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Abstract: The multi-leader-follower group consensus issue of a class of stochastic time-delay multi-
agent systems subject to Markov switching topology is investigated. The purpose is to determine a
distributed control protocol to make sure that the followers’ states converge in mean square to a convex
hull generated by the leaders’ states. Through a model transformation, the problem is transformed
into a mean-square stability issue of a new system. Then, an easy-to-check sufficient condition for the
solvability of the multi-leader-follower group consensus issue is proposed by utilizing the Lyapunov
stability theory, graph theory, as well as several inequality techniques. It is shown that the required
feedback gain can be acquired once the condition is satisfied. Finally, an example is used to illustrate
the effectiveness of the control protocol.
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1. Introduction

In practical applications of a multi-agent system (MAS), there will be some agents that are the
tracking targets of other agents. These agents are commonly called leaders and the other agents in the
MAS are called followers accordingly. Leader-following consensus has attracted much interest due
to its wide application in formation flight, sensor networks, and other engineering areas [1–3]. In the
case of a single leader, the leader-following issue can be summarized as follows: how to construct an
appropriate control protocol (or algorithm) that is able to make the followers’ states in the system track
the state of the leader. Tang et al. [4] designed a distributed coordination protocol on the basis of a
sampled-data control scheme to solve the leader-following consensus problem. Wang and Ji [5] con-
sidered directed communication topology and gave leader-follower consensus conditions for general
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linear MASs. In Reference [6], Jiang et al. proposed a non-fragile sampled-data control protocol, under
which the H∞ leader-following consensus is reached in the presence of the Lipschitz nonlinearity. To
address the leader-following consensus under cyber attacks, Liu et al. [7] proposed an event-triggered
control consensus protocol.

As for the multiple leaders’ case, the purpose of consensus control is often to make followers’
states go into the region generated by the states of these leaders. This type of consensus is called
multi-leader-follower (MLF) group consensus (or containment consensus). In the case when there are
multiple leaders, Ji et al. [8] proposed hybrid stop-go schemes to ensure the MLF group consensus.
In Reference [9], Ma et al. checked the MLF group consensus of MASs modeled by discrete-time
equations and presented several distributed control protocol designs based on either state feedback or
output feedback. In Reference [10], Wang et al. considered a class of high-order MASs and proposed
a novel distributed observer-based MLF group consensus control protocol. For recent work on MLF
group consensus, one can refer to References [11–17] and papers cited therein.

Although significant progress has been made in the area of MLF group consensus of MASs, there
are two issues that need to be investigated further. On the one hand, the agents under consideration
in most of the existing literature are assumed to have deterministic delay-free dynamic behaviors.
As noted in References [18–20], however, sometimes it is necessary to use stochastic or functional
differential equations to model the dynamics of agents in engineering applications. On the other hand,
most studies are based on a fixed communication topology. In practice, however, the communication
topology between agents may change greatly with time, and the next topology often only depends on
the current topology (see e.g., References [21–23]). In view of this, compared with the fixed topology,
the Markov switching topology seems to be a better candidate.

Motivated by the above observations, this paper focuses on the MLF group consensus issue for
stochastic time-delay MASs subject to Markov switching topology. Unlike the existing literature on
this issue, the system considered here is assumed to be perturbed by Brownian motion and the commu-
nication topology between agents is assumed to be dynamically changing but obey a continuous-time
finite-state Markov chain. The purpose is to determine a distributed control protocol to make sure that
the followers’ states converge in mean square to a convex hull generated by the leaders’ states. The
major contributions of this work are two-fold: 1) By introducing a model transformation, the MLF
group consensus is transformed into a mean-square stability issue of a new system; 2) By utilizing
the Lyapunov stability theory, graph theory, as well as several inequality techniques, an easy-to-check
sufficient condition is proposed, under which the required feedback gain can be easily acquired.

2. Preliminaries

Notations: In this paper, Rq and Rp×q denote the q-dimensional Euclidean space as well as the
family of all p × q real matrices, respectively. The symbol ‖·‖ stands for the Euclidean norm and
⊗ represents the Kronecker product. For a matrix M ∈ Rp×p, let λM(M) and λm(M) denote the
maximum and minimum eigenvalues of matrix M respectively, and S (M) be the sum of M itself
and its transpose [24]. Set T ⊂ Rq is called convex if (1 − σ)γ + σρ ∈ T for any γ, ρ ∈ T
and σ ∈ [0, 1]. For a set O = {o1, o2, · · · , or}, oi ∈ R

q, i = 1, 2, · · · , r, denote its convex hull
by co{O} =

{
Σr

i=1 pioi|pi ≥ 0,Σr
i=1 pi = 1

}
. For a vector v = [v1, · · · , vm]T (respectively, a matrix

U = (ui j)m×n), denote its 1 norm by ‖v‖1 =
∑n

i=1 |vi| (respectively, ‖U‖1 = max1≤ j≤n
∑n

i=1

∣∣∣ui j

∣∣∣) and ∞
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norm by ‖v‖∞ = max1≤i≤n |vi| (respectively, ‖U‖∞ =
∥∥∥UT

∥∥∥
1

= max1≤i≤n
∑n

j=1

∣∣∣ui j

∣∣∣). For column vectors
u1, · · · , um, denote [uT

1 , · · · , uT
m]T as col{u1, · · · , um}.

Moreover, let G = (V, E, A) be a directed graph representing the communication topology of the
MAS, V = {v1, v2, · · · , vn+m} be the node set, E =

{
e ji : e ji = (v j, vi)

}
⊆ V × V be the edge set, and

A =
[
ai j

]
be the adjacency matrix with ai j = 1 for e ji ∈ E and ai j = 0 for e ji < E. For e ji ∈ E,

v j is viewed as a neighbor of vi. A node is called a leader if it has no neighbors, and a follower
if it has at least one neighbor. Define L =

[
li j

]
∈ R(n+m)×(n+m) as the Laplacian matrix of G, where

li j = − ai j for i , j and lii = Σn
j=1, j,i ai j. Denote by s the number of possible interaction topologies,

and st : [0,∞] → S = {1, · · · , s} a switching signal that governs the switches between the variable
topologies. Then, the directed graph G at time t is defined as Gst = (Vst , Est , Ast). Simultaneously, the
adjacency matrix and the Laplacian matrix can be re-defined as Ast =

[
ast

i j

]
and Lst=

[
lst
i j

]
, respectively.

Assume that there are m leaders and n followers. Then Lst can be partitioned as:

Lst =

[
L

st
1 L

st
2

0m×n 0m×m

]
,

where

L
st
1 =


lst
11 lst

12 · · · lst
1n

lst
21 lst

22 · · · lst
2n

... · · · · · ·
...

lst
n1 lst

n2 · · · lst
nn

 , L
st
2 =


lst
1, n+1 lst

1, n+2 · · · lst
1, n+m

lst
2, n+1 lst

2, n+2 · · · lst
2, n+m

... · · · · · ·
...

lst
n, n+1 lst

n, n+2 · · · lst
n, n+m

 . (2.1)

Consider a class of MAS driven by Brownian motion. The dynamic process of the i-th follower
affected by random disturbance is described as follows:

ẋi(t) = Axi(t) +Aτxi(t − τ) + Bui(t) + Cxi(t)η(t), i ∈ N1, (2.2)

in which xi(t) ∈ Rm1 is the state of the i-th follower, ui(t) ∈ Rm2 is the control input, η(t) ∈ R is the
one-dimensional standard white noise, A ∈ Rm1×m1 , Aτ ∈ R

m1×m1 , B ∈ Rm1×m2 , and C ∈ Rm1×m1 are
constant matrices, τ stands for a constant time delay [25, 26], and N1 = {1, 2, · · · , n} denotes the set
of indices for the followers. One can rewrite system (2.2) as the following Itô stochastic differential
equation:

dxi(t) =
(
Axi(t) +Aτxi(t − τ) + Bui(t)

)
dt + Cxi(t)dω(t), i ∈ N1, (2.3)

in which ω(t) denotes a standard Brownian motion defined on a complete probability space (Ω,Ft,P)
[27]. The i-th leader’s dynamic equation is as follows:

ẋi(t) = Axi(t) +Aτxi(t − τ) + B fi(xi(t), t) + Cxi(t)η(t), i ∈ N2, (2.4)

where N2 = {n + 1, · · · , n + m} is the set of indices for the leaders, xi(t) ∈ Rm1 denotes the leader’s
state, and fi(xi(t), t) ∈ Rm2 stands for a pre-designed control input. It is assumed that the following
conditions are met:

|| fi(xi(t), t)||∞ ≤ ε, i ∈ N2, (2.5)
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where ε > 0. System (2.4) can also be rewritten in the standard Itô differential form as:

dxi(t) =
(
Axi(t) +Aτxi(t − τ) + B fi (xi(t), t)

)
dt + Cxi(t)dω(t), i ∈ N2. (2.6)

It should be noted that the form of random disturbance considered in systems (2.3) and (2.6) is state-
dependent, which means that the disturbance is not entirely normal exterior noise.

Suppose that {st, t ≥ 0} is a continuous-time finite-time Markov chain that chooses values in S =

{1, ..., s} according to transition probability

P{st+ζ = j|st = i} =

{
πi jζ + o(ζ), i , j

1 + πi jζ + o(ζ), i = j

where ζ > 0, limζ→0(o(ζ)/ζ) = 0, and πi j ≥ 0 (for i , j) is the transition rate from mode i at time t to
mode j at time t + ζ and πii = −Σs

j=1, j,iπi j [28–30].
For the analysis and synthesis of stochastic MASs which are given in Eqs (2.3) and (2.6), we make

the following assumptions for deriving our main results.

Assumption 1. For every follower i ∈ N1, there is at least one leader j ∈ N2 that has a directed path
from j to i.

Assumption 2. At any time t, the communication topology among followers is an undirected connected
graph.

In the present work we proposed a distributed control protocol as follows:

ui(t) = αKstξi(t) + βsgn
(
Kstξi(t)

)
, i ∈ N1, (2.7)

where α and β are positive scalars, and Kst ∈ R
m2×m1 is the feedback gain. The specific form of ξi(t) is

as follows:

ξi(t) = Σ j∈N1∪N2a
st
i j

(
xi(t) − x j(t)

)
, i ∈ N1. (2.8)

Remark 1. Assumptions 1 and 2 have been broadly adopted in the existing literature on the MLF
group consensus issue (see, e.g., [12,13,15,31]). It follows from Assumption 1 that each follower is
reachable from its leader. Assumption 2 further implies that the followers of a leader can communicate
with each other.

Remark 2. During the last two decades, a number of results on the MLF group consensus of MASs
have been reported (see, e.g., [11–17]). Unlike the existing literature, which always assumes that
all agents have deterministic and delay-free dynamic behaviors, both the leaders and the followers
considered in this paper are modeled by stochastic functional differential equations. It is also worth
mentioning that most studies on this topic are based on a fixed communication topology, while in
this paper, the communication topology is allowed to be changeable over time according to a Markov
chain. Thus, the research object of this paper is more practical and general regardless of the dynamics
of agents or topology structure.

At this point, the MLF group consensus issue discussed can be summarized as: designing a control
protocol in the form of (2.7) so that the followers’ states described by system (2.3) converge to a convex
hull generated by the leaders’ states of system (2.6) in mean square.
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3. Main results

To solve the MLF group consensus issue, the following three Lemmas are useful:

Lemma 1. [32] With Assumptions 1 and 2, one has that Lst
1 > 0, each entry of −(Lst

1 )−1L
st
2 is non-

negative, and the sum of each row of −(Lst
1 )−1L

st
2 equals to one, where Lst

1 and Lst
2 are defined in

(2.1).

Lemma 2. [33] For any matrices Z1 ∈ R
m×n,Z2 ∈ R

p×q,Z3 ∈ R
n×r, and Z4 ∈ R

q×s, one has (Z1 ⊗

Z2)(Z3 ⊗ Z4) = (Z1Z3) ⊗ (Z2Z4).

Lemma 3. [34] Given a symmetric matrix Z =

[
Z11 Z12

Z21 Z22

]
, Z < 0 is equivalent to Z22 < 0 and Z11 −

Z12Z−1
22 ZT

12 < 0.

For convenience, we define xφ(t) = col
{
x1(t), · · · , xn(t)

}
, uφ(t) = col

{
u1(t), · · · , un(t)

}
, xψ(t) =

col
{
xn+1(t), · · · , xn+m(t)

}
, and ξ(t) = col

{
ξ1(t), · · · , ξn(t)

}
. Then (2.8) is able to be written as

ξ(t) = (Lst
1 ⊗ Im1)xφ(t) + (Lst

2 ⊗ Im1)xψ(t). (3.1)

Define

θ(t) = ((Lst
1 )−1 ⊗ Im1)ξ(t). (3.2)

Then, by Lemmas 1 and 2, we obtain

θ(t) = xφ(t) +
( (

(Lst
1 )−1L

st
2

)
⊗ Im1

)
xψ(t). (3.3)

It follows from (2.7) and (3.3) that

uφ(t) = α(Lst
1 ⊗ Kst)θ(t) + βsgn((Lst

1 ⊗ Kst)θ(t)). (3.4)

Substituting (3.4) into (2.3) results in

dxφ(t) = (In ⊗A)xφ(t)dt + (In ⊗Aτ)xφ(t − τ)dt + α
(
L

st
1 ⊗ (BKst)

)
θ(t)dt

+β(In ⊗ B)sgn
(
(Lst

1 ⊗ Kst)θ(t)
)

dt + (In ⊗ C)xφ(t)dω(t),
dxψ(t) = (Im ⊗A)xψ(t)dt + (Im ⊗Aτ)xψ(t − τ)dt

+(Im ⊗ B) f (t)dt + (Im ⊗ C)xψ(t)dω(t), (3.5)

where f (t) = col
{
fn+1(xn+1(t), t), · · · , fn+m(xn+m(t), t)

}
. From (3.3) and (3.5), we have

dθ(t) = dxφ(t) +
( (

(Lst
1 )−1L

st
2

)
⊗ Im1

)
dxψ(t)

= (In ⊗A)xφ(t)dt + (In ⊗Aτ)xφ(t − τ)dt + α
(
L

st
1 ⊗ (BKst)

)
θ(t)dt

+β(In ⊗ B)sgn
(
(Lst

1 ⊗ Kst)θ(t)
)

dt + (In ⊗ C)xφ(t)dω(t)

+
( (

(Lst
1 )−1L

st
2

)
⊗ Im1

)(
(Im ⊗A)xψ(t)dt

+(Im ⊗Aτ)xψ(t − τ)dt + (Im ⊗ B) f (t)dt
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+(Im ⊗ C)xψ(t)dω(t)
)
. (3.6)

Then, using (3.3), (3.6), and Lemma 2, gives

dθ(t) =
(
(In ⊗A) + α

(
L

st
1 ⊗ (BKst)

) )
θ(t)dt + (In ⊗Aτ)θ(t − τ)dt

+β(In ⊗ B)sgn
(
(Lst

1 ⊗ Kst)θ(t)
)

dt + (In ⊗ B)
( (

(Lst
1 )−1L

st
2

)
⊗ Im2

)
f (t)dt

+(In ⊗ C)θ(t)dω(t). (3.7)

The following theorem gives the criterion for the MLF group consensus issue.

Theorem 1. If system (3.7) is stable in mean square, then the followers’ states in (2.3) converge to a
convex hull generated by the leaders’ states in (2.6) in mean-square. More specifically,

lim
t→∞
E{xφ(t) − gψ(t)} = 0,

where

gψ(t) ,
( (
−(Lst

1 )−1L
st
2

)
⊗ Im1

)
xψ(t).

Proof. In view of (3.3) and (3.7), the proof of this theorem can be easily completed and is thus omitted
here.

Remark 3. Theorem 1 shows that, through the model transformation in (3.2), the MLF group consen-
sus issue for system (3.1) can be transformed into a mean-square stability issue for system (3.7), which
will be handled later by using the stochastic Lyapunov stability theory, graph theory, as well as several
inequality techniques.

It is time to present our design method for the needed control protocol.

Theorem 2. Suppose that there exist two scalars α > 0, β > ε, and matrices Pl > 0 and Q > 0 such
that 

Λ1 Λ2 Λ3 Pl P̄
∗ −Q 0 0 0
∗ ∗ Λ4 0 0
∗ ∗ ∗ −Q 0
∗ ∗ ∗ ∗ Σ̄


< 0, (3.8)

for any i ∈ {1, · · · , n} and l ∈ {1, · · · , s}, where

Λ1 = S
(
λl

iAPl − α(λl
i)

2BB
T
)

+ λl
iPlπll,

Λ2 = λl
iAτQ, Λ3 = PlCT , Λ4 = −

1
λl

i

Pl,

P̄ =
[

Pl · · · Pl · · · Pl

]
,

Σ̄ = diag
{
−1
λl

iπl1
P1, · · · ,

−1
λl

iπl j
P j, · · · ,

−1
λl

iπls
Ps

}
with λl

i being the i-th eigenvalue of Ll
1, j , l, and πl j , 0. Then, the MLF group consensus issue is

solvable, and the required control protocol is given by (2.7) with α, β, and

Kl = −BT P−1
l (l = 1, · · · , s). (3.9)
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Proof: Define a Lyapunov functional as

V(θ(t), st) = θT (t)(Lst
1 ⊗ P−1

st
)θ(t) +

∫ t

t−τ
θT (s)(In ⊗ Q−1)θ(s)ds. (3.10)

Then, we can get

V(θ(t), st) ≤ λM(Lst
1 ⊗ P−1

st
)θT (t)θ(t) +

∫ t

t−τ
λM(In ⊗ Q−1)θT (s)θ(s)ds. (3.11)

Utilizing the generalized Itô formula [35] to ektV(t)(k > 0) yields

E{ektV(θ(t), st}

= E{V(θ(0), s0} + E


t∫

0

eku[kV(θ(u), su) + LV(θ(u), su)]du

 , (3.12)

where L is used to represent the weak infinitesimal operator. For st = l, we can write

LV(θ(t), l) = 2θT (t)(Ll
1 ⊗ P−1

l )
(
(In ⊗A) + α

(
Ll

1 ⊗ (BKl)
) )
θ(t)

+2θT (t)(Ll
1 ⊗ P−1

l )(In ⊗Aτ)θ(t − τ) + 2θT (t)(Ll
1 ⊗ P−1

l )
×β(In ⊗ B)sgn

(
(Ll

1 ⊗ Kl)θ(t)
)

+2θT (t)(Ll
1 ⊗ P−1

l )
(
(In ⊗ B)

(
((Ll

1)−1Ll
2) ⊗ Im2

)
f (t)

)
+θT (t)(In ⊗ C)T (Ll

1 ⊗ P−1
l )(In ⊗ C)θ(t)

+

N∑
j=1

πl jθ
T (t)(L j

1 ⊗ P−1
j )θ(t) + θT (t)(In ⊗ Q−1)θ(t)

−θT (t − τ)(In ⊗ Q−1)θ(t − τ). (3.13)

Substituting (3.9) into (3.13) yields

LV(θ(t), l) = 2θT (t)(Ll
1 ⊗ P−1

l )
(
(In ⊗A) − α

(
Ll

1 ⊗ (BBT P−1
l )

) )
θ(t)

+2θT (t)(Ll
1 ⊗ P−1

l )(In ⊗Aτ)θ(t − τ)
+2θT (t)(Ll

1 ⊗ P−1
l )β(In ⊗ B)sgn

(
(Ll

1 ⊗ (−BT P−1
l ))θ(t)

)
+2θT (t)(Ll

1 ⊗ P−1
l )

(
(In ⊗ B)

(
((Ll

1)−1Ll
2) ⊗ Im2

) )
f (t)

+θT (t)(In ⊗ C)T (Ll
1 ⊗ P−1

l )(In ⊗ C)θ(t)

+

N∑
j=1

πl jθ
T (t)(L j

1 ⊗ P−1
j )θ(t) + θT (t)(In ⊗ Q−1)θ(t)

−θT (t − τ)(In ⊗ Q−1)θ(t − τ)
≤ 2θT (t)(Ll

1 ⊗ P−1
l )

(
(In ⊗A) − α

(
Ll

1 ⊗ (BBT P−1
l )

) )
θ(t)

+2θT (t)(Ll
1 ⊗ P−1

l )(In ⊗Aτ)θ(t − τ) + 2θT (t)(Ll
1 ⊗ P−1

l )
×β(In ⊗ B)sgn

(
(Ll

1 ⊗ (−BT P−1
l ))θ(t)

)
Mathematical Biosciences and Engineering Volume 19, Issue 8, 7504–7520.
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+2
∥∥∥θT (t)(Ll

1 ⊗ P−1
l )

(
(In ⊗ B)

(
((Ll

1)−1Ll
2) ⊗ Im2

) )
f (t)

∥∥∥∥
∞

+θT (t)(In ⊗ C)T (Ll
1 ⊗ P−1

l )(In ⊗ C)θ(t)

+

N∑
j=1

πl jθ
T (t)(L j

1 ⊗ P−1
j )θ(t) + θT (t)(In ⊗ Q−1)θ(t)

−θT (t − τ)(In ⊗ Q−1)θ(t − τ). (3.14)

According to the properties of∞ norm and 1-norm for real vectors, we can get∥∥∥θT (t)(Ll
1 ⊗ P−1

l )
(
(In ⊗ B)

(
((Ll

1)−1Ll
2) ⊗ Im2

) )
f (t)

∥∥∥∥
∞

≤
∥∥∥θT (t)(Ll

1 ⊗ P−1
l )(In ⊗ B)

∥∥∥
∞

×
∥∥∥((Ll

1)−1Ll
2) ⊗ Im2

∥∥∥
∞
‖ f (t)‖∞ . (3.15)

θT (t)(Ll
1 ⊗ P−1

l )(In ⊗ B)sgn
( (
Ll

1 ⊗ (−BT P−1
l )

)
θ(t)

)
= −

∥∥∥∥(Ll
1 ⊗ (BT P−1

l )
)
θ(t)

∥∥∥∥
1
. (3.16)

Using (2.5) and Lemma 1, it follows from (3.15) that∥∥∥θT (t)(Ll
1 ⊗ P−1

l )
(
(In ⊗ B)

(
((Ll

1)−1Ll
2) ⊗ Im2

) )
f (t)

∥∥∥∥
∞

≤ ε
∥∥∥θT (t)(Ll

1 ⊗ P−1
l )(In ⊗ B)

∥∥∥
∞
. (3.17)

Using (3.14), (3.16), (3.17) and noting ‖Ψ‖∞ ≤ ‖Ψ‖1, we have

LV(θ(t), l) ≤ θT (t)
[
2(Ll

1 ⊗ P−1
l )(In ⊗A) − 2α

(
(Ll

1)2 ⊗ P−1
l BB

T P−1
l

)
+ (In ⊗ C)T (Ll

1 ⊗ P−1
l ) (In ⊗ C) +

N∑
j=1

πl j(L
j
1 ⊗ P−1

j ) + In ⊗ Q−1
]
θ(t)

+2θT (t)(Ll
1 ⊗ P−1

l )(In ⊗Aτ)θ(t − τ) − θT (t − τ)(In ⊗ Q−1)θ(t − τ)

−2β
∥∥∥∥(Ll

1 ⊗ (BT P−1
l )

)
θ(t)

∥∥∥∥
1

+ 2ε
∥∥∥θT (t)(Ll

1 ⊗ P−1
l )(In ⊗ B)

∥∥∥
1
. (3.18)

Because Ll
1 is symmetrical, there exists a unitary matrix U ∈ Rn×n such that

U
TLl

1U = diag
{
λl

1, · · · , λ
l
n

}
.

Define

θ̃(t) = (UT ⊗ Im1)θ(t).

Then (3.18) reduces to

LV(θ(t), l) ≤ θ̃T
i (t)

[
2
(
λl

iP
−1
l A− α(λl

i)
2P−1

l BB
T P−1

l

)
+ λl

iC
T P−1

l C + Q−1

+λl
i

s∑
j=1

πl jP−1
j

]
θ̃i(t) + 2λl

iθ̃
T
i (t)(P−1

l Aτ)θ̃i(t − τ)
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−θ̃T
i (t − τ)Q−1θ̃(t − τ),

which can be rewritten as follows:

LV(θ(t), l) ≤ ΘT∇Θ, (3.19)

where

Θ =

[
θ̃i(t)

θ̃(t − τ)

]
,∇ =

[
Ξ1 λl

iP
−1
l Aτ

∗ −Q−1

]
,

Ξ1 = S
(
λl

iP
−1
l A− α(λl

i)
2P−1

l BB
T P−1

l

)
+ λl

iC
T P−1

l C + Q−1 + λl
i

s∑
j=1

πl jP−1
j .

Using a congruent transformation to ∇ by pre and post multiplying it with
[

Pl 0
0 Q

]
and its transpose

gives [
Pl 0
0 Q

]
∇

[
Pl 0
0 Q

]T

=

[
Ξ2 λl

iAτQ
∗ −Q

]
, (3.20)

where

Ξ2 = S
(
λl

iAPl − α(λl
i)

2BB
T
)

+ λl
iPlC

T P−1
l CPl + PlQ−1Pl + λl

iPl

s∑
j=1

πl jP−1
j Pl.

By Lemma 3, (3.8) guarantees that
[

Ξ2 λl
iAτQ

∗ −Q

]
< 0, which together with (3.20) implies ∇ < 0.

Thus, we have from (3.19) that

LV(θ(t), l) ≤ λM(∇)θ̃T
i (t)θ̃i(t)

≤ λM(∇)λM(UUT
⊗ Im1)θ

T (t)θ(t).

For convenience, we set λ̃l = λM(∇)λM(UUT
⊗ Im1) and write the above inequality as

LV(θ(t), l) ≤ λ̃lθ
T (t)θ(t). (3.21)

Now, by (3.10)–(3.12), and (3.21), we have

min
l
λm(Ll

1 ⊗ P−1
l )ektE

{
||θ(t))||2

}
≤ E

{
ektV(θ(t), l)

}
≤ E

{
λM(Ll

1 ⊗ P−1
l )θT (0)θ(0) +

∫ 0

−τ

(
λM(In ⊗ Q−1)

)
θT (s)θ(s)ds

}

+E


t∫

0

ekzk
[
λM(Ll

1 ⊗ P−1
l )θT (z)θ(z) +

∫ z

z−τ
λM(In ⊗ Q−1)θT (s)θ(s)ds

]
dz


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+E


t∫

0

ekzλ̃θT (z)θ(z)dz


≤ D0lE


t∫

0

ekz||θ(z)||2dz

 + D1lE
{
||θ||2τ

}
, (3.22)

where

D0l = kλM(Ll
1 ⊗ P−1

l ) + (ekτ − 1)(In ⊗ Q−1) + λ̃l,

D1l = λM(Ll
1 ⊗ P−1

l ) + τλM(In ⊗ Q−1) +
1
k

(ekτ − 1)(1 − e−kτ)(In ⊗ Q−1),

||θ||τ = sup
−τ≤z≤0

||θ(z)||.

Select a constant k > 0 small enough such that D0l < 0 and define

λ̄ = max
l

D1lE
{
||θ||2τ

}
/min

l
λm(Ll

1 ⊗ P−1
l ).

Then, with the aid of (3.22), it is not hard to obtain

E
{
||θ(t))||2

}
≤ λ̄e−kt,

which means that system (3.7) is exponential stable in mean square and, thus, in view of Theorem 1,
the MLF group consensus is reached. This completes the proof.

When there is no time delay, system (3.7) reduces to

dθ(t) =
(
(In ⊗A) + α

(
L

st
1 ⊗ (BKst)

) )
θ(t)dt + β(In ⊗ B)sgn

(
(Lst

1 ⊗ Kst)θ(t)
)

dt

+(In ⊗ B)
( (

(Lst
1 )−1L

st
2

)
⊗ Im2

)
f (t)dt + (In ⊗ C)θ(t)dω(t).

In the case, the following corollary can be derived directly from Theorem 2. The proof is omitted for
the sake of brevity.

Corollary 1. Given two positive constants β and ε, with β > ε, suppose that there are matrices Pl > 0
and Q > 0 such that 

Λ̂1 PlC
T Pl P̄

∗ − 1
λl

i
Pl 0 0

∗ ∗ −Q 0
∗ ∗ ∗ Σ̄

 < 0

for any i ∈ {1, · · · , n} and l ∈ {1, · · · , s}, where

Λ̂1 = S
(
λl

iAPl − α(λl
i)

2BB
T
)

+ λl
iPlπll,

P̄ =
[

Pl · · · Pl · · · Pl

]
,

Σ̄ = diag
{
−1
λl

iπl1
P1, · · · ,

−1
λl

iπl j
P j, · · · ,

−1
λl

iπls
Ps

}
,

with λl
i being the i-th eigenvalue of Ll

1, j , l, and πl j , 0. Then, the MLF group consensus issue is
solvable. And the required control protocol is given by (2.7) with α, β, andKl = −BT P−1

l (l = 1, · · · , s).
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Next, consider the situation that the MAS is subjected to a fixed topology. Then, (3.7) becomes

dθ(t) =
(
(In ⊗A) + α (L1 ⊗ (BK))

)
θ(t)dt + (In ⊗Aτ)θ(t − τ)dt

+β(In ⊗ B)sgn ((L1 ⊗ K)θ(t)) dt + (In ⊗ B)
( (

(L1)−1L2

)
⊗ Im2

)
f (t)dt

+(In ⊗ C)θ(t)dω(t),

and one can write the following result:

Corollary 2. Given two positive scalars β and ε with β > ε, suppose that there are matrices P > 0
and Q > 0, such that 

Λ̌1 λAτQ PCT P
∗ −Q 0 0
∗ ∗ − 1

λ
P 0

∗ ∗ ∗ −Q

 < 0

holds, where

Λ̌1 = S (λAP − αλ2BBT ), λ = λmin(L1).

Then, the MLF group consensus issue is solvable. And the required control protocol is given by (2.7)
with α, β, and K = −BT P−1.

26

13

5

4

7

(a) G1

6

7

1

2

3 4

5

(b) G2

6

7

1

2

3 4

5

(c) G3

Figure 1. Possible communication topologies among agents 1–7.

4. Numerical example

Consider a MAS consisting of seven dynamic multi-agents, where each agent corresponds to a
mass-spring-damper system [36]. Let the 6-th and 7-th agents are leaders and the rest are followers.
The parameter settings are as follows:

A =

[
0 1.5
−1.5 −3

]
,Aτ =

[
0 1
−1 −2

]
,
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B =

[
0
1

]
,C =

[
0.15 −0.02
0.08 0.25

]
,

x1(s) =

[
0.5
0

]
, x2(s) =

[
1.3
−0.2

]
,

x3(s) =

[
0.8
0

]
, x4(s) =

[
−1.2

0

]
,

x5(s) =

[
2.5
−0.5

]
, x6(s) =

[
1
0

]
,

x7(s) =

[
−1
0

]
, s ∈ [−1, 0], α = 2,

f6(x6(t), t) = −
[
−0.25 1

]
x6(t) + 4 sin(2t),

f7(x7(t), t) = −
[
−0.25 1

]
x7(t) + sin(t).

Note that, for f6(x6(t), t) and f7(x7(t), t), the parameter ε can be chosen as ε = 13.

0 5 10 15 20 25
0.5

1

1.5

2

2.5

3

3.5

Figure 2. Continuous Markov switching signal with 3 modes.

Figure 1 shows three possible communication topologies, where nodes 1–7 correspond to agents
1–7, respectively. Set β = 15 and the transition rate matrix between G1, G2, and G3 as

πl j =


−9 3 6
3 −6 3
2 7 −9

 .
Then, with the aid of Theorem 2, the feedback gain matrices can be gained as

K1 =
[
−0.0608 −0.0609

]
,

K2 =
[
−0.0595 −0.0596

]
,

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7504–7520.



7516

K3 =
[
−0.0603 −0.0604

]
.

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

Figure 3. Time responses of state variables xi1 , i = 1, · · · , 7.

0 5 10 15 20 25
-3

-2

-1

0

1

2

3

Figure 4. Time responses of state variables xi2 , i = 1, · · · , 7.

Figure 2 depicts the Markov switching signal, and the three modes correspond to the three commu-
nication topologies in Figure 1. Under the designed controller, Figures 3 and 4 show the evolutions
of the system states trajectories. It can be observed that, after a period of time, the states of agents
1–5 (the followers) enter the region generated by the state trajectories of agents 6 and 7 (the leaders).
Therefore, the simulation results confirm that the designed control protocol is effective.

Mathematical Biosciences and Engineering Volume 19, Issue 8, 7504–7520.
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5. Conclusions

In this paper, the MLF group consensus issue of a class of stochastic time-delay agent systems with
Markov switching topology has been studied. By using a model transformation, the group consensus
problem has been transformed into the stability control problem of the system in (3.7). Then, it has
been shown that the MLF group consensus can be guaranteed if the system in (3.7) is stable in mean-
square (see Theorem 1). With the aid of Lyapunov stability theory, graph theory, as well as several
inequality techniques, a sufficient condition for the solvability of the MLF group consensus issue has
been proposed (see Theorem 2). It has been proved that the control protocol can ensure the followers’
states converge to a convex hull generated by the leaders’ states in mean square. Lastly, a numerical
example with simulation has been provided to verify the effectiveness of the given MLF group control
protocol.
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