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Abstract: In this work we obtain new lower and upper optimal bounds for general (exponential)
indices of a graph. In the same direction, we show new inequalities involving some well-known topo-
logical indices like the generalized atom-bound connectivity index ABCα and the generalized second
Zagreb index Mα

2 . Moreover, we solve some extremal problems for their corresponding exponential
indices (eABCα and eMα

2 ).
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1. Introduction

A topological descriptor is a single number that represents a chemical structure in graph-theoretical
terms via the molecular graph, they play a significant role in mathematical chemistry, especially in
the QSPR/QSAR investigations. A topological descriptor is called a topological index if it correlates
with a molecular property. Topological indices are used to understand physico-chemical properties
of chemical compounds, since they capture the essence of some properties of a molecule in a single
number.

Several of the well-known topological indices based its computing as a sum of terms which cor-
respond to edges where each term is obtained by a symmetric expression of the degree of both end
points, e.g., harmonic, Randić connectivity, first and second Zagreb, atom-bound connectivity and
Platt indices. Lately, researchers in chemistry and pharmacology have focused in topological indices
based on degrees of vertices obtaining good results and showing that a number of these indices has
turned out to be a useful tool, see [1] and references therein. Probably, Randić connectivity index
(R) [2] is the most known. In fact, there exist hundreds of works about this molecular descriptor (see,
e.g., [3–8] and the references therein). Trying to improve the predictive power of this index during
many years, scientists proposed a great number of new topological descriptors based on degrees of
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vertices, similar to the Randić index. There are a lot of works showing the interest on these indices,
see e.g., [9–17].

The study of the exponential vertex-degree-based topological indices was initiated in [18] and has
been successfully studied in [19–25]. The study of topological indices associated to exponential rep-
resentations has been successfully studied in [12, 14, 20, 22, 26, 27]. Cruz et al. mentioned in 2020
some open problems on the exponential vertex-degree-based topological indices of trees [28] and Das
et al. show in 2021 the solution of two of those problems in [23]. In this sense, we work with generic
exponential topological indices described below that allows us to improve some of the bounds given
in [23] as well as obtain some new results.

Along this work, given a graph G =
(
V(G), E(G)

)
and a symmetric function f : [1,∞)×[1,∞)→ R,

we consider the general topological indices

F(G) =
∑

uv∈E(G)

f (du, dv), eF(G) =
∑

uv∈E(G)

e f (du,dv).

As usual, uv denotes an edge of the graph G connecting the vertices u and v, and dx denotes the
degree of the vertex x. The family of the topological indices like the one to the right above are called
exponential for obvious reasons.

Two examples of those topological indices that have been extended to its exponential indices are
the generalized atom-bound connectivity index, ABCα, and the generalized second Zagreb index, Mα

2 ,
defined respectively as

ABCα(G) =
∑

uv∈E(G)

(du + dv − 2
du dv

)α
,

Mα
2 (G) =

∑
uv∈E(G)

(du dv)α.

Then, their corresponding exponential indices are

eABCα(G) =
∑

uv∈E(G)

e
(

du+dv−2
du dv

)α
,

eMα
2 (G) =

∑
uv∈E(G)

e(du dv)α .

The study of topological indices is often formalized mathematically as optimization problems on
graphs. In general, those problems have been proven to be useful and quite difficult. Indeed, to obtain
quasi-minimizing or quasi-maximizing graphs is a good strategy that is commonly used. Therefore,
frequently, it is needed to find bounds on them which involve several parameters.

Topological indices have been successfully applied to different branches of knowledge, such as
chemistry, physics, biology, social sciences, etc. see [29–33]. In this direction, two of the most im-
portant theoretical and practical problems facing the study of topological indices are the following:
the study of the extremal problems associated with topological indices and obtaining new inequalities
relating different indices. This research has as fundamental contribution to face the above mentioned
problems associated with the study of exponential vertex-degree-based topological indices. In partic-
ular, we solve some extremal problems related with the exponential vertex-degree-based topological
indices eMα

2 and eABCα . Also, we obtain new lower and upper optimal bounds for these general expo-
nential indices.
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2. Optimization problems on the exponential index eMα
2

Throughout this work, G = (V(G), E(G)) denotes a (non-oriented) finite simple graph without
isolated vertices. Given a graph G and v ∈ V(G), we denote by N(v) the set of neighbors of v, i.e.,
N(v) = {u ∈ V(G)| uv ∈ E(G)}. We denote by ∆, δ, n,m the maximum degree, the minimum degree and
the cardinality of the set of vertices and edges of G, respectively; thus, 1 ≤ δ ≤ ∆ < n.

We study in this section some optimization problems on the exponential index eMα
2 .

Recall that we denote by N(w) the set of neighbors of w.

Proposition 2.1. Let G be a graph with nonadjacent vertices u and v. If f is a symmetric function
which is increasing in each variable, then eF(G + uv) > eF(G).

Proof. Since f is increasing in each variable, we have e f (du+1,dw) ≥ e f (du,dw), e f (dv+1,dw) ≥ e f (dv,dw) and

eF(G + uv) − eF(G) =∑
w∈N(u)

(
e f (du+1,dw)−e f (du,dw)

)
+

∑
w∈N(v)

(
e f (dv+1,dw) − e f (dv,dw)

)
+ e f (du+1,dv+1)

≥ e f (du+1,dv+1) > 0.

Hence,
eF(G + uv) > eF(G).

For example, if we take α > 0, f (x, y) = (xy)α, the cycle Cn with n > 2 and remove one edge we
obtain the path Pn, and we have eMa

2 (Cn) = ne4α , eMa
2 (Pn) = (n − 3)e4α + 2e2α and eMa

2 (Cn) − eMa
2 (Pn) =

3e4α − 2e2α > 0. Now if we take the complete graph Kn with n > 2 and H is the graph obtained
by removing an edge from Kn, we have eMa

2 (Kn) =
n(n−1)

2 e(n−1)2α
, eMa

2 (H) =
(

(n−2)(n−3)
2

)
e(n−1)2α

+ 2(n −
2)e[(n−1)(n−2)]α and eMa

2 (Kn) − eMa
2 (H) = (2n − 3)e(n−1)2α

− 2(n − 2)e[(n−1)(n−2)]α > 0. Thus, we have
e(n−1)α−(n−2)α > 1 > 2n−4

2n−3 .
Given an integer n ≥ 2, let G(n) be the set of graphs with n vertices.
Given integers 1 ≤ δ < n, letH(n, δ) be the set of graphs with n vertices and minimum degree δ

We consider the optimization problem for the exponential index eMα
2 on G(n).

Theorem 2.2. Consider α > 0 and an integer n ≥ 2.
(1) The unique graph that maximizes the eMα

2 index on G(n) is the complete graph Kn.
(2) If n is even, then the unique graph that minimizes the eMα

2 index on G(n) is the disjoint union of
n/2 paths P2. If n is odd, then the unique graph that minimizes the eMα

2 index on G(n) is the disjoint
union of (n − 3)/2 paths P2 and a path P3.

Proof. Since α > 0 we have that f (x, y) = (xy)α is an increasing function in each variable and so, we
can apply Proposition 2.1. The first item is a direct consequence of Proposition 2.1.

Assume first that n is even. Handshaking lemma gives 2m ≥ nδ ≥ n. We have for any graph
G ∈ G(n)

eMα
2 (G) =

∑
uv∈E(G)

e(dudv)α ≥
∑

uv∈E(G)

e = m e ≥
1
2

n e,
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and the equality in the bound is attained if and only if du = 1 for every u ∈ V(G), i.e., G is the disjoint
union of n/2 path graphs P2.

Assume now that n is odd, and consider a graph G ∈ G(n). If du = 1 for every u ∈ V(G), then
handshaking lemma gives 2m = n, a contradiction since n is odd. Thus, there exists a vertex w with
dw ≥ 2. Handshaking lemma gives 2m ≥ (n − 1)δ + 2 ≥ n + 1. We have

eMα
2 (G) =

∑
u∈N(w)

e(dudw)α +
∑

uv∈E(G),u,v,w

e(dudv)α

≥
∑

u∈N(w)

e2α +
∑

uv∈E(G),u,v,w

e

≥ 2e2α + (m − 2)e

≥ 2e2α +
(n + 1

2
− 2

)
e

= 2e2α +
n − 3

2
e,

and the equality in the bound is attained if and only if du = 1 for every u ∈ V(G) \ {w}, and dw = 2, i.e.,
G is the disjoint union of (n − 3)/2 path graphs P2 and a path graph P3.

Note that for α = 1, the result in Theorem 2.2 was obtained in [20, Theorem 2.2].

If 1 ≤ δ < ∆ are integers, we say that a graph G is (∆, δ)-pseudo-regular if there exists v ∈ V(G)
with dv = ∆ and du = δ for every u ∈ V(G) \ {v}.

In [34] appears the following result.

Lemma 2.3. Consider integers 2 ≤ k < n.
(1) If kn is even, then there is a connected k-regular graph with n vertices.
(2) If kn is odd, then there is a connected (k + 1, k)-pseudo-regular graph with n vertices.

Given integers 1 ≤ δ < n, denote by Kδ
n the n-vertex graph with maximum degree n−1 and minimum

degree δ, obtained from the complete graph Kn−1 and an additional vertex v in the following way: Fix
δ vertices u1, . . . , uδ ∈ V(Kn−1) and let V(Kδ

n) = V(Kn−1) ∪ {v} and E(Kδ
n) = E(Kn−1) ∪ {u1v, . . . , uδv}.

Figure 1 illustrates this construction by showing the graphs K2
6 and K3

6 .

We consider now the optimization problem for the exponential index eMα
2 onH(n, δ).

Theorem 2.4. Consider α > 0 and integers 1 ≤ δ < n.
(1) Then the unique graph inH(n, δ) that maximizes the eMα

2 index is Kδ
n.

(2) If δ ≥ 2 and δn is even, then the unique graphs in H(n, δ) that minimize the eMα
2 index are the

δ-regular graphs.
(3) If δ ≥ 2 and δn is odd, then the unique graphs in H(n, δ) that minimize the eMα

2 index are the
(δ + 1, δ)-pseudo-regular graphs.

Proof. Given a graph G ∈ H(n, δ) \ {Kδ
n}, fix any vertex u ∈ V(G) with du = δ. Since

G , G ∪ {vw : v,w ∈ V(G) \ {u} and vw < E(G)} = Kδ
n,
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Figure 1. The graphs (a) K2
6 , (b) K3

6 .

Proposition 2.1 gives eMα
2 (Kδ

n) > eMα
2 (G). This proves item (1).

Handshaking lemma gives 2m ≥ nδ.
Since du ≥ δ for every u ∈ V(G), we obtain

eMα
2 (G) =

∑
uv∈E(G)

e(dudv)α ≥
∑

uv∈E(G)

eδ
2α

= m eδ
2α
≥

1
2

nδeδ
2α
,

and the equality in the bound is attained if and only if du = δ for every u ∈ V(G).
If δn is even, then Lemma 2.3 gives that there is a δ-regular graph with n vertices. Hence, the unique

graphs inH(n, δ) that minimize the eMα
2 index are the δ-regular graphs.

If δn is odd, then handshaking lemma gives that there is no regular graph. Hence, there exists
a vertex w with dw ≥ δ + 1. Since du ≥ δ for every u ∈ V(G), handshaking lemma gives 2m ≥
(n − 1)δ + δ + 1 = nδ + 1. We have

eMα
2 (G) =

∑
u∈N(w)

e(dudw)α +
∑

uv∈E(G),u,v,w

e(dudv)α ≥
∑

u∈N(w)

eδ
α(δ+1)α +

∑
uv∈E(G),u,v,w

eδ
2α
.

From the above and since w has at least δ + 1 neighbors we have

eMα
2 (G) ≥ (δ + 1)eδ

α(δ+1)α + (m − δ − 1)eδ
2α
,

now using 2m ≥ nδ + 1, we have

eMα
2 (G) ≥ (δ + 1)eδ

α(δ+1)α +
(nδ + 1

2
− δ − 1

)
eδ

2α
= (δ + 1)eδ

α(δ+1)α +
1
2
(
δ(n − 2) − 1

)
eδ

2α
,

and equality in the bound is attained if and only if du = δ for every u ∈ V(G) \ {w}, and dw = δ + 1.
Lemma 2.3 gives that there is a (δ + 1, δ)-pseudo-regular graph with n vertices. Therefore, the unique
graphs inH(n, δ) that minimize the eMα

2 index are the (δ + 1, δ)-pseudo-regular graphs.
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3. Optimal inequalities for exponential generalized atom-bound connectivity indices

In [23, Theorem 2.1] appears the inequality

eABC(G) ≥ ∆
(
e
√

2(∆−1)
∆ − e

√
1− 1

∆

)
+ m e

ABC(G)
m .

The equality holds in this bound if and only if G is a disjoint union of isolated edges or each connected
component of G is a path graph Pk (k ≥ 3) or a cycle graph Ck (k ≥ 3).

Proposition 3.1. If G is a graph with size m, then

eABC(G) ≥ m e
ABC(G)

m .

The equality holds if every edge of G is incident to a vertex of degree 2, or G is regular or biregular.

Proof. ABC(G) =
∑

uv∈E(G)

(du + dv − 2
du dv

)
. Note that the exponential function exp(x) = ex is a strictly

convex function, and Jensen’s inequality gives

exp
( 1

m

∑
uv∈E(G)

du + dv − 2
du dv

)
≤

1
m

∑
uv∈E(G)

e
du+dv−2

du dv ,

and the equality in this bound is attained if and only if du+dv−2
du dv

=
dw+dz−2

dw dz
for every uv,wz ∈ E(G).

If every edge of G is incident to a vertex of degree 2, then du+dv−2
du dv

= 1
2 for every uv ∈ E(G). If G is a

regular or biregular graph, then du+dv−2
du dv

= ∆+δ−2
∆δ

for every uv ∈ E(G).

Since
√

2(∆−1)
∆

<
√

1 − 1
∆

if ∆ > 2, Propostion 3.1 improves [23, Theorem 2.1].
The following result relates the exponential generalized atom-bound connectivity indices with pos-

itive and negative parameters.

Theorem 3.2. Let G be a graph with m edges, minimum degree δ, maximum degree ∆ > 2, and without
isolated edges, and let α, β ∈ R with α > 0 > β. Then

e
((

2(∆−1)
∆2

)α
−
(

2(∆−1)
∆2

)β)
eABCβ(G) ≤ eABCα(G),

and the equality holds if and only if G is regular.
If δ = 1, then

eABCα(G) ≤ e
(
(1− 1

∆ )α−(1− 1
∆ )β

)
eABCβ(G),

and the equality holds if and only if G is the disjoint union of star graphs K1,∆.
If δ ≥ 2, then

eABCα(G) ≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
eABCβ(G).

If δ > 2, then the equality holds if and only if G is regular. If δ = 2, then the equality holds if and only
if each edge in G is incident to a vertex with degree two.
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Proof. For each fixed α and β with α > 0 > β, we are going to compute the extremal values of the
function g : [δ,∆] × [max {2, δ},∆] (with ∆ ≥ 3) given by

g(x, y) = e
( x+y−2

xy

)α
e−

( x+y−2
xy

)β
= e

(( x+y−2
xy

)α
−
( x+y−2

xy

)β)
.

We have

∂g
∂x

= e
(( x+y−2

xy

)α
−
( x+y−2

xy

)β) α (
x + y − 2

xy

)α−1

− β

(
x + y − 2

xy

)β−1 1
x2

(
2
y
− 1

)
≤ 0.

Then the function g(x, y) is decreasing on x ∈ [δ,∆] for each fixed y ∈ [max{2, δ},∆] and consequently

g(∆, y) ≤ g(x, y) ≤ g(δ, y).

Let us define
g1(y) = g(∆, y) = e

(( y+∆−2
∆y

)α
−
( y+∆−2

∆y

)β)
.

We have
g′1(y) =e

(( y+∆−2
∆y

)α
−
( y+∆−2

∆y

)β)
×α (

y + ∆ − 2
∆y

)α−1

− β

(
y + ∆ − 2

∆y

)β−1 1
y2

(
2
∆
− 1

)
< 0.

Then g1(y) is strictly decreasing, and consequently g1(∆) ≤ g1(y). Therefore, for each uv ∈ E(G) we
have

e
((

2(∆−1)
∆2

)α
−
(

2(∆−1)
∆2

)β)
≤ e

(
du+dv−2

dudv

)α
e−

(
du+dv−2

dudv

)β
,

e
((

2(∆−1)
∆2

)α
−
(

2(∆−1)
∆2

)β)
e
(

du+dv−2
dudv

)β
≤ e

(
du+dv−2

dudv

)α
,

e
((

2(∆−1)
∆2

)α
−
(

2(∆−1)
∆2

)β)
eABCβ(G) ≤ eABCα(G),

and the equality in the last inequality holds if and only if du = dv = ∆ for each uv ∈ E(G), i.e., G is a
regular graph.

Let us define
g2(y) = g(δ, y) = e

(( y+δ−2
δy

)α
−
( y+δ−2

δy

)β)
.

We have
g′2(y) =e

(( y+δ−2
δy

)α
−
( y+δ−2

δy

)β)
×α (

y + δ − 2
δy

)α−1

− β

(
y + δ − 2

δy

)β−1 1
y2

(
2
δ
− 1

)
.

If δ = 1, then g′2(y) > 0 and so, g2(y) is strictly increasing. Consequently, g2(y) ≤ g2(∆), and we
have for each uv ∈ E(G)

e
(

du+dv−2
dudv

)α
e−

(
du+dv−2

dudv

)β
≤ e

(
(1− 1

∆ )α−(1− 1
∆ )β

)
,

e
(

du+dv−2
dudv

)α
≤ e

(
(1− 1

∆ )α−(1− 1
∆ )β

)
e
(

du+dv−2
dudv

)β
,

eABCα(G) ≤ e
(
(1− 1

∆ )α−(1− 1
∆ )β

)
eABCβ(G),
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and the equality in the last inequality holds if and only if du = 1 and dv = ∆ o viceversa for each
uv ∈ E(G), i.e., G is the disjoint union of star graphs K1,∆.

If δ = 2, then g′2(y) = 0 and so, g2(y) is a constant function. We have

g(x, y) ≤ g(2, y) = g2(y) = e
(
( 1

2 )α−( 1
2 )β

)
= e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
,

e
(

du+dv−2
dudv

)α
e−

(
du+dv−2

dudv

)β
≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
,

e
(

du+dv−2
dudv

)α
≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
e
(

du+dv−2
dudv

)β
,

eABCα(G) ≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
eABCβ(G),

and the equality in the last inequality holds if and only if each edge in G is incident to a vertex with
degree two.

If δ > 2, then g′2(y) < 0 and so, g2(y) is strictly decreasing. Consequently, g2(y) ≤ g2(δ), and we
have for each uv ∈ E(G)

e
(

du+dv−2
dudv

)α
e−

(
du+dv−2

dudv

)β
≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
,

e
(

du+dv−2
dudv

)α
≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
e
(

du+dv−2
dudv

)β
,

eABCα(G) ≤ e

((
2(δ−1)
δ2

)α
−

(
2(δ−1)
δ2

)β)
eABCβ(G),

and the equality in the last inequality holds if and only if du = dv = δ for each uv ∈ E(G), i.e., G is a
regular graph.

The hypothesis ∆ > 2 in Theorem 3.2 is not an important restriction: If ∆ = 2, then G is is the
disjoint union of path and cycle graphs with three or more vertices, and we have eABCα(G) = me( 1

2 )α .
Hence,

eABCα(G) = e
(
( 1

2 )α−( 1
2 )β

)
eABCβ(G).

4. Conclusions

We have studied some properties of the generalized exponential indices. For the exponential index
eMα

2 with α > 0, we characterize the graphs with extreme values in the class of graphs with a fixed
number of vertices and in the class of graphs with a fixed minimum degree and a fixed number of
vertices.

In addition, we found some optimal inequalities involving the exponential atom-bound connectivity
index. In particular, we found a bound that improves a result in [23]. Also, we obtained an inequality
concerning the indices eABCα for different values of the parameter.

As an open problem it remains to find the extremal graphs and to obtain optimal bounds for other
generalized exponential vertex-degree-based topological indices. In particular, for the index eMa

2 to find
the extremal graphs in other classes, for example the class of graphs with n vertices and fixed maximum
degree.
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Kragujevac, 2008.

6. X. Li, I. Gutman, Mathematical Aspects of Randić Type Molecular Structure Descriptors, Univ.
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