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Abstract: With the development of the field of survival analysis, statistical inference of right-censored 
data is of great importance for the study of medical diagnosis. In this study, a right-censored data 
survival prediction model based on an improved composite quantile regression neural network 
framework, called rcICQRNN, is proposed. It incorporates composite quantile regression with the loss 
function of a multi-hidden layer feedforward neural network, combined with an inverse probability 
weighting method for survival prediction. Meanwhile, the hyperparameters involved in the neural 
network are adjusted using the WOA algorithm, integer encoding and One-Hot encoding are 
implemented to encode the classification features, and the BWOA variable selection method for high-
dimensional data is proposed. The rcICQRNN algorithm was tested on a simulated dataset and two 
real breast cancer datasets, and the performance of the model was evaluated by three evaluation metrics. 
The results show that the rcICQRNN-5 model is more suitable for analyzing simulated datasets. The 
One-Hot encoding of the WOA-rcICQRNN-30 model is more applicable to the NKI70 data. The model 
results are optimal for 𝑘 ൌ 15  after feature selection for the METABRIC dataset. Finally, we 
implemented the method for cross-dataset validation. On the whole, the Cindex results using One-Hot 
encoding data are more stable, making the proposed rcICQRNN prediction model flexible enough to 
assist in medical decision making. It has practical applications in areas such as biomedicine, insurance 
actuarial and financial economics. 

Keywords: right-censored data; composite quantile regression; neural network; whale optimization 
algorithm; feature selection 
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1. Introduction 

Prognostic modeling in medical survival analysis is used to analyze and understand disease 
processes, to predict the behavior of new patients in the context of available data, and to explore the 
interaction between disease factors. Statistical methods and machine learning-based methods are two 
common types of approaches to construct prognostic models [1]. Both statistical and machine learning 
methods can predict survival time and estimate the probability of survival. However, the former 
focuses more on characterizing the statistical properties of time-to-event distributions and parameter 
estimates by estimating survival curves, while the latter mainly predicts the occurrence of specific 
time-to-events by combining the power of traditional survival analysis methods with various machine 
learning techniques. Kaplan-Meier estimation is an asymptotic maximum of the survival function 
under incomplete data likelihood estimation, which provides a solid theoretical foundation for dealing 
with right-censored data [2]. The problem of sparse estimation of censored median regression models 
is an important issue in the analysis of high-dimensional survival data. A sparse and robust median 
estimate can be obtained by minimizing the weighted minimum absolute bias loss of the inverse 
censored probability under an adaptive lasso penalty [3]. Giussani and Bonetti explored multivariate 
survival techniques for binary right-censored data analysis and investigated a new parametric bivariate 
vulnerability model [4]. For consideration of the correlation between two survival times, the Marshall-
Olkin bivariate exponential distribution (MOBVE) was used to model two joint distributions. Yu 
investigated the problem of great likelihood estimation and data fitting diagnostics associated with 
uniform distributions and applied it to a cancer research dataset [5]. 

When investigating regression models, different loss functions are usually considered. The most 
commonly utilized one is the squared loss, i.e., the least squares estimation. However, it is sensitive to 
heavy-tailed distributions and outliers and is not robust. The quantile regression model [6] can not only 
handle heteroskedasticity and outliers, but also construct confidence intervals for parameters using 
empirical likelihood inference methods without estimating the asymptotic variance. Zou and Yuan 
proposed the first composite quantile regression method by considering the loss of multiple quantile 
points simultaneously, which greatly expanded the theoreticality and stability of the estimation 
results [7]. In recent years, many scholars have done a lot of work based on the composite quantile 
regression method, such as Shim et al. proposed a new nonparametric regression method, the 
composite support vector quantile regression (CSVQR) [8]. Bang et al. proposed the weighted 
composite quantile regression (WCQR) [9], and in that same year, Bang proposed composite kernel 
quantile regression (CKQR) [10]. Xu et al. proposed a new composite quantile regression neural 
network model (CQRNN) [11]. In 2021, a weighted composite quantile regression model for linear 
models [12] was used for the problem of right-censored data with random missing censored indicators, 
and an adaptive penalty procedure was applied to discuss the variable selection problem in the model. 

Neural networks have an excellent ability to handle censored data in survival analysis and can 
identify the importance of extremely complex interactions in the data. Therefore, it can be used to 
improve traditional survival analysis techniques [13]. Katzman et al. introduced DeepSurv, a state-of-
the-art Cox proportional risk deep neural network survival method for modeling the interaction 
between patient covariates and treatment effects in order to provide personalized treatment 
recommendations [14]. Wang et al. proposed a novel multi-task based neural network SurvNet [15]. 
Anika and Olivier constructed a multimodal neural network model to develop an unsupervised encoder 
for personalized treatment of cancer patients [16]. Currently, there are an increasing number of models 
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for cancer survival prediction [17–20], and developing a model that is both accurate and interpretable 
is to remain a challenge. 

For datasets with censored data, the selection of estimation methods is essential due to the 
incompleteness of the data, which happens to make excellent use of the quantile nature. In this paper, 
we use a composite quantile regression approach to deal with censored data. Moreover, many deep 
learning algorithms have been adapted to tackle such censored data and to deal with other challenging 
problems that arise in realistic data. In this study, a survival prediction model based on an improved 
composite quantile regression neural network framework is proposed. It extends the deep neural 
network framework to composite quantile regression, combined with an inverse probability weighting 
method for survival prediction. The whale optimization algorithm (WOA) is used for hyperparameter 
tuning, and the binary whale optimization algorithm (BWOA) is applied for variable selection of high-
dimensional covariate data. Through extensive tests on simulated datasets and three real datasets of 
NKI70, METABRIC, and TCC, the results show that the proposed rcICQRNN method has high 
prediction accuracy for right-censored data. 

The purpose of this study is to help healthcare professionals make sound decisions by establishing 
a more accurate method of predicting cancer patients. Cancer patients can benefit from accurate 
prognosis prediction, and physicians can benefit by making timely judgments and suggesting 
appropriate treatment options. For healthcare professionals, cancer prognosis analysis is an important 
part of their profession, especially when dealing with patients with short survival times, which need to 
be supported by more robust models. Deep learning can greatly facilitate cancer treatment and has the 
potential to bring it closer to accurate prognostic outcomes. This paper employs a state-of-the-art 
neural network architecture optimized for cancer survival analysis and validated on open-source and 
publicly accessible multiple data, and also shows that the present method can enable predictions from 
other domain datasets. The application of composite quantile regression captures the overall picture of 
the survival distribution, enhances the robustness, fit, predictive power and nonlinear processing of 
neural networks, and fills the gap between composite quantile regression and neural network methods 
in the field of survival analysis. Compared with state-of-the-art models, this paper is able to enhance 
the predictive power of survival analysis and facilitate the development of deep learning techniques in 
personalized clinical decision making. 

2. Materials and methods 

2.1. Materials 

2.1.1. NKI70 dataset 

In this paper, the proposed rcICQRNN method and DeepQuantreg [21] are compared with two 
real breast cancer datasets. The first is the NKI70 dataset, which is from the R package penalized. This 
dataset is described in detail on the website https://rdrr.io/cran/penalized/man/nki70.html. The NKI70 
dataset contains 144 patients with lymph node positive breast cancer. In an earlier study, metastasis-
free survival, 5 clinical risk factors, and gene expression measurements for 70 genes were found to be 
predictive of metastasis-free survival in 144 patients. Among these patients, 96 were censored samples, 
with a censoring ratio of approximately 67%. Four variables in the dataset were of type categorical: 
tumor diameter (two levels), number of affected lymph nodes (two levels), estrogen receptor status 
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(two levels), and tumor grade (three ordered levels). We implemented integer encoding and One-Hot 
encoding to encode categorical features, and the number of covariates after One-Hot encoding was 80. 
We subsequently compared the performance of integer encoding and One-Hot encoding in rcICQRNN 
for survival prediction of breast cancer data. 

2.1.2. METABRIC dataset 

The most important part of the clinical decision-making process for cancer patients is the accurate 
estimation of prognosis and survival. Breast cancer patients with the similar disease stage and the 
similar clinical features can have different treatment responses and overall survival due to the fact that 
cancer is associated with genetic abnormalities. The Molecular Taxonomy of Breast Cancer 
International Consortium (METABRIC) database is a Canadian-UK project containing targeted 
sequencing data from 1980 major breast cancer samples. Clinical and genomic data can be downloaded 
from cBioPortal. For this study, the METABRIC dataset was obtained from the Kaggle website at 
https://www.kaggle.com/raghadalharbi/breast-cancer-gene-expression-profiles-metabric/download. 
The METABRIC dataset included 31 clinical attributes, m-RNA level z scores for 331 genes, and 175 
gene mutations in 1904 breast cancer patients. After processing missing values, the data included 1902 
patients with 518 features. Again, integer encoding and One-Hot encoding were performed for 18 
categorical features. Due to the large number of variables in the dataset, direct survival prediction gives 
poor results. Therefore, a variable selection method, called BWOA, is proposed in this paper. The 
number of variables after integer encoding was 433 and the number of variables after One-Hot 
encoding was 241, both with a censoring ratio of 66%. 

2.1.3. Telco Customer Churn dataset (TCC) 

To validate the performance of this study on different domain datasets, this paper analyzes the 
characteristics that influence telecom customer churn and the prediction of customer churn probability. The 
data was obtained from 7034 telecommunication customers. It consists of 50% female customers, 50% 
male customers, 18 characteristics, and a censoring ratio of 73%. This data set may be found at 
https://www.kaggle.com/datasets/blastchar/telco-customer-churn. The data set of ‘gender’, ‘Partner’ 
and other 15 non-numeric features in the data set were converted to numeric form. 

The selected features corresponding to each dataset are given in Table 1. 

Table 1. Reduced feature set using BWOA. 

dat 
Available features BWOA features 

Integer One-Hot Integer One-Hot 

NKI70 75 80 - - 
METABRIC 518 578 433 241 
TCC 18 45 - - 

2.2. rcICQRNN method 

Taylor and Cannon considered a quantile regression neural network (QRNN) method by 
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combining the excellent properties of neural networks and quantile regression (QR) [22,23]. In this 
section, the censored composite quantile regression neural network (rcICQRNN) model is proposed 
by adding a deep neural network and an inverse probability weighting structure to the composite 
quantile regression method. For random variables 𝑇, the 𝜏௧௛ quantile of 𝑇 is defined as: 

𝑄்ሺ𝜏ሻ ൌ 𝑖𝑛𝑓ሼ𝑡: 𝑃𝑟ሺ𝑇 ൑ 𝑡ሻ ൒ 𝜏ሽ, 𝜏 ∈ ሺ0,1ሻ,                             (1) 

𝑄்ሺ𝜏ሻ is a function of 𝜏, it can completely describe the distribution of random variable 𝑇. Given the 
covariate 𝑋 ൌ ሺ𝑥ଵ, ⋯ 𝑥௡ሻ, The 𝜏௧௛ conditional quantile of 𝑇can be defined as: 

𝑄்|௑ሺ𝜏ሻ ൌ 𝑖𝑛𝑓ሼ𝑡: 𝑃𝑟ሺ𝑇 ൑ 𝑡|𝑋ሻ ൒ 𝜏ሽ, 𝜏 ∈ ሺ0,1ሻ.                           (2) 

The log linear quantile regression model is defined as follows: 

𝑄ఛሺ𝑇|𝑋ሻ ൌ 𝑒𝑥𝑝ሺ𝑋்𝛽ሺ𝜏ሻሻ, 𝜏 ∈ ሺ0,1ሻ,                                (3) 

where 𝛽ሺ𝜏ሻ ൌ ሺ𝛽ଵሺ𝜏ሻ, ⋯ 𝛽௡ሺ𝜏ሻሻ் is the regression coefficient. Since the original test function is not 
defined at the origin, it cannot be differentiable everywhere. Therefore, the Huber function [24] is used 
to smooth the test function in this paper. 

𝜌ఛሺ𝑢ሻ ൌ ℎሺ𝑢ሻሺ𝜏 െ 𝐼ሺ𝑢 ൑ 0ሻሻ

     ൌ ൜
ℎሺ𝑢ሻ𝜏 𝑢 ൐ 0

ℎሺ𝑢ሻሺ𝜏 െ 1ሻ 𝑢 ൑ 0

ℎሺ𝑢ሻ ൌ ቐ

௨మ

క  0 ൑ |𝑢| ൑ 𝜉

|𝑢| െ
క

ଶ  |𝑢| ൐ 𝜉

,                                     (4) 

where 𝐼ሺ⋅ሻ  is the indicator function. In traditional quantile regression, the model will be trained 
separately for each quantile, and the training objective is to minimize the average loss function 𝑄𝜌ఛ 
for the 𝜏௧௛ quantile: 

𝑚𝑖𝑛𝑄𝜌ఛ ൌ ଵ

௡
∑ 𝜌ఛሺ𝑙𝑜𝑔ሺ𝑡௜ሻ െ 𝑋௜

்𝛽ሻ௡
௜ୀଵ .                            (5) 

The composite quantile regression is extended to different levels of 𝜏  while considering the 

multiple quantile regression model. In general, take an equidistant 𝜏௞ ൌ ௞

௄ାଵ
, 𝑘 ൌ 1,2, ⋯ , 𝐾 , and 

define the following objective function 𝐶𝑄𝜌ఛೖ
: 

𝑚𝑖𝑛𝐶𝑄𝜌ఛೖ
ൌ ଵ

௄
∑ 𝑄𝜌ఛೖ

௄
௞ୀଵ ൌ ଵ

௡௄
∑ ∑ 𝜌ఛೖ

ሺ𝑙𝑜𝑔ሺ𝑡௜ሻ െ 𝑋௜
்𝛽ሻ௡

௜ୀଵ
௄
௞ୀଵ .               (6) 

Suppose a deep feedforward network with two hidden layers is considered. The overall structure 
is: an input layer, consisting of 𝑚 input variables 𝑥௜, 𝑖 ൌ 1, ⋯ , 𝑚. In the middle are two hidden layers, 
consisting of 𝑛  and 𝑝  neural units, respectively. The final layer is the output layer. 
𝑤௜௡

ሺ௛ሻ, 𝑤௡௟
ሺ௛ሻ, 𝑏௡

ሺ௛ሻ, 𝑏௟
ሺ௛ሻ is the weight and bias of the hidden layer, and 𝑤௟

ሺ௢ሻ, 𝑏ሺ௢ሻ is the weight and 
bias of the output layer. Then, the output of the first hidden layer is: 

𝑔௡ ൌ 𝑓ଵ
ሺ௛ሻ ቀ∑ 𝑥௜𝑤௜௡

ሺ௛ሻ௠
௜ୀଵ ൅ 𝑏௡

ሺ௛ሻቁ  𝑛 ൌ 1,2, ⋯ , 𝑁.                           (7) 
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The output of the second hidden layer is: 

ℎ௟ ൌ 𝑓ଶ
ሺ௛ሻ ቀ∑ 𝑔௡𝑤௡௟

ሺ௛ሻே
௡ୀଵ ൅ 𝑏௟

ሺ௛ሻቁ  𝑙 ൌ 1,2, ⋯ , 𝐿,                       (8) 

where 𝑓ଵ
ሺ௛ሻ and 𝑓ଶ

ሺ௛ሻ are the activation functions of the hidden layer. Common activation functions 
include sigmoid, relu, etc. [21]. Finally, the output layer of the network is a single node with linear 
activation function. The estimation of the 𝜏௧௛ conditional quantile of the 𝑖௧௛ object is Eq (9). 

𝑙𝑜𝑔𝑄෠௜
ሺఛሻ

ൌ ∑ ℎ௟,௜𝑤௟
ሺ௢ሻ௅

௟ୀଵ ൅ 𝑏ሺ௢ሻ.                                (9) 

Therefore, the objective of CQRNN is to minimize the empirical loss function as Eq (10). 

𝐶𝑄𝑅𝑁𝑁ሺ𝜃ሻ ൌ
ଵ

௄
∑ 𝑄𝜌ఛೖ

௄
௞ୀଵ ൌ

ଵ

௡௄
∑ ∑ 𝜌ఛೖ

ሺ𝑙𝑜𝑔ሺ𝑡௜ሻ െ 𝑙𝑜𝑔𝑄෠௜
ሺఛሻ

ሻ௡
௜ୀଵ

௄
௞ୀଵ ,              (10) 

where 𝜃 includes all coefficients, i.e., weights and bias, thus trained and estimated. 
Now consider the data with right-censored loss and analyze mainly the time of death of the target 

subject, or other known points of interest that occurred over a period of time. The Cox proportional 
risk model is a widely used statistical method for modeling risk rates. For overcoming the complexity 
of risk ratio interpretation, a composite quantile regression neural network is introduced to the 
censored data, and the interpretation is more intuitive. First, 𝑇 is defined as the failure time. 𝑇଴ is 
the maximum follow-up study time. 𝑋௜ is the 𝑝 dimension prediction variable that may affect the 
failure time. 𝐶௜ ൑ 𝑇଴, ሼ𝐶௜: 𝑖 ൌ 1, ⋯ , 𝑛ሽ indicates the censoring time, and the distribution of 𝐶௜ depends 
on 𝑋௜. For the right-censored dataset ሺ𝑌௜, 𝛿௜, 𝐶௜ሻ, 𝑖 ൌ 1, ⋯ , 𝑛, there are independent observations, where 
𝑌௜ is the observed failure time, 𝑌௜ ൌ 𝑚𝑖𝑛ሼ𝑇௜, 𝐶௜ሽ, 𝛿௜ are the censored indicator variables, i.e, 

𝛿௜ ൌ 𝐼ሺ𝑇௜ ൑ 𝐶௜ሻ ቄ1  𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑
0    𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑

.                            (11) 

Combined with the characteristics of right-censored data and assuming the conditional 
independence between 𝑇௜ and 𝐶௜ of a given 𝑥, define a weight function: 

𝜔௜ ൌ
ఋ೔

෠ீሺ௒೔ሻ,                                        (12) 

where 𝐺෠ሺ𝑌௜ሻ is the Kaplan-Meier estimation based on censored distribution of observed data 𝑌௜, 𝐼ሺ𝛿 ൌ 0ሻ. 
This weight function can be shown to be equivalent to a jump in the Kaplan-Meier estimator of the 
logarithmic distribution function of the failure time [21,25]. Similar to the ordinary censored quantile 
regression, in this study, the loss function of rcICQRNN is shown in Eq (13). 

𝑟𝑐𝐼𝐶𝑄𝑅𝑁𝑁ሺ𝜃ሻ ൌ
ଵ

௡௄
∑ ∑ 𝜔௜ ⋅ 𝜌ఛೖ

ሺ𝑙𝑜𝑔ሺ𝑡௜ሻ െ 𝑙𝑜𝑔𝑄෠௜
ሺఛሻ

ሻ௡
௜ୀଵ

௄
௞ୀଵ .                  (13) 

In summary, the inverse censored probability weighting method is combined with the composite 
quantile regression neural network method considering the characteristics of the right censored data, 
and the neural network methods used include single hidden layer feedforward neural networks and 
deep feedforward networks. For the hyperparameters in the neural network, the Whale optimization 
algorithm in the next section is used for parameter optimization. Also, to prevent overfitting, the 
dropout layer is added to the neural network in this paper. 
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2.3. Whale optimization algorithm (WOA) 

The whale optimization algorithm is a novel population intelligence optimization method 
proposed by Mirjalili and Lewis at Griffith University, Australia, in 2016 [26]. Its thought is derived 
from the unique special predatory behavior of humpback whales in the ocean, and the algorithm 
achieves the optimization search purpose through the process of whale encirclement and bubble attack 
on the prey. The algorithm mainly consists of three search mechanisms, using contraction and spiral 
mechanism to achieve the local search of the algorithm, and using stochastic learning strategy to 
achieve the global search of the algorithm. The most important feature is to simulate the hunting 
behavior of humpback whales with random individuals or optimal individuals, and to simulate the 
bubble net attack mechanism of humpback whales with spirals. 

In recent years, machine learning methods have developed rapidly and have greater advantages 
in some aspects compared with traditional statistical methods, and the integration of the two is 
increasingly being studied, which is a trend in the development of statistical research at this stage. 
Therefore, after studying and deeply researching statistical methods and machine learning methods, 
this paper integrates the characteristics of different methods, combines the composite quantile 
regression and neural network methods, and uses WOA optimization parameters to propose a new 
method with higher comprehensive utility. 

2.4. Binary WOA (BWOA) 

In this paper, a feature selection method based on an optimization algorithm is proposed, inspired 
by the feature selection strategy in [27]. The process of selecting the smallest subset of survival 
predictions from the most informative features. A binary version of the WOA is utilized to perform 
this task by constructing the input feature matrix most relevant to the model. 

The original WOA algorithm is a continuous algorithm, which cannot solve the binary problem 
directly. For solving this problem, we propose a binary version of WOA. in BWOA, set the upper 
bound (𝑢𝑏) to 1, the lower bound (𝑙𝑏) to 0, and the threshold to 0.5. The whale individual is initialized 
by 𝑋 ൌ 𝑙𝑏 ൅ ሺ𝑢𝑏 െ 𝑙𝑏ሻ ∗ 𝑟𝑎𝑛𝑑 to 1 if 𝑋 is greater than 0.5, and to 0 if 𝑋 is less than or equal to 0.5. 
In the discrete binary space, the position update implies a change between “0” and “1” are mutually 
changed. This study sets the following conversion function to update the whale position in binary space. 

𝑋⃗ሺ𝑡 ൅ 1ሻ ൌ ቊ
1  𝑋⃗ሺ𝑡ሻ ൐ 0.5

0  𝑋⃗ሺ𝑡ሻ ൑ 0.5
.                               (14) 

Note that the updated individual position is obtained, and it is judged whether it satisfies the upper 
and lower bound requirements. If it is less than the lower bound, it is made equal to the lower bound, 
and if it is greater than the upper bound, it is made the upper bound. 

2.5. Algorithm implementation 

The rcICQRNN algorithm requires defining weights and performance indicator functions, and 
then splitting the input data for representation. In the main function, train, test, layer, node, n_epoch, 
bsize, activation, optimizer, dropout, 𝑘  are used as parameters. In this study, the results were 
compared for hidden layers of 1, 2 and 3 and 𝑘 of 5, 10, 15, 19, 30 and 50. In the base model, node 
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is set to 50, n_epoch is set to 200, bsize is set to 64, activation is set to sigmoid, optimizer is set to 
Adam, and dropout is set to 0.2. The newly defined function is used as the loss function of the 
rcICQRNN algorithm to construct the prediction model, and the output is the result of the evaluation 
index MMSE, C-index, and QL. 

The operating system used in this paper is Windows 10. The running software is Python version 3.8.8 
and the running tool is Jupyter Notebook. Scikit-learn version is Sklearn 0.24.1. The processor is 
Intel(R) Core(TM) i7-10700 CPU @ 2.90 GHz 2.90 GHz and the RAM is 16.0 GB.  

Due to the specificity of right-censored data, this paper proposes a survival analysis method that 
extends neural networks to composite quantile regression by effectively integrating the loss functions 
of neural networks and composite quantile regression. To optimize the hyperparameters of the survival 
prediction model, the WOA algorithm was used to fit the model to the training set with the best 
parameters and to evaluate it on the test set. The prediction results of the model proposed in this paper 
and the quantile regression neural network method under different quantile are compared, and the 
performance of the model is evaluated comprehensively by quantitative analysis of evaluation indexes 
to find the best prediction model. The general framework diagram of this paper is shown in Figure 1. 

2.6. Performance metrics 

When evaluating the prediction model, the main measure is the difference between the predicted 
value 𝑦పෝ   and the observed value 𝑦௜ . In this paper, three important metrics were used to evaluate 
survival prediction models using the consistency index (C-index) [28], modified mean squared error 
(MMSE) [21], and quantile loss (QL) [21]. 

In the field of survival analysis, one of the most commonly used metrics to assess model 
prediction accuracy is the C-index, which is an extension of the area under the subject operating 
characteristic curve (ROC) to censored time-to-event data. The C-index represents the fraction of 
patient pairs that show agreement between predictions and outcomes, i.e., patients are considered to 
have greater predicted survival times if longer-lived patients is consistent with the outcome, as shown 
in Eq (15). 

𝐶 ൌ
∑ ఋ೔ൈூሺఎ೔வఎೕሻൈூሺ௧೔ழ௧ೕሻ೔,ೕ

∑ ఋ೔ൈூሺ௧೔ழ௧ೕሻ೔,ೕ
,                             (15) 

where 𝑖 and 𝑗 are the patient pairs in the sample and 𝐼ሺ⋅ሻ denotes the indicator function. If 𝜂௜ ൐ 𝜂௝, 
then 𝐼ሺ𝜂௜ ൐ 𝜂௝ሻ ൌ 1, otherwise 𝐼ሺ𝜂௜ ൐ 𝜂௝ሻ ൌ 0. 𝜂௜ and 𝜂௝ are the predicted risks of the patient pairs 
𝑖  and 𝑗 . Where patient pairs with greater predicted risk have shorter survival rates, indicating the 
agreement between the model’s risk prediction and the true survival outcome. The C-index measures 
the overall performance of the survival prediction model within an interval [0,1]. The larger the C-
index, the higher the prediction accuracy. 

The MMSE is defined as the mean of the sum of squares of the residuals between the observed 
event times and the times predicted by the quantile estimates in the censored condition. Since no true 
event times are observed for the censored sample, the MMSE is calculated only at the observed event 
times. The MMSE can be defined as Eq (16). 

𝑀𝑀𝑆𝐸 ൌ
∑ ቂఋ೔⋅ቄ௟௢௚ሺ௧೔ሻି௟௢௚ሺொ෠೔

ሺഓሻ
ሻቅቃ

మ
೙
೔సభ

∑ ఋ೔
೙
೔సభ

.                           (16) 

QL is the defined quantile loss and is another effective way to assess the difference between the 
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predicted and true quantile. QL is defined as Eq (17). 

𝑄𝐿 ൌ
ଵ

௡
∑ ቂ𝑤௜ ⋅ 𝜌ఛሺ𝑙𝑜𝑔ሺ𝑡௜ ∧ 𝑢ሻ െ 𝑙𝑜𝑔ሺ𝑄෠௜

ሺఛሻ
ሻሻቃ௡

௜ୀଵ ,                       (17) 

where 𝑢 is a constant, slightly smaller than the true follow-up time. 

 

Figure 1. Framework diagram of the proposed rcICQRNN model. 
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3. Results and discussions 

In this study, the above method was applied to multiple data sets to predict survival time. To avoid 
overfitting phenomenon, the dataset was divided into two parts: 75% for data model training and 25% 
for evaluating prediction accuracy of rcICQRNN-k, Integer-rcICQRNN-k, One-Hot-rcICQRNN-k, 
GS-rcICQRNN-k, WOA-rcICQRNN-k, QRNN, COX proportional hazard model. 

3.1. Predictive performance on simulated datasets 

In this study, numerical simulation experiments are used to evaluate the performance of the 
proposed estimation method on a simulated data set. The proposed inverse probability weighted 
composite quantile regression neural network model method is then applied to the real data. An 
observational data with 10 covariates was generated with 4000 training samples and 1000 test samples. 
Each covariate was derived from a uniform distribution and patients’ survival times were generated by 
an exponential Cox model [29], where the log-risk function was set as a Gaussian function [14]. 

Table 2. Evaluation index results of all models on the simulated data set. 

layer Models Cindex MMSE QL 

layer = 1 

rcICQRNN-5 0.6467 2.3290 0.2889 
rcICQRNN-10 0.6483 2.3111 0.2872 
rcICQRNN-15 0.6474 2.3107 0.2874 
rcICQRNN-19 0.6478 2.3122 0.2878 
rcICQRNN-30 0.6485 2.3051 0.2866 
rcICQRNN-50 0.6484 2.3218 0.2882 
QRNN 0.6489 2.3054 0.2871 

layer = 2 

rcICQRNN-5 0.6531 2.0199 0.2778 
rcICQRNN-10 0.6528 2.0158 0.2774 
rcICQRNN-15 0.6524 2.0275 0.2789 
rcICQRNN-19 0.6520 2.0219 0.2783 
rcICQRNN-30 0.6524 2.0196 0.2781 
rcICQRNN-50 0.6531 2.0268 0.2782 
QRNN 0.6524 2.0158 0.2778 

layer = 3 

rcICQRNN-5 0.6330 2.1673 0.2881 
rcICQRNN-10 0.6304 2.1695 0.2888 
rcICQRNN-15 0.6254 2.1689 0.2897 
rcICQRNN-19 0.6288 2.1777 0.2888 
rcICQRNN-30 0.6286 2.1887 0.2902 
rcICQRNN-50 0.6312 2.1690 0.2886 
QRNN 0.6308 2.1668 0.2885 

Table 2 shows the prediction results of 21 survival prediction models run 1 time using different 
hidden layers. The best results for Cindex, MMSE and QL are shown in bold. rcICQRNN-5 denotes 
the composite quantile regression neural network with 𝑘 ൌ 5, and the rest also denotes the model at 



7531 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7521–7542. 

different 𝑘 values, with which the real data set in the next section is consistent. Scatter plots of actual 
versus predicted survival times are in the supplemental material. Among all models with a single 
hidden layer, the QRNN model has a slightly better Cindex and QL of 0.6489 and 0.2871, respectively. 
rcICQRNN-30 is only 0.0004 lower than it in terms of Cindex. While the MMSE index is optimal for 
the composite quantile regression neural network model when 𝑘 ൌ 30 Among the models combining 
composite quantile regression with feedforward neural networks with two hidden layers, both 
rcICQRNN-5 and rcICQRNN-50 show optimal properties on Cindex, 0.0003 higher than the next best 
model rcICQRNN-10, and significantly better than the single hidden layer model by 0.0051. The 
MMSE and QL of the rcICQRNN-10 model are 2.0158 and 0.2774, respectively, which are better than 
the rest of the models. In all models with three hidden layers, the performance is worse than that of the 
model with two hidden layers. In general, the rcICQRNN-5 model with two hidden layers is more 
suitable for analyzing the simulated data set. 

3.2. Predictive performance on real datasets 

Breast cancer is the deadliest type of cancer in women worldwide, and there is evidence that 50–60% 
of breast cancer cases are detected at a late stage, thus the survival rate of breast cancer patients is low, 
and early diagnosis and care will improve the survival rate of breast cancer patients [30]. In the present 
study, two real breast cancer datasets were selected and the proposed model was applied to the 
prediction of survival time. We ran the different methods for each dataset 50 times separately and 
took the average results. In this section, the grid search method (GS) used is the one in the article by 
Jia et al. [21], where the individual parameters are adjusted in the training set using 5-fold cross 
validation. The GS optimized parameters result in discrete values in the range, and the WOA optimized 
parameters result in continuous values in the range. 

In Figure 2, we plot the Kaplan-Meier survival curves for the overall data. The characteristics of 
patient survival over time are depicted. The average age at diagnosis or disease examination in the 
NKI70 dataset was 44 years, and the average survival time of patients was 7.35 months. The average 
age at diagnosis or disease examination in the METABRIC dataset was 61 years, and the average 
survival time of patients was 126.55 months. 2757 clients in the TCC dataset had a duration of use of 
more than 40 months. 

Figure 3 shows the histograms of the performance results of different models for the NKI70 
dataset. Parameter results for the GS and WOA optimization models after integer encoding and One-
Hot encoding are shown in the Supplementary Material. The three plots on the left side of Figure 3 
show the results for the integer encoding and the right side shows the results for the One-Hot encoding. 
The results show that the model performance of One-Hot encoding is better than the model 
performance of integer encoding.The performance after WOA optimized parameters is significantly 
better than the model performance of GS optimized parameters. The rcICQRNN model proposed in 
this paper significantly outperforms the rcICQRNN with two hidden layers than the rcICQRNN with 
one hidden layer and three hidden layers due to other evaluation algorithms. In integer encoding, the 
performance of WOA optimized parameters is significantly better than that of GS optimized 
parameters when layer = 1 the average Cindex of the WOA-rcICQRNN-30 model is 0.8194, which 
is 0.0870, 0.0987, 0.0271, 0.0897, 0.0867 higher than rcICQRNN-30, QRNN, GS-rcICQRNN-30, 
GS-QRNN, and WOA-QRNN, respectively. The average Cindex of the WOA-rcICQRNN-50 model 
when layer = 2 is 0.8761, which is 0.1414, 0.1873, 0.0818, 0.1724, 0.1849 higher than rcICQRNN-50, 
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QRNN, GS-rcICQRNN-50, GS-QRNN, and WOA-QRNN, respectively. The QL of the WOA-
rcICQRNN-50 model is also the lowest value among all models. The average Cindex of the WOA-
rcICQRNN-15 model when layer = 3 is 0.8699, which is 0.1132, 0.1886, 0.0473, 0.1852, and 0.1818 
higher than that of rcICQRNN-15, QRNN, GS-rcICQRNN-15, GS-QRNN, and WOA-QRNN, 
respectively. In addition, the MMSE of QRNN is significantly higher than the other models. 

 

Figure 2. Survival curves for different datasets. 

 

Figure 3. Performance results of different models for the NKI70 dataset. 



7533 

Mathematical Biosciences and Engineering  Volume 19, Issue 8, 7521–7542. 

The One-Hot encoding all had a Cindex above 0.8. If the Cindex is used as the criterion, where 
WOA-rcICQRNN-19 performs the best among all rcICQRNN models with a single hidden layer, the 
Cindex is 0.8582, the MMSE is 0.4991 and the QL is 0.2615. The WOA-rcICQRNN-30 model 
outperformed all rcICQRNN models in both the double hidden layer and the triple hidden layer with 
a Cindex of 0.8736 and an MMSE of 0.2615. The WOA-rcICQRNN-30 model also outperforms all 
rcICQRNN models in both the double-hidden layer and the triple-hidden layer with a Cindex of 0.8736, 
an MMSE of 0.4419, and a QL of 0.2588. In the triple-hidden layer, it has a Cindex of 0.8864, an 
MMSE of 0.4583, and a QL of 0.2534. 

This paper also compares the Cindex results of 50 runs of different models to compare the 
prediction accuracy of the proposed algorithm with the existing state-of-the-art algorithms. Figure 4 
shows the box line plots of the Cindex results. The results show that the span of the 50 times Cindex 
results of the model is smaller in the Integer encoding dataset. The box line plot of the QRNN model 
is significantly lower than the other models, and the mean and standard deviation of the dual hidden 
layer WOA-rcICQRNN-50 model are better than the other models, respectively. 

 

Figure 4. Cindex box plot of different models for the NKI70 dataset. 

The span of the Cindex results of the single hidden layer model is larger in the One-Hot encoding 
dataset. Standard deviation is larger. Although the difference in the Cindex results between the different 
models was small, the superiority of the WOA-rcICQRNN-30 model could still be seen, further 
illustrating our method as the best breast cancer survival prediction model. 

The survival prediction results of the METABRIC dataset before feature selection are shown in 
Table 3, and the values in parentheses are the standard deviations of the results of 50 runs. The results 
show that the Cindex of different models is around 0.6 and the MMSE is around 0.8, and the accuracy 
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of the prediction model is low and the error is large. Therefore, considering the dimensionality of the 
dataset, the BWOA algorithm was used for variable selection of the data, and variables that slightly 
affect survival time were eliminated. 

Table 3. Original survival prediction results for the METABRIC dataset. 

layer Models Cindex MMSE QL 

layer = 1 

Integer-rcICQRNN-5 0.6012(0.012) 0.8225(0.0427) 0.3472(0.007) 
Integer-rcICQRNN-10 0.6008(0.0115) 0.8286(0.0432) 0.3485(0.006) 
Integer-rcICQRNN-15 0.6016(0.0117) 0.8285(0.0392) 0.3488(0.0066) 
Integer-rcICQRNN-19 0.6014(0.0141) 0.8362(0.0484) 0.3473(0.0074) 
Integer-rcICQRNN-30 0.6037(0.0132) 0.8214(0.0511) 0.347(0.0067) 
Integer-rcICQRNN-50 0.6035(0.0113) 0.8235(0.0434) 0.3462(0.007) 
One-Hot-rcICQRNN-5 0.602(0.0117) 0.7909(0.0463) 0.3474(0.0062) 
One-Hot-rcICQRNN-10 0.6031(0.0127) 0.7898(0.0407) 0.3473(0.0064) 
One-Hot-rcICQRNN-15 0.6017(0.0112) 0.7968(0.0408) 0.3475(0.0061) 
One-Hot-rcICQRNN-19 0.6014(0.0124) 0.7962(0.0398) 0.348(0.0065) 
One-Hot-rcICQRNN-30 0.6019(0.0122) 0.8079(0.0458) 0.3473(0.0052) 
One-Hot-rcICQRNN-50 0.5996(0.0106) 0.8034(0.0465) 0.3478(0.0066) 

layer = 2 

Integer-rcICQRNN-5 0.6123(0.0093) 0.8862(0.0457) 0.323(0.0039) 
Integer-rcICQRNN-10 0.6123(0.0078) 0.8918(0.0497) 0.3227(0.0043) 
Integer-rcICQRNN-15 0.6139(0.0091) 0.3234(0.0036) 0.3234(0.0036) 
Integer-rcICQRNN-19 0.614(0.0078) 0.8839(0.0464) 0.3228(0.0039) 
Integer-rcICQRNN-30 0.6152(0.0068) 0.8817(0.0379) 0.3214(0.0036) 
Integer-rcICQRNN-50 0.6124(0.0087) 0.889(0.0469) 0.3228(0.0041) 
One-Hot-rcICQRNN-5 0.6052(0.0075) 0.8763(0.0465) 0.326(0.0041) 
One-Hot-rcICQRNN-10 0.6043(0.0085) 0.8882(0.0398) 0.3256(0.0045) 
One-Hot-rcICQRNN-15 0.6061(0.0091) 0.8765(0.0409) 0.325(0.0045) 
One-Hot-rcICQRNN-19 0.6044(0.0074) 0.8801(0.0389) 0.3265(0.0051) 
One-Hot-rcICQRNN-30 0.6058(0.0089) 0.8838(0.045) 0.3254(0.0038) 
One-Hot-rcICQRNN-50 0.6061(0.0101) 0.8775(0.0421) 0.3258(0.0044) 

layer = 3 

Integer-rcICQRNN-5 0.6141(0.0104) 0.8984(0.0586) 0.3222(0.0049) 
Integer-rcICQRNN-10 0.6154(0.0096) 0.9007(0.0589) 0.3214(0.0048) 
Integer-rcICQRNN-15 0.6128(0.0091) 0.9082(0.0583) 0.3233(0.005) 
Integer-rcICQRNN-19 0.6145(0.0097) 0.8987(0.056) 0.3219(0.0048) 
Integer-rcICQRNN-30 0.6139(0.01) 0.9053(0.0619) 0.3221(0.0048) 
Integer-rcICQRNN-50 0.6141(0.0085) 0.8996(0.0481) 0.3213(0.0052) 
One-Hot-rcICQRNN-5 0.6067(0.0094) 0.8959(0.0559) 0.3243(0.0047) 
One-Hot-rcICQRNN-10 0.6053(0.0071) 0.9071(0.0674) 0.3234(0.0051) 
One-Hot-rcICQRNN-15 0.6081(0.0062) 0.8766(0.0512) 0.3236(0.0049) 
One-Hot-rcICQRNN-19 0.6077(0.0067) 0.8924(0.0556) 0.3234(0.0048) 
One-Hot-rcICQRNN-30 0.6057(0.0093) 0.8996(0.0554) 0.3238(0.0048) 
One-Hot-rcICQRNN-50 0.6064(0.0093) 0.8912(0.0449) 0.3245(0.0045) 
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Table 4. One-Hot encoding prediction results for feature selection of METABRIC dataset. 

layer Models Cindex MMSE QL 

layer = 1 

One-Hot-FS-GS-rcICQRNN-5 0.8546(0.0077) 0.4745(0.0205) 0.2726(0.0038)
One-Hot-FS-GS-rcICQRNN-10 0.8524(0.0082) 0.468(0.0228) 0.2724(0.0035)
One-Hot-FS-GS-rcICQRNN-15 0.8556(0.0075) 0.4715(0.0212) 0.2714(0.0029)
One-Hot-FS-GS-rcICQRNN-19 0.8581(0.0092) 0.4692(0.0255) 0.2702(0.0032)
One-Hot-FS-GS-rcICQRNN-30 0.8556(0.0077) 0.4693(0.0188) 0.2715(0.0042)
One-Hot-FS-GS-rcICQRNN-50 0.8569(0.0066) 0.4713(0.0182) 0.2716(0.0031)
One-Hot-FS-GS-QRNN 0.8573(0.0081) 0.4659(0.0187) 0.2702(0.0039)
One-Hot-FS-WOA-rcICQRNN-5 0.8573(0.0081) 0.4851(0.0236) 0.2733(0.0041)
One-Hot-FS-WOA-rcICQRNN-10 0.8562(0.0085) 0.4995(0.0263) 0.2738(0.0036)
One-Hot-FS-WOA-rcICQRNN-15 0.8522(0.0055) 0.4949(0.0158) 0.2756(0.0028)
One-Hot-FS-WOA-rcICQRNN-19 0.8607(0.005) 0.4794(0.015) 0.2721(0.0026)
One-Hot-FS-WOA-rcICQRNN-30 0.8619(0.007) 0.4745(0.016) 0.2713(0.0025)
One-Hot-FS-WOA-rcICQRNN-50 0.8614(0.0086) 0.4847(0.0215) 0.272(0.0034)
One-Hot-FS-WOA-QRNN 0.8573(0.0074) 0.4891(0.0162) 0.273(0.0032)

layer = 2 

One-Hot-FS-GS-rcICQRNN-5 0.858(0.0053) 0.4874(0.0308) 0.2605(0.0031)
One-Hot-FS-GS-rcICQRNN-10 0.8548(0.0057) 0.5218(0.0197) 0.2628(0.0029)
One-Hot-FS-GS-rcICQRNN-15 0.85(0.0055) 0.5731(0.0282) 0.2652(0.003)
One-Hot-FS-GS-rcICQRNN-19 0.8562(0.0063) 0.5108(0.0215) 0.2625(0.0027)
One-Hot-FS-GS-rcICQRNN-30 0.8524(0.0058) 0.555(0.02) 0.2641(0.0027)
One-Hot-FS-GS-rcICQRNN-50 0.8572(0.0067) 0.5011(0.0274) 0.2605(0.0024)
One-Hot-FS-GS-QRNN 0.8581(0.0068) 0.5141(0.0309) 0.2633(0.0039)
One-Hot-FS-WOA-rcICQRNN-5 0.8476(0.0049) 0.5646(0.0192) 0.2648(0.0026)
One-Hot-FS-WOA-rcICQRNN-10 0.858(0.0065) 0.5314(0.0268) 0.262(0.004) 
One-Hot-FS-WOA-rcICQRNN-15 0.8609(0.0083) 0.5161(0.0331) 0.2604(0.0083)
One-Hot-FS-WOA-rcICQRNN-19 0.8598(0.0083) 0.5006(0.0375) 0.2616(0.0037)
One-Hot-FS-WOA-rcICQRNN-30 0.8591(0.0082) 0.5154(0.0271) 0.2635(0.0041)
One-Hot-FS-WOA-rcICQRNN-50 0.8593(0.0062) 0.5215(0.023) 0.2613(0.0028)
One-Hot-FS-WOA-QRNN 0.8512(0.0082) 0.5084(0.0241) 0.2653(0.0041)

layer = 3 

One-Hot-FS-GS-rcICQRNN-5 0.8507(0.005) 0.5531(0.0211) 0.2654(0.0037)
One-Hot-FS-GS-rcICQRNN-10 0.8466(0.0052) 0.5931(0.0275) 0.2672(0.0041)
One-Hot-FS-GS-rcICQRNN-15 0.8326(0.0064) 0.6542(0.0352) 0.2725(0.0047)
One-Hot-FS-GS-rcICQRNN-19 0.8483(0.0063) 0.5617(0.0285) 0.2653(0.0034)
One-Hot-FS-GS-rcICQRNN-30 0.8405(0.0061) 0.6174(0.0347) 0.2721(0.0056)
One-Hot-FS-GS-rcICQRNN-50 0.8297(0.0055) 0.6568(0.0251) 0.2719(0.0032)
One-Hot-FS-GS-QRNN 0.8483(0.0051) 0.5805(0.0252) 0.267(0.0052)
One-Hot-FS-WOA-rcICQRNN-5 0.8506(0.0065) 0.5683(0.0299) 0.2661(0.0043)
One-Hot-FS-WOA-rcICQRNN-10 0.8533(0.0065) 0.5314(0.0327) 0.2662(0.0079)
One-Hot-FS-WOA-rcICQRNN-15 0.8544(0.0054) 0.4943(0.0209) 0.2623(0.0039)
One-Hot-FS-WOA-rcICQRNN-19 0.85(0.0078) 0.5853(0.0372) 0.2668(0.0047)
One-Hot-FS-WOA-rcICQRNN-30 0.8484(0.0088) 0.5562(0.0356) 0.2665(0.0044)
One-Hot-FS-WOA-rcICQRNN-50 0.8529(0.0069) 0.5152(0.0263) 0.2631(0.004)
One-Hot-FS-WOA-QRNN 0.8541(0.008) 0.5074(0.0346) 0.2638(0.0042)
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We found a significant increase in accuracy after subjecting the data to variable selection. The 
same GS and WOA algorithms were chosen to optimize the parameters in order for the model to 
achieve more effective predictive power. Since the previous datasets show that One-Hot encoding has 
better results than integer encoding, although some of the models in Table 3 have better performance 
after integer encoding, the performance of each model after feature selection still shows that One-Hot 
encoding is optimal. Therefore, in Table 4, only the performance metrics of each model with One-Hot 
encoding are shown. The performance of each model after feature selection and the performance 
results of each model after integer encoding optimization are in the supplementary material. 

In Table 4, when layer = 1, the average Cindex of the WOA-rcICQRNN-30 model is 0.8619, 
which is 0.0063, 0.0046, 0.0046 higher than GS-rcICQRNN-30, GS-QRNN, and WOA-QRNN, 
respectively. When layer = 2, the average Cindex of the WOA-rcICQRNN-15 model is 0.8609, which 
is 0.8609, 0.0028, and 0.0097 higher than GS-rcICQRNN-15, GS-QRNN, and WOA-QRNN, 
respectively. the QL of the WOA-rcICQRNN-15 model is also the lowest among all models lowest 
value. When layer = 3, again the average Cindex of the WOA-rcICQRNN-15 model is 0.8544, which 
is better than the other models, and is 0.0218, 0.0061, and 0.0003 higher than GS-rcICQRNN-15, GS-
QRNN, and WOA-QRNN, respectively. And the MMSE and QL of the WOA-rcICQRNN-15 model 
were 0.4943 and 0.2623, respectively, the lowest values among all models. 

 

Figure 5. Cindex box plot of different models after feature selection for METABRIC dataset. 

Figure 5 represents the Cindex box plots of different models after feature selection for the 
METABRIC dataset. Parameter results for the integer encoding and One-Hot encoding datasets after 
optimization of parameters by GS and WOA algorithms are in the supplementary material. It can be 
seen that the Cindex performance of the model for the feature-selected dataset is much improved after 
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the parameters are optimized using the intelligent optimization algorithm. The Cindex results for One-
Hot encoding data are more stable at this time. Except for the single-hidden layer and double-hidden 
layer models in integer encoding, all other models optimized by WOA can show better prediction 
accuracy, making the proposed rcICQRNN more suitable for predicting right-censored data. 

The survival prediction results for the TCC dataset are shown in Table 5. In this section, the results 
of the data after integer encoding and One-Hot encoding are further described. The results show that 
for each layer, One-Hot encoding helps to improve the prediction accuracy. When layer = 3, the 
rcICQRNN_19 model has a Cindex of 0.9813, MMSE of 0.1265, and QL of 0.0732 for the TCC dataset, 
which is better than the integer encoding model. However, the QRNN technique produced the least 
significant results. 

Table 5. Survival prediction results after encoding the TCC dataset. 

layer Models 
Integer encoding One-Hot encoding 
Cindex MMSE QL Cindex MMSE QL 

layer = 1 

rcICQRNN-5 0.9720 0.1971 0.0834 0.9740 0.1971 0.0834 
rcICQRNN-10 0.9742 0.2342 0.0911 0.9750 0.2222 0.0852 
rcICQRNN-15 0.9753 0.2139 0.0853 0.9719 0.1685 0.0789 
rcICQRNN-19 0.9723 0.2034 0.0857 0.9732 0.2018 0.0839 
rcICQRNN-30 0.9738 0.2243 0.0855 0.9754 0.2372 0.0895 
rcICQRNN-50 0.9738 0.2243 0.0855 0.9717 0.2073 0.0876 
QRNN 0.9672 0.0941 0.0970 0.9685 0.1572 0.0852 

layer = 2 

rcICQRNN-5 0.9791 0.1304 0.0682 0.9806 0.1351 0.0721 
rcICQRNN-10 0.9805 0.1463 0.0717 0.979 0.1446 0.0716 
rcICQRNN-15 0.9801 0.1443 0.0697 0.9771 0.1147 0.0647 
rcICQRNN-19 0.9795 0.1227 0.0646 0.9797 0.1171 0.0643 
rcICQRNN-30 0.9780 0.1155 0.0642 0.9788 0.1501 0.0768 
rcICQRNN-50 0.9796 0.1019 0.0605 0.9804 0.1513 0.0723 
QRNN 0.9707 0.0577 0.0731 0.9722 0.0621 0.0634 

layer = 3 

rcICQRNN-5 0.9810 0.0981 0.0595 0.9792 0.0910 0.0626 
rcICQRNN-10 0.9802 0.0989 0.0646 0.9789 0.0961 0.0632 
rcICQRNN-15 0.9797 0.1082 0.0647 0.9793 0.0823 0.0578 
rcICQRNN-19 0.9804 0.1348 0.0684 0.9813 0.1265 0.0732 
rcICQRNN-30 0.9707 0.0823 0.0569 0.9797 0.1124 0.0659 
rcICQRNN-50 0.9801 0.0780 0.0592 0.9804 0.1039 0.0637 
QRNN 0.9694 0.0873 0.0901 0.9724 0.0597 0.0642 

The obtained results were compared with QRNN, COX proportional hazard models (in terms of 
Cindex and MMSE) based on the same data set. A summary of the obtained results is presented in 
Table 6 below. It can be observed that the method proposed in this study has a higher precision and 
accuracy than the other techniques applied in the listed studies. 
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Table 6. A comparison of the results obtained from the proposed technique and other techniques. 

data Models Cindex MMSE 
simulated  rcICQRNN-5 0.65 2.02 

QRNN 0.65 2.02 
COX 0.52 13.15 

NKI70 Integer  rcICQRNN-30 0.76 0.43 
QRNN 0.72 1.57 
COX 0.80 0.86 

NKI70 One-Hot  rcICQRNN-30 0.87 0.44 
QRNN 0.86 0.46 
COX 0.81 0.97 

METABRIC Integer  rcICQRNN-10 0.62 0.90 
COX 0.75 0.65 

METABRIC One-Hot  rcICQRNN-15 0.61 0.88 
COX 0.80 2.14 

METABRIC FS Integer  rcICQRNN-50 0.77 0.74 
QRNN 0.77 0.73 
COX 0.77 1.12 

METABRIC FS One-Hot rcICQRNN-19 0.84 0.52 
QRNN 0.84 0.52 
COX 0.78 3.31 

TCC Integer  rcICQRNN-5 0.98 0.10 
QRNN 0.97 0.06 
COX 0.93 1.25 

TCC One-Hot rcICQRNN-19 0.98 0.13 
QRNN 0.97 0.06 
COX 0.92 1.32 

4. Conclusions 

Machine learning has achieved great success in the field of predictive modeling dealing with survival 
data containing right censored data, taking advantage of his modeling of nonlinear relationships [1]. 
Currently, many approaches use the patient’s survival status as the output of a neural network and analyze 
the relationship between features and survival time to the point of improving model predictive 
power [31,32]. The traditional accelerated time-to-failure (AFT) model, which directly relates the 
logarithm of the time-to-event to a covariate or predictor variable, has become a popular alternative. 
However, AFT models are usually modeled parametrically because the logarithm of time-to-event is 
linearly associated with predicted values with a specific error distribution. Therefore, the quantile-based 
approach, due to its nonparametric nature and defined from a cumulative distribution function or survival 
function, allows estimating the entire spectrum of quantile based on covariate values, providing the overall 
shape of the survival distribution, while allowing statistical inference for specific percentile of interest if 
necessary, actually offering some advantages over AFT-based and hazard-based models. Combined with 
the ability of neural networks to capture nonlinearities, more accurate predictions can be achieved. 

This study focuses on right censored type data, including data with failure time as the response 
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variable and covariates affecting the failure time, and conducts an in-depth study for the prediction of 
failure time to estimate the nonparametric effects of covariates on the response variable. A hybrid 
algorithm of composite quantile regression and deep neural network is applied to the censored data to 
simulate the quantile function of failure time and to investigate the covariate effects in different 
quantile. In this study, a survival prediction model based on an improved composite quantile regression 
neural network framework combined with an inverse probability weighting method is proposed for 
survival prediction. WOA was subsequently used for hyperparameter tuning, and BWOA was applied 
for variable selection of high-dimensional covariate data. Evaluation of survival prediction models 
using three important metrics: C-index, MMSE, and QL. For the categorical variables in the real 
dataset, integer encoding and One-Hot encoding are implemented to encode the categorical features. 
Through extensive tests on simulated datasets and three real datasets of NKI70, METABRIC, and TCC, 
the results show that the proposed rcICQRNN method has high prediction accuracy for right-censored 
data. In the simulated dataset, the composite quantile regression deep neural network rcICQRNN-5 
model with two hidden layers exhibits optimal properties on Cindex, which is significantly better than 
the single hidden layer model by 0.0051. Overall, the two-hidden layer rcICQRNN-5 model is more 
suitable for analyzing the simulated dataset. the One-Hot encoding WOA-rcICQRNN-30 model is 
more suitable for NKI70 data, and in the three hidden layers, the WOA-rcICQRNN-30 model has a 
Cindex of 0.8864, an MMSE of 0.4583, and a QL of 0.2534. The WOA-rcICQRNN-15 model is more 
used in the METABRIC dataset. The Cindex performance of the model for the feature-selected dataset 
was much improved after optimizing the parameters using an intelligent optimization algorithm, when 
the C-index results for the One-Hot encoding data were more stable, making the proposed rcICQRNN 
more suitable for predicting right-censored data and providing useful insights for better diagnosis and 
implementation of specific treatments for breast cancer patients. 

This study combines composite quantile regression and neural network techniques to provide a 
new framework to enhance cancer prognostic survival analysis and prediction by fusing 
multidimensional features. The advantages of the proposed rcICQRNN model compared with previous 
methods are as follows. First, it is theoretically and numerically demonstrated that the rcICQRNN 
model utilizes the advantages of both composite quantile regression and feedforward networks. It can 
not only flexibly exploit the properties of neural networks to explore the nonlinear relationships 
between variables, but also can use the composite quantile regression features to improve the 
estimation efficiency and prediction ability. Second, it integrates the use of multiple regression 
quartiles. In practical applications, it always has advantages in terms of robustness and accuracy of 
predictions. The superiority of the rcICQRNN model is illustrated by simulation studies and three 
practical applications. In practice, 𝑘 ൌ 1930 seems to be a favorable choice for the rcICQRNN model. 

Despite the contributions of this study, there are still some limitations that need to be considered 
in future research. We should acknowledge that rcICQRNN models, while successfully extracting 
potentially informative features from the data and avoiding manual intervention to generate features, 
come at the cost of the lack of transparency and interpretability of these models. Attention mechanisms 
can be extended to this model in the future, not only to rank the importance of input variable features, 
but also to demonstrate the dynamics of feature importance over time. 

Another future work of this study is to fuse composite quantile regression neural networks with 
different penalty functions to develop an accurate and reliable prediction model that more effectively 
targets high-dimensional genomic features for survival analysis. It helps physicians to understand the 
impact of patients’ genetic characteristics on breast cancer to effectively predict human survival. 
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