of sensors, data 
acquisition, data pre-processing, feature extraction, machine learning algorithms and mental health 
condition classification. The general scheme of mental health prediction is shown in Figure 3. Section 4 
will systematically introduce the current related research work according to the workflow of the wearable 
mental health detection system, as well as classify, compare and statistically analyze the existing 
research results. 

 

Figure 3. General scheme for the analysis of mental health. 

4.2. Data acquisition devices 

Currently, the commonly used signals in mental health detection are HRV, EEG, galvanic skin 
response (GSR), skin temperature (ST), blood pressure (BP), sleep, salivary cortisol and blood oxygen 
saturation (SpO2). In most studies, researchers use multiple indicators to accurately reflect an 
individual's mental health. At the same time, the wearable device can also collect indicators such as 
steps, activity category, posture and activity trajectory. According to the needs of users and the 
functions achieved by the device, the device will be worn on different parts of the body. Common 
wearing positions are shown in Figure 4. 

 

Figure 4. Common positions of AI-based wearable devices. 
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4.3. Pre-processing and feature extraction 

To solve the noise phenomenon in the data acquisition module, data pre-processing is required to 
reduce the impact of noise on the performance of mental health detection. Common filtering algorithms 
in mental health detection systems are wavelet transforms, the Kalman filter, etc. These filters can filter 
out high-frequency noise signals in the data [37,38]. 

The pre-processed data need to extract corresponding features for training the mental health 
detection model. Among them, the common feature extraction method is to use the sliding window 
algorithm to extract the features in the corresponding window, and then put the trained features into 
the trainer for training to form a mental health detection model. Table 1  summarizes the features 
extracted by the feature extraction module of an existing detection system. The commonly used feature 
values for feature extraction are Mean, Standard Deviation (StDev), Skew, Root Mean Square (RMS), 
Kurtosis, Quart1, Quart3, Inter-Quartile Range (IRQ), Sum, Frequency, etc. 

Table 1. Statistical features commonly used in mental health. 
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[43] Coefficient of variation /CV sd 

[45] 
Inverse coefficient of 

variation 
/ICV sd  

[18,19,41,43,46,47, 50–

52] 
Frequency 

Peak frequency, low-frequency power (LF), high-frequency 

power (HF), very-low-frequency power (VLF), prevalent 

low frequency (pLF), prevalent high frequency (pHF), the 

ratio of LF to HF (LF/HF), (From Lomb–Scargle) LF, HF 

and LF/HF 
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Table 2. Comparison analysis summary of several existing machine learning techniques. 

Machine learning 

algorithms 
Definition Advantages Disadvantages 

Support Vector 

Machine (SVM) 

In order to better find the 

hyperplane that can divide the 

feature space, the low-

dimensional data are mapped to 

the high-dimensional plane 

Works well with any complex 

problem, can scale high-

dimensional data, risk of 

overfitting is lower; It shows 

high robustness and strong 

generation ability with low 

overfitting 

Sensitive to missing data; It 

is difficult to implement 

large-scale training 

samples; There are 

difficulties in solving the 

multi-classification problem

K-Nearest Neighbor 

(KNN) 

In the feature space, if k samples 

near a sample belong to a 

category, that sample also 

belongs to that category 

Simple thought, mature theory; 

Can be used for multiple 

classification, high accuracy, no 

assumptions on the data, not 

sensitive to outliers 

Poor generalization ability 

and slow prediction speed 

Random Forests (RF) 
A classifier for multiple decision 

trees 

It can handle high-dimension 

data, has strong model 

generalization ability, and is 

fast in training. It can balance 

errors in unbalanced data sets, 

maintain accuracy if a large 

part of features is lost 

In noisy classification or 

regression problems, 

overfitting and attribute 

weights produced based on 

data of different attribute 

values are not credible 

Artificial Neural 

Network (ANN) 

A mathematical model for 

distributed parallel information 

processing that mimics the 

features of human neural network

It has a high accuracy of 

classification, strong parallel 

distribution processing ability, 

strong distribution storage and 

learning ability, adaptability, 

strong robustness and fault 

tolerance to noise nerve 

Many parameters are 

required, which are not 

suitable for small samples, 

high calculation cost, long 

learning process, and 

intermediate results cannot 

be observed 

Logical Regression 

(LR) 

The result of linear regression is 

mapped between 0 and 1 by a 

sigmoid function. The result of 

the mapping is the probability 

that the data sample point 

belongs to a certain category 

The computational cost is low, 

the implementation is easy to 

understand, the robustness to 

small noise in the data is good, 

and it is not particularly 

affected by slight 

multicollinearity 

It is easy to underfit, and 

the performance effect is 

not good when the 

classification accuracy is 

not high, the data features 

are missing or the feature 

space is large 

Decision Tree (DT) 

A prediction model is a mapping 

between object attributes and 

object values 

Easy to understand and explain, 

visualization of tree structure, 

less data required for training, 

fast analysis speed, and strong 

ability to process samples with 

missing attributes 

Overfitting, poor 

generalization ability and 

unstable calculation results

   Continued on next page 



7907 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7899–7919. 

Machine learning 

algorithms 
Definition Advantages Disadvantages 

Bayesian Network 

(BN) 

Graphical networks based on 

probabilistic inference 

The process is simple and fast, 

efficient for multi-classification 

problems, and requires a 

smaller sample size 

Sample attributes do not 

work well when they are 

associated and are sensitive 

to input forms 

Linear Discriminant 

Analysis (LDA) 

The labeled data is projected to a 

lower dimensional space so that 

the points after projection are 

distinguished by category. Points 

of the same category are closer to 

each other in the space after 

projection, and the differences 

are as far as possible 

It can reflect the differences 

between samples and use the 

prior knowledge experience of 

categories in dimension 

reduction 

Easy to fit, restricted by 

sample type 

Principal Component 

Analysis (PCA) 

A method of multivariate 

statistical analysis in which 

several variables are transformed 

linearly to select a smaller 

number of important variables 

Eliminate the mutual influence 

between indicators, small 

workload 

The amount of information 

must be kept at a high level 

after dimensionality 

reduction, and the 

interpretation of principal 

components is usually 

fuzzy 

4.4. Machine learning techniques 

Machine learning technology refers to the method of using some special formulas to guide the 
computer to use the known data to build a model that can make predictions for new situations. Common 
machine learning algorithms for mental health detection include SVMs [18,19,39,43,44,48,51–55] k-
nearest neighbor (KNN) algorithms [19,48,51,53], random forests (RF) [40,45,51], artificial neural 
networks (ANNs) [39], logistic regression (LR) [19,42,56,50,51], decision trees (DTs), Bayesian 
networks (BNs) [48], linear discriminant analysis (LDA) [51] and principal component analysis 
(PCA) [47,51]. The SVM is the most used algorithm for mental health detection among them. This 
paper summarizes the artificial intelligence algorithms involved in mental health detection and briefly 
describes their definitions, advantages and disadvantages, as shown in Table 2. 

5. Application 

Mental health problems are often accompanied by obvious body responses, and wearable sensors 
play an important role in mental health and its related applications. They can collect an individual's 
EEG, heart rate (HR), HRV, GSR, BP, body temperature, respiratory rate, etc., to monitor mental health. 
This section summarizes and discusses the signals commonly used in mental health detection, and 
briefly summarizes the relevant research on AI-based wearable devices in mental health detection over 
the past five years. The main contents include mental health disease types, parameters, results, etc., as 
shown in Table 3. 
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Table 3. Mental health applied research model and summary of results. 

Study Type Device Signals Model Result 

Can et al., 

2019 [51] 
Stress 

Samsung Gear S, S2 

and Empatica E4 

wristband 

End 

Diastolic 

Velocity, 

HRV and 

ACC 

PCA, LDA, 

SVM, KNN, 

RF and LR 

The accuracy of the multi-layer 

perceptron algorithm is 92.19%. 

Betti et al., 

2018 [18] 
Stress 

Mobile EEG headset, 

Chest belt 

HRV, EDA, 

EEG and 

Salivary 

cortisol 

SVM 

The classification algorithm based 

on salient features has an accuracy 

of 86%. 

Egilmez et al.,

2017 [40] 
Stress LG smartwatch GSR RF 

The pressure detection F-value of

the system is 88.8%. 

Gjoreski et 

al., 2019 [39] 
Stress 

Empatica device’s 

wristband 

HR, BVP, 

IBI, ST and 

ACC 

SVM 

Experiments with 55 days of real 

data showed that the method 

detected stress events with 95% 

accuracy. 

Ahn et al., 

2019 [52] 
Stress 

Head-mounted 

electrode 
ECG, EEG SVM 

The accuracy of the classification 

of pressure states using SVM 

technology and the 5-fold cross 

validation of EEG and HRV 

features was 87.5%. 

Wu et al., 

2019 [50] 
Stress Smart shirt 

Cortisol, 

HRV 
LR 

Mental stress index is sensitive to 

acute stress and can predict the 

level of association between 

normal individuals and the stress 

group with about 97% accuracy. 

Jesmin et al., 

2020 [53] 
Stress Smartwatch 

HRV, GSR 

and SpO2 
SVM, KNN 

Multi-sensor data fusion can better 

monitor individual stress levels. 

Bobade et al., 

2020 [41] 
Stress 

Chest-worn device, 

RespiBAN 

Professional and a 

wrist-worn device 

Empatica E4 

ACC, ECG, 

BVP, ST, 

RR, EMG 

and EDA 

Machine 

Learning 

 

Using machine learning 

technology, the accuracy of Class 

III and Class II classification 

problems reached 81.65 and 

93.20%, respectively, and using 

deep learning technology, the 

accuracy of Class III and Class II 

classification problems reached 

84.32 and 95.21%, respectively. 

Silva et al., 

2020 [49] 
Stress Smartwatch HRV ANN 

Several parameters of the HRV 

under pressure were significantly 

different from baseline. 

     

Continued on next page
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Study Type Device Signals Model Result 

Kim et al., 

2020 [42] 
Stress 

Empatica E4 

wristband 
GSR LR 

The overall classification accuracy 

of the model was 85.3%, and the 

cross-validation accuracy was 

83.2%. 

Han et al., 

2020 [48] 
Stress 

Smart wrist band, 

Empatica E4 

wristband and a 

Shimmer ECG device

ECG, PPG 

and GSR 

KNN, SVM, 

and BN 

The accuracy of 10-fold cross-

validation was 94.55%, while the 

accuracy of subject cross-

validation was 85.71%. In daily 

settings, the system had 81.82% 

accuracy in assessing stress. 

Tonacci et 

al.,2019 [62] 
Stress 

Shimmer™,Shimmer

3™ 
GSR, ECG 

Pan Tompkins 

algorithm 

HR increased with both sensory 

(olfactory) and cognitive 

stimulation, and there was a 

similar decrease in HRV. 

Tiwari et 

al.,2019 [43] 

Stress and 

anxiety 

 

OMsignal smart-shirt 

and a Fitbit Charge 2 

smart-bracelet 

HRV SVM 

Overall, HRV characteristics 

calculated from wearable vest data 

(with higher temporal resolution) 

proved to be more effective in 

predicting stress and anxiety. 

Patlar 

Akbulut et 

al., 2020 [47] 

Stress and 

anxiety 

 

Wrist-worn wearable 

device 

ECG, GSR, 

ST, SpO2, 

Blood sugar 

and BP 

PCA, Feed-

forward neural 

network 

Method had an average accuracy 

of 92 and 89% in distinguishing 

the stress levels of the 

experimental group and the 

control group, respectively. 

Sano et al., 

2018 [54] 

Stress and 

mental health 

condition 

Q-sensor and Motion 

logger 

SC, ST, ACC 

and Motion 

logger 

SVM, LASSO 

and RBF 

The sensors were 78.3% accurate 

in classifying students as high or 

low stress groups, and 87% 

accurate in classifying students as 

high or low mental health groups.

Fraiwan et 

al.,2018 [65] 

Mental health 

condition 
Smart glove ST and HRV

HRV 

algorithm 

There was significant variability in 

skin resistance and HRV under 

relaxation and stimulation. 

Chen et al., 

2018 [68] 

Mental health 

condition 
Smartwatch Speech 

Transfer 

learning 

The use of wearable long-term 

speech-to-social data sets to 

categorize various sound scenes in 

unconstrained and natural 

environments yielded good results.

Wen et al., 

2020 [44] 
Anxiety 

The MP150 multi-

channel physiological 

recorder 

HR (ECG 

electrodes) 
SVM 

The classifier achieved 81.82% 

accuracy in detecting a high 

anxiety state. 

     

Continued on next page
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Study Type Device Signals Model Result 

O’Brien et 

al., 2017[56] 

Depression 

 

 

Wrist-mounted 

device 

ACC LR 

General physical activity was 

significantly reduced in depressed 

older adults compared with 

healthy controls. 

Narziev et 

al.,2020 [67] 

Depression 

 
Smartwatch 

Motion 

logger and 

HR 

Machine 

learning 

 

Participants' ecological transient 

assessment self-report and passive 

perception (sensor data) were 

highly correlated between physical 

activity, mood and sleep levels; 

Depression detector verified the 

feasibility of grouping and 

classification with an accuracy 

rate of 96.00% (StDev = 2.76). 

Zanella-

Calzada et 

al.,2019 [45] 

Depression 

 
Actiwatch 

Motion 

Logger 
RF 

Patients with depression were 

accurately detected in 86.7% of 

the cases, while those without 

depression were found in 91.9% of 

the cases. 

Gentili et 

al.,2017 [55] 

Bipolar 

disorder 
Sensorized t-shirt 

HRV, 

respiration 

and ACC 

SVM 

After comparing the HRV features 

of the emotional states before and 

after, the classification accuracy of 

the SVM in the target state was 

significantly improved. 

Zheng et 

al.,2019 [46] 

Emotion 

recognition 

 

Head/wearable eye-

tracking glasses, 

EmotionMeter 

hardware 

EEG and 

Eye-

movement 

signal 

Multi-mode 

deep neural 

network model

The modal fusion performance of 

the multi-mode deep neural 

network was significantly 

improved, and the average 

accuracy of the four emotions 

(happiness, sadness, fear and 

neutral) reached 85.11%. 

Goumopoulos 

et al., 2022 

[19] 

Mental fatigue

Zephyr HXM-BT, 

Chest-strap built-in 

ECG sensor 

HRV 
SVM，KNN 

and LR 

Mental fatigue caused by 

cognitive load can be detected by 

wearable commercial devices and 

a single biomarker. 

Qiu et al., 

2020 [38] 
Mental fatigue

Head-mounted 

devices 

ECG, EEG 

and ST 

Wavelet 

transform, 

Kalman 

filtering 

Through the fatigue evaluation 

experiment of 10 healthy subjects, 

it was verified that the device can 

reliably detect the mental fatigue 

state by monitoring and analyzing 

EEG, ECG and proximal ST data.

5.1. Mental health detection using EEG 

EEG is a detection method that records the electrical activity of the cerebral cortex by connecting 
multiple electrodes to the scalp [57] to reflect the emotional changes of individuals to specific stimuli. 
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The stress state of the human body is mainly identified by the changes in the alpha and delta bands 
of the EEG. When people are under high levels of stress, alpha decreases and delta increases in the 
EEG, whereas, when they are relaxed or inactive, alpha increases and delta decreases [58]. Ahn et 
al. [52] used a binaural hanging device that combined EEG and ECG signals and found that the 
accuracy of EEG and ECG signals in continuous stress assessment was 87.5%. Additionally, based on 
the multi-modal emotion recognition framework of EmotionMeter, some scholars found that the 
individual's happiness, sadness, fear and neutral emotions can be distinguished and identified by EEG 
signals [46]. Finally, EEG combined with ECG signals, body temperature and other data can reliably 
detect the mental fatigue state of an individual, which provides support for the popularization and 
specific implementation of mental health assessments [38]. Table 3 shows the studies and their details 
on the use of EEG for mental health detection. EEG is one of the most effective physiological signals 
for detecting psychological stress, and the combination of ECG signals and machine learning 
applications can improve the accuracy of psychological stress detection. 

5.2. Mental health detection using ECG 

Stressors induce changes in myocardial activity, promote blood distribution to vital organs and 
cause changes in the HR and HRV [59]. ECG is a reliable technique that uses electrodes attached to the 
body to record the electrical potential produced by heart muscle cells to observe changes in HRV [59]. 
Studies have shown that HR and HRV signals are closely related to mental health problems (such as 
anxiety and depression) [60], and they have an important role in mental health detection. Tiwari et 
al. [43] found that HRV data obtained through smart t-shirts and smart bracelets can more accurately 
assess the degree of anxiety and depression of individuals. Second, HRV characteristics are closely 
associated with an individual’s clinical course and mood changes. Gentili et al. [55] showed that the 
HRV characteristics (including time domain, frequency domain, nonlinearity) of patients with bipolar 
disorder can significantly predict their clinical course and emotional changes. Additionally, Akbulut et 
al. [47] believe that the stress state of an individual can be accurately identified by signals such as the 
HRV obtained by wearable devices. Table 3 presents an overview and the details of mental health 
testing using ECG. 

5.3. Mental health detection using GSR 

Sweat is a biological fluid produced by sweat glands. Sweat glands are distributed almost all over 
the body, with high-density distribution in the palms, soles and forehead; they are only stimulated by 
the sympathetic nerves, which are activated under tension [14], so the level of sweat secretion is the 
body’s response to stress. Since sweat contains ions, small molecules and even macromolecular 
substances such as proteins, it has electrical conductivity [61]. Therefore, the EDA signal is obtained 
by connecting two electrodes on the skin surface, and the voltage between them is measured to monitor 
the stress. Sriamprakash et al. [33] collected the GSR, HRV and other indicators, extracted individual 
stress characteristics by using Welch's algorithm and periodograms, etc., and used SVM and KNN 
algorithms to classify levels of mental health. Tonacci et al. [62] captured the ECG and skin 
conductance (SC) signals of subjects by using wearable sensors and compared the effects of cognitive 
stress and olfactory stimuli on human mental health. Additionally, EDA and GSR also change with 
different emotions; this can effectively reflect the state of emotional calm or emotional arousal [63]. 
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Evidence shows that the emotional state of patients with metabolic syndrome can be analyzed by using 
indicators such as the GSR, HRV and body temperature detected by wearable devices [47]. The above 
studies have confirmed that combining GSR with HRV, body temperature and other parameters can 
improve the prediction rate for individual stress, and accurately provide and detect information about 
individual emotional states. 

5.4. Mental health detection using ST 

High levels of stress can cause muscle tension, increase the HR and increase the work of the vital 
organs; additionally, the blood will be shunted from the limbs to directly act on the vital organs. In just 
a few minutes, the body surface temperature can change [64]. Most of the studies involved the 
collection of body temperature data to detect mental health conditions. Fraiwan et al. [65] designed a 
mobile mental health monitoring system for continuous monitoring of changes in ST, skin electrical 
impedance and HRV; they found that, when the body was exposed to relaxation or stimulation, the skin 
electrical resistance value and HRV exhibited significant variability. Engelniederhammer et al. [66] 
monitored the EDA and ST in subjects wearing a smart wristband (Bodymonitor); the results showed 
that being in a crowded environment triggers aversive emotional responses (i.e., stress, anger and fear) 
in subjects. Sano et al. [54] had 201 college students wear two sensors on each wrist: a Q-sensor (for 
measuring SC, ST, triaxial acceleration (ACC)) and motion recorder (for measuring acceleration and 
ambient light data); the study showed that wearable sensor eigenvalues are more accurate than cell 
phones for classifying poor mental health (87%) and stress (78.3%) when using machine learning 
techniques. In conclusion, the ST, combined with parameters such as EDA, is more accurate for 
detecting emotional changes and stress levels. 

5.5. Mental health detection using speech and behavior 

With the development of artificial intelligence, the natural language processing program of the 
computer can more accurately identify the subtle barriers in language before the onset of mental illness, 
achieving the effect of accurately predicting the mental illness [27]. Corcoran et al. [27] confirmed that 
the automatic learning of speech classifiers with reduced semantic consistency, increased semantic 
consistency differences and reduced use of case pronouns can predict psychotic episodes with an 
accuracy rate of 83%. Language signals help to improve the accuracy of mental disease prediction and 
have become a powerful tool for psychiatric diagnosis and treatment. 

In addition, mental illness is associated with changes in an individual’s behavior, especially physical 
movement and social habits. AI-based wearable devices (accelerometers, global position system sensors) 
can detect these abnormal behaviors and effectively reduce the incidence of individual mental illness. 
Zanella-Calzada et al. [45] obtained data on motor activity recorded by wearable devices from a 
depression database, extracted the statistical features and then fed them to an RF classifier to detect 
subjects with depression; the results showed that those subjects with the presence of depression had 
an 86.7% likelihood of being correctly classified, while the specificity showed that those subjects with 
the absence of depression had a 91.9% likelihood of being classified with a correct response. Additionally, 
Narziev et al. [67] recruited 20 participants from four different levels of depression groups and 
established a machine learning model to automatically classify the categories of depression in a short 
period of time; the results of this pilot study revealed high correlations between participants’ ecological 
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momentary assessment self-reports and passive sensing (sensor data) in terms of physical activity, mood 
and sleep levels. All of the above studies have shown that the role of speech signals and behavioral 
signals in the detection of mental health states such as depression, mood disorders or schizophrenia 
cannot be ignored. 

6. Discussion 

Multiple studies have integrated the use of wearable sensors to detect stress levels, and there is a 
lack of exhaustive reviews on topics such as mental health or illness detection. However, some reviews 
comprehensively cover information, but do not provide details such as machine learning methods, 
types of mental health states and the classification of detection signals. To fill this gap, this paper 
presents an extensive review of mental health detection using wearable sensors. 

The significant observations from this review are listed below. 
 Most wearable sensors are placed on the wrist (such as smartwatches and smart wristbands), 

chest (smart t-shirts, chest straps, etc.) and head (head-mounted devices, etc.) for data collection. 
 The Empatica, EmotionMeter and SHIMMER platforms have been popularly used for data 

collection. 
 HRV, EEG, GSR and ST are the most distinctive signals for detecting mental health conditions. 
 SVM, LR and KNN have been widely used in the classification of mental health conditions. 
 Most of the disease types studied focused on psychological stress levels and mental health 

problems (anxiety and depression). 
The identified challenges are described below. 
 Compliance: The collection of subjects' physiological indicators and daily activity data is 

affected by individual living habits, which makes the detection process more complicated and thus 
degrades the performance of the mental health detection system. Therefore, the mental health 
assessment based on wearable devices can only do a rough screening and cannot directly assess the 
disease accurately. 

 Singleness of indicators: most studies involve the collection of only a single category of 
signals, such as physiology, speech and behavior, while fewer collect a combination. Since different 
categories of data and signals reflect different aspects of mental health, the integrated collection of all 
types of signals is essential for the accurate screening of mental health problems. 

7. Conclusions 

Globally, mental health problems are still serious social public health problems, and mental health 
has always been detected via subjective and time-consuming methods. Wearable sensors have great 
potential as a continuous monitoring system for mental health. As the needs for mental health care 
services increase, so does the production of AI-based wearable devices. This paper reviewed the types 
of equipment, common locations of sensors, common signals, advantages and disadvantages of 
technology and types of mental health states in previous studies. First of all, the most common types 
of states in mental health testing are psychological stress and mental health problems (anxiety and 
depression), and most wearable sensors are placed on the wrist, chest or head. Additionally, it was 
found that there are many AI-based wearable devices on the market that mainly collect physiological 
signals for mental health detection, and that there are few studies on detecting mental health with 
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speech signals and behavioral signals. Among the physiological signals, the HRV, EEG, ST and GSR 
signals are the most effective parameter indicators for detecting the mental health condition and this 
conclusion is helpful for researchers to create devices to improve people's mental health level. Finally, 
this paper integrated important information, such as the technical advantages and limitations of previous 
studies; it was found that the most common classifiers are SVM, KNN and LR algorithms, and that these 
algorithms provide the most reliable results for mental health detection. In the future, with the continuous 
innovation of science and technology, deterministic annealing neural networks [69,70], convolutional 
neural networks [71–73], the logarithmic descent direction algorithm [74], Laplacian-Hessian 
regularization semi-supervised extreme learning machine [75,76] and back-propagation neural 
networks [77] are also expected to be applied and explored in the field of mental health detection. In 
a word, the goal of mental health testing is to develop an efficient and affordable model with high 
accuracy. This review will help future researchers design optimal wearable devices to achieve their 
goals for mental health detection. 
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