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Abstract: We study symmetry reductions of nonlinear partial differential equations that can be used
for describing diffusion processes in heterogeneous medium. We find ansatzes reducing these equa-
tions to systems of ordinary differential equations. The ansatzes are constructed using generalized
symmetries of second-order ordinary differential equations. The method applied gives the possibility
to find exact solutions which cannot be obtained by virtue of the classical Lie method. Such solu-
tions are constructed for nonlinear diffusion equations that are invariant with respect to one-parameter
and two-parameter Lie groups of point transformations. We prove a theorem relating the property of
invariance of a found solution to the dimension of the Lie algebra admitted by the corresponding equa-
tion. We also show that the method is applicable to non-evolutionary partial differential equations and
ordinary differential equations.
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1. Introduction

It is of common knowledge, that the most effective method for constructing solutions of nonlinear
partial differential equations (PDEs) of mathematical physics is the symmetry reduction method. The
method can be both classical [1] and non-classical [2–7]. In these cases the construction of a proper
ansatz (by which we mean a general form of an invariant solution) boils down to solving a quasilin-
ear first-order differential equation, therefore an ansatz includes one arbitrary function and the initial
equation reduces to a single differential equation with fewer independent variables, especially an or-
dinary differential equation (ODE). Reductions of differential equations to algebraic equations were
considered in detail in [8] and [9].

Papers [10] and [11] presented a concept of conditional symmetry of evolution equations, which
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is a natural generalization of nonclassical symmetry. By using this method one can reduce nonlinear
evolution equations with two independent variables to a system of ODEs. In [11] Zhdanov proved the
theorem on the connection between the generalized conditional symmetry and reduction of evolution-
ary equations to a system of ODEs. It is worth pointing out that the number of differential equations in
this system is equal to the number of unknown functions. The approach is used to construct exact so-
lutions of nonlinear diffusion equations in [12]. The relationship between the generalized conditional
symmetry of evolution equations and compatibility for overdetermined system of differential equations
is studied in [13].

An approach on symmetry reduction of evolutionary equations is well developed. However, the
problem of reducing of non-evolutionary equations is significantly less studied. The relation between
the compatibility and reduction of partial differential equations in two independent and one dependent
variables has been studied in [14]. Svirshchevskii [15] put forward the inverse symmetry reduction
method for evolution equations of the form

ut = K[u],

where u = u(t, x) and K[u] B K
(
t, x, u, ∂u

∂x , . . . ,
∂su
∂xs

)
. One can use this approach if K[u]∂u is the gen-

eralized infinitesimal symmetry of a linear homogeneous ODE. In [16] the generalization of Svirsh-
hchevskii’s method was proposed. It provides an explicit characterization of all nonlinear differential
operators that leave a given subspace of functions invariant. It turns out that the inverse symmetry
reduction method is also applicable to non-evolutionary differential equation [17–19]. We are looking
for the ansatz reducing PDEs by solving ODEs that do not necessarily have to be linear.

More specifically, let u(k) denote the set of all kth order partial derivatives of u = u(t, x) with respect
to (t, x). Suppose that a generalized vector field

X = η(t, x, u, u(1), . . . , u(k))∂u (1.1)

is a generalized symmetry of an ordinary differential equation

H
(
t, x, u, ∂u

∂x , . . . ,
∂pu
∂xp

)
= 0, (1.2)

where H is a smooth function of its arguments, and t plays the role of a parameter [17]. Then an ansatz
reducing the equation

η(t, x, u, u(1), . . . , u(k)) = 0 (1.3)

to a system of ODEs can be constructed via finding the general solution of the ODE (1.2) [17]. Inte-
grating the reduced system, one obtain exact solutions of PDEs (1.3). Exact solutions of differential
equations are useful for understanding physical phenomena described by these equations and testing
approximate and numerical methods for solving them. The method can be applied to non-evolutionary
equations and even to ODEs. Moreover, in the framework of our approach one can construct an ansatz
that reduces non-evolutionary PDEs to a system of ODEs and also the number of equations is smaller
than the number of unknown functions. This enabled us to find solutions depending on arbitrary
functions, which will be shown in Section 3.1. It is worth pointing out that the suggested method is
applicable in multi-dimensional case as well [17,20,21]. We see that the ODE (1.2) includes the para-
metric variable t, apart from dependent and independent variables u and x. This allowed us to construct
integrable PDEs. For example the equation

uxx − a(t, x)u = 0 (1.4)
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admits the symmetry operator X = η∂u =
(
ut − uxxx + 3 uxxu

ux

)
∂u provided that a(t, x) satisfies the KdV

equation
at = axxx − 6aax (1.5)

as was shown in [17]. Then it is clear that the method is related to the inverse scattering transformation
method. We emphasize that η depends on ut and the condition of invariance of Eq (1.4) with respect to
the group with generator X in classical sense leads to a determining equation which is the well-known
integrable KdV equation. This approach belongs to a class of nonclassical symmetry methods in a
sense that it produces results unobtainable within the classical methods. The idea is to use generalized
symmetries of ODEs for constructing solutions of evolutionary equations. In this paper we consider
a nonlinear evolutionary equation that describes transport phenomena in heterogeneous medium and
apply a reduction method based on the symmetries of second-order nonlinear ODEs.

Extended symmetry analysis of porous medium equations with absorption and convection terms,
including nonclassical symmetries, was carried out in papers [22–24]. Those equations included a
factor dependent on a spatial variable x. We also studied diffusion-type equations for which the right-
hand side involves a spatial variable and found solutions which are not invariant in classical sense by
using the suggested method. We present the results obtained for the model medium with exponential
and polynomial heterogeneity. Within the method applied, nonlinear transport equation is reduced to a
system of two ODEs. After integrating (solving) the system of ODEs, we obtain exact solution of the
initial equation. Right now main two differences from classical symmetry reduction should become
apparent. With classical symmetry reduction there is only one reduced equation, not a system, and the
solution from classical reduction will always be classically invariant. Since the method applied differs
from the classical Lie method, it is not suitable for constructing algorithms for the generation of new
solutions, or production of conservation laws. Its only advantage is the preservation of the reduction
property. In addition, it doesn’t ensure that none of the obtained solutions could also be found within
the classical method. Therefore there is a very important question of distinguishing truly new solutions
obtained within the method proposed. Many new local and nonlocal symmetries have been found
for nonlocally related PDE systems [25]. Nonlocal symmetries alongside Bäcklund transformations
helped finding solutions for the (2+1)-dimensional KdV–mKdV equation [26].

Based on the fact that a set of point and generalized symmetry operators (of the ODE) form a Lie
algebra, we distinguish a class of diffusion equations whose solutions, obtained with the help of the
aforementioned approach, cannot be obtained through the classical Lie method. Furthermore, it can be
used to construct a large class of nonlinear evolution equation all of which are reduced to systems of
ODEs by the same ansatz and possess solutions which are not invariant in the classical Lie sense. We
emphasize that evolutionary equations are widely used and referenced in mathematical biology (see
for instance [27] and references given there).

The organization of the article is as follows: We give the definition of generalized symmetry of an
ODE and outline and explanation of the method in Section 2. In Section 3.1 we discuss applying of
the method to PDEs. We find the classes of nonlinear evolutionary equations for which the method
can be applied in the Section 3.2. In Section 3.3 we show the application of the method for finding
solutions and obtain the solutions which cannot be constructed by the classical Lie method for the
modified diffusion equations. The Theorem on a sufficient condition for the solution to be invariant
one in classical sense is given too. In Section 4 we discuss the obtained results and provide some
conclusions.
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2. Materials and methods

Consider the differential equation (1.2). Let us denote by L the set of all differential consequences
of (1.2) with respect to t and x. Let

η̃ = η̃(t, x, u, ∂u
∂t ,

∂u
∂x ,

∂2u
∂t∂x , . . . ,

∂ku
∂xk ).

We treat (1.2) as it was a PDE which does not include the partial derivatives with respect to t.

Definition 1. We say that a generalized vector field

X = η̃(t, x, u, ∂u
∂t ,

∂u
∂x ,

∂2u
∂t∂x , . . . ,

∂ku
∂xk )∂u

is a generalized infinitesimal symmetry of equation (1.2) if the condition

X[p]H
(
t, x, u, ∂u

∂x , . . .
∂pu
∂xp

) ∣∣∣∣
L

= 0 (2.1)

holds, where

X[p] =

p∑
i=0

Di
xη̃ ∂ui

is the standard pth prolongation (pth extension) of X and Dx = ∂
∂x + u1

∂
∂u + u1t

∂
∂ut

+ u2
∂
∂u1

+ . . . is the

operator of total derivative with respect to x, u0 = u, ui = ∂iu
∂xi , D0

x = 1, D j+1
x = Dx(D

j
x), i, j ∈ N.

For a more elaborate take on the basics of symmetry methods please refer to [28]. The invariance
property (2.1) ensures a reduction of the equation

η̃(t, x, u, ∂u
∂t ,

∂u
∂x ,

∂2u
∂t∂x , . . . ,

∂ku
∂xk ) = 0 (2.2)

to a system of ordinary differential equations. Let

u = F(x, t, ϕ1(t), ϕ2(t), . . . , ϕp(t)), (2.3)

where F is a smooth function of (x, t, ϕ1, . . . , ϕp), be the general solution of Eq (1.2). Then the ansatz
(2.3), where ϕ1(t), . . . , ϕp(t) are unknown functions of the variable t, reduces partial differential equa-
tion (2.2) to the system of k1 ordinary differential equations, where k1 ≤ p [17]. For evolutionary
equations k1 = p, and for non-evolutionary equations, this number may be less than p. This property is
illustrated by Eqs (3.9) and (3.13). The necessary computation was made in MapleTM with the addition
of a software Jets for differential calculus on jet spaces and diffieties, which was created by H. Baran
and M. Marvan and is distributed under the GNU General Public License. The tool and the user guide
can be found at https://jets.math.slu.cz/.

3. Results

3.1. On application of the generalized symmetry reduction method to differential equations with two
independent variables

In this subsection we show how to apply the method to PDE’s. At first we consider differential
equations obtained with the help of symmetry operators of Eq (1.4). One can find the solution a = 2

x2
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of Eq (1.5) when ∂a
∂t = 0 (the stationary Korteweg–de Vries equation). Then the equation

uxx −
2
x2 u = 0 (3.1)

admits the three-dimensional Lie algebra with basic operators Q1 = ut∂u, Q2 =
(
uxxx − 3uxxu

ux

)
∂u, Q3 =

u∂u in this case. Equation (3.1) is integrable by quadratures and thus we obtain the ansatz

u = ϕ1(t)x2 +
ϕ2(t)

x
, (3.2)

where ϕ1(t), ϕ2(t) are unknown functions, which reduces nonlinear evolution equation

ut − uxxx + 3
uxxux

u
− λu = 0, (3.3)

with λ = const, to the system of two ODEs

ϕ′1(t) = λϕ1, ϕ′2(t) = λϕ2 − 12ϕ1.

The solution of this system has the form

ϕ1 = C1eλt, ϕ2 = (C2 − 12C1t)eλt,C1,C2 = const. (3.4)

Substituting (3.4) into (3.2) one can obtain the solution of (3.3). Note that for a = wx, where w is a
solution of the stationary Calogero–Bogoyavlenskii–Shiff equation

wzxxx − 2wzwxx − 4wzxwx = 0,

Eq (1.4) is also integrable by quadratures [29]. The reduction method can also be applied for reducing
the Cauchy problem for Eq (3.3) with an initial condition u(0, x) = f (x) to the Cauchy problem for a
system of ODEs.

Our next goal is to show that the method is applicable to non-evolutionary type PDEs. For this
purpose we first consider the following differential equation:

uxx −

(
x

6(t + 1)
+

5
16x2

)
u = 0. (3.5)

It is invariant with respect to the two-parameter Lie group of point transformations with generators

Y0 = u∂u, Y1 =

(
2
√

x
ux +

1
2

x−3/2u
)
∂u = η1∂u.

From this it immediately follows that the Eq (3.5) is integrable by quadratures. To obtain non-
evolutionary equations we look for symmetry operators of the form Y = η(t, x, u, ux, ut, uxt)∂u. We
prove that the Eq (3.5) admits the generalized infinitesimal symmetries given by

Y2 =

(
2
√

x
uxt +

1
2

x−3/2ut +
x3/2

9(t + 1)2 u
)
∂u = η2∂u, Y3 =

√
x
(
3(t + 1)

2
η2

1 − u2
)

u∂u = η3∂u
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as well. We emphasize that the coefficient η2 depends explicitly on the (parametric) variable t and the
derivative utx. This enabled us to find non-evolutionary nonlinear differential equations that can be
reduced to a system of ODEs by appropriate ansatz. One can use linear combinations or commutators
of the operators Y1, Y2 and Y3. We consider the symmetry operator Y2 − Y3. Then the corresponding
non-evolutionary differential equation takes the form

η2 = η3. (3.6)

By using symmetry properties we integrate Eq (3.5) and thus obtain the ansatz

u = x−1/4
(
ϕ1(t)ek(t)ω + ϕ2(t)e−k(t)ω

)
, (3.7)

where ω = x3/2, k(t) =
√

2
3
√

3(t+1)
, and ϕ1(t) and ϕ2(t) are unknown functions, which reduces (3.6) to the

system of ODEs

ϕ′1 −
ϕ1

2(t + 1)
= −2

√
6(t + 1)ϕ2

1ϕ2, ϕ′2 −
ϕ2

2(t + 1)
= 2

√
6(t + 1)ϕ1ϕ

2
2. (3.8)

The application of the same method to non-evolutionary nonlinear hyperbolic equation

ux1 x2 = ux1 F(ux1 − u), (3.9)

with F being an arbitrary function of ux1 − u, yields the solution

u = −ϕ1(x2) + Cex1+
∫

F(ϕ1(x2))dx2 , C = const, (3.10)

parameterized by an arbitrary function ϕ1(x2). This solution is obtained by using the generalized
infinitesimal symmetries Q1 = ux1 x2∂u and Q2 = ux1 F(ux1 − u)∂u of the ODE ux1 x1 − ux1 = 0.

It is clear that an ODE generating an ansatz may be nonlinear. For example, the equation

ux1 x1 + u2
x1 x1

= 0 (3.11)

admits the generalized infinitesimal symmetries Q1 =
ux1 x2
u2

x1
∂u and Q2 = F(u + ln ux1)∂u, where F is an

arbitrary function of u + ln ux1 . Thus, it admits the generalized infinitesimal symmetry Q = Q1 −Q2 as
well. The general solution of (3.11) gives the ansatz

u = ln(x1 + Φ1(x2)) + Φ2(x2), (3.12)

where Φ1(x2) and Φ2(x2) are arbitrary smooth functions, which reduces the nonlinear PDE

ux1 x2 = u2
x1

F(u + ln ux1) (3.13)

to the single ODE
Φ′1 = −F(Φ2).

From this we obtain the family of solutions of (3.13)

u = ln
(
x1 −

∫
F(Φ2(x2))dx2

)
+ Φ2(x2), (3.14)
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which is parameterized by the arbitrary smooth function Φ2(x2). Therefore, the method allows us to
construct solutions, which contain arbitrary functions. We recall that second order in time nonlinear
partial differential equations, which have only one higher symmetry and have a solution depending on
one arbitrary function were called partially integrable equations in [30].

Note that setting F(u + ln ux1) = e−2(u+ln ux1 ) in (3.13), we obtain the equation ux1 x2 = e−2u which is
transformed to the classical Liouville equation vxt = ev by means of the change of variables v = −2u,
x = −2x1, t = x2.

It is obvious that Eq (3.11) is invariant with respect to the Lie group of translations in t, which is
generated by the vector field Q3 = ut∂u. Therefore, the generalized vector field Q3 + Q1 − Q2 is a
generalized infinitesimal symmetry of Eq (3.11). Then the ansatz

u = ln(x1 + ϕ1(x2, t)) + ϕ2(x2, t) (3.15)

reduces the partial differential equation with three independent variables of evolution type

ut +
ux1 x2
u2

x1
= F(u + ln ux1) (3.16)

to the system of two partial differential equations with two independent variables

ϕ′1t = 0, ϕ′2t − ϕ
′
1x2

= F(ϕ2). (3.17)

At the same time we do not obtain such reduction for the non-evolutionary equation

utt +
ux1 x2
u2

x1
= F(u + ln ux1). (3.18)

Note that the generalized vector field Q3 = utt∂u is not an infinitesimal symmetry of Eq (3.11).
In [16], it was shown that the reduction method can be applied to partial differential equations of the
form utt = Q[u] or the more general form T [u] = Q[u], where T is a linear ordinary differential
operator in t. Each of ansatzes used in [16] in this case to reduce partial differential equations is a
solution of a linear ordinary differential equation whose coefficients do not depend on t and, therefore,
the generalized vector fields utt∂u and T [u]∂u are the generalized symmetries of this equation. These
facts substantiate the reduction of considered partial differential equations utt = Q[u] and T [u] = Q[u].

The above examples demonstrate rather strikingly that the method can be applied to non-
evolutionary type PDE. The main idea of applying the method to evolutionary equations can be il-
lustrated by the example of the Korteweg–de Vries equation. One can verify that the equation

uxx + u2

2 = 0 (3.19)

is invariant with respect to the generalized vector field X = (uxxx + uux)∂u. Note that we can obtain any
desired coefficients for the terms of Eq (1.5) by rescaling dependent variable and independent variables
t and x. We have proved that the Eq (3.19) is invariant with respect to a two-parameter group of contact
transformations. A basis of the corresponding Lie algebra consists of the generalized vector fields

Q1 = uxh1(3u2
x + u3)∂u, (3.20)

Q2 = uxh2(3u2
x + u3)

∫ u

0

ds

(u2
x + u3

3 −
s3

3 )
3
2

∂u, (3.21)
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where h1 and h2 are arbitrary smooth functions. The advantage of using the approach lies in the fact that
a linear combination α1X +α2Q1 +α3Q2 with arbitrary real constants α1, α2 and α3 is also a symmetry
operator of (3.19) and, therefore, the method can be applied to the nonlinear differential equation

ut = uxxx + uux + uxh1(3u2
x + u3) + uxh2(3u2

x + u3)
∫ u

0

ds

(u2
x + u3

3 −
s3

3 )
3
2

. (3.22)

Then the ansatz ∫ u

0

ds√
ϕ1(t) − s3

3

= x + ϕ2(t) (3.23)

generated by (3.19) reduces the PDE (3.22) to the system of two ODEs

ϕ′1(t) = 2h2(3ϕ1(t)), ϕ′2(t) = h1(3ϕ1(t)). (3.24)

Equation (3.22) in the general form is invariant with respect to the two-dimensional Lie algebra
〈∂t, ∂x〉. Since the derivatives ∂u

∂ϕ1
and ∂u

∂ϕ2
are linearly independent, one can easily see that among

solutions of (3.22) constructed with the ansatz (3.23), there are those that are invariant with respect to
no one-parameter Lie group with generator in 〈∂t, ∂x〉. Hence we conclude that the method enables us
to construct solutions to equations from class (3.22) that are not invariant in the classical Lie sense.

3.2. The classes of evolutionary equations for which the method can be applied

Next we consider a nonlinear evolutionary equation which can be used for describing diffusion
processes in heterogeneous medium and for which the method can be applied. We are looking for the
second-order ODEs of the form

uxx = U(x, u, ux) (3.25)

(which belong to the class (1.2)) admitting a generalized symmetry with a generator of the form X =(H(x)
u

)
xx∂u corresponding to the right hand side of our diffusion equation. Note that the Eq (3.25) is

invariant with respect to the translation group t′ = t + a, where a is a group parameter and therefore
it admits the symmetry operator X1 = ut∂u. From this it follows that the method is applicable to any
equation from the class k1ut + k2

(H(x)
u

)
xx = 0, where k1, k2 are arbitrary constants. We assume H and U

are some sufficiently smooth functions and H is nonzero. Function U should satisfy the determining
equation

X[2](uxx − U(x, u, ux)
)∣∣∣∣

L
= 0

as stated in Definition 1, for a given function H, with L being the set of all differential consequences
of Eq (3.25) with respect to the variable x. For the sake of being able to split the equation above
into an overdetermined system of differential equations, we restrict our search to a function U =∑

i, j∈Z Ai j(x)uiu j
x, that is a power series in both u and ux. We focus not a complete classification but rather

particular H and U for which this method may produce nonclassical solutions. Due to a great number
of determining equations and cases to consider we will move past the explanation of calculations and
present some of the results in the following proposition.

Proposition 1. An equation uxx = U(x, u, ux) admits the LBS operator X =
(H(x)

u

)
xx∂u if H(x) and U

have the form

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6962–6984.
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a) H(x) = eβx, U = 3u2
x

u − 3βux + β2u,

b) H(x) = (x + γ)α, U = 3u2
x

u + 3−3α
x+γ

ux +
(α−2)(α−1)

(x+γ)2 u,

c) H(x) = (x + γ)α, U = 3u2
x

u + 1−3α
x+γ

ux +
(α−2)α
(x+γ)2 u,

d) H(x) = (x + γ)−2, U = 3u2
x

u + 7
x+γ

ux + 8
(x+γ)2 u,

e) H(x) = (x + γ)−2, U = 3u2
x

u + 10
x+γ

ux + 15
(x+γ)2 u.

Terms α, β, γ are all constants.

It must be noted that because of the said restrictions this is not a complete classification. Solutions
of ODEs can be used as ansatzes which produce a reduction of the equation

ut = ( H(x)
u )xx (3.26)

to a system of two ODEs. Equation (3.26) can be written in the form

ut = (D(x, u)ux)x + P(x, u)ux + Q(x, u), (3.27)

where D(x, u) = −
H(x)
u2 , P(x, u) = −

H′(x)
u2 , Q(x, u) =

H′′(x)
u . Assumption of constancy D is not always

justified – often the diffusion coefficient depends on the concentration of the diffusant, concentration
gradient, spatial coordinate and time of the diffusion experiment (and sometimes - from all these pa-
rameters together). In [31] the reaction-diffusion equation of the typical form

ut = D∆u + f (u) (3.28)

is considered. u = u(x, t) is a state variable and describes density/concentration of a substance, a
population at point x: x ∈ Ω ⊂ Rn (Ω is an open set). ∆ denotes the Laplace operator. The second term,
f (u) is a smooth function, and describes processes with really “change” the present u, i.e., something
happens to it (birth, death, chemical reaction), not just diffuse in the space. It is also possible, that the
reaction term depends not only on u, but also on the first derivative of u, i.e., ∇u and/or explicitly on x.
Instead of a scalar equation, one can also introduce systems of reaction diffusion equations, which are
of the form

ut = D∆u + f (x, u,∇u), (3.29)

where u(x, t) ∈ Rm [31]. The system of equations

ut =
(
(d1 + d11u + d12v)u

)
xx + (Kxu)x + u(k1 + k2u + k3v),

vt =
(
(d2 + d21u + d22v)v

)
xx + (Kxv)x + u(k4 + k5u + k6v)

(3.30)

is used in [32] to describe the densities of two biological species, considering nonlinear movements of
the individuals of populations. Here K(x) is environmental potential describing the heterogeneity of
environment. Equations (3.26) and (3.27) belong to the class of Eq (3.29) and the method is applicable
to any equation from this class or (3.30). Note that Eq (3.26) can be used for describing fast diffusion
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in heterogeneous medium if H(x) , const and homogeneous medium if H(x) = const. We use the fact
that the equation

ut = ( H
u )xx + η(x, u, ux)

also allows reduction with the same ansatz, for η such that η∂u is the symmetry of the ODE. Note that
if we take H = −1 and η = 0 then we get the well-known equation describing nonlinear diffusion
processes, which possesses an infinite generalized symmetry. We consider separate cases from Propo-
sition 1 depending on the type of heterogeneity of the medium H(x) and the ODE (which is not unique
for the choice of H), calculate the full contact symmetry of the ODE and obtain the reduced equations.
From now on Ai are arbitrary smooth functions on their two arguments. We put γ = 0 in these cases.

(i) When H(x) = eβx and
uxx = 3u2

x
u − 3βux + β2u (3.31)

the most general formula for η(x, u, ux) is η =
∑2

i=1 e−iβxu3Ai

(
2 eβx

u3

(
u − ux

β

)
, e2βx

u3

(
2ux
β
− u

))
. From

what already has been shown it follows that the ansatz

u(x, t) = ±eβx
√
ϕ1(t)eβx+ϕ2(t)

, (3.32)

which is general solution of (3.31), reduces the equation

ut =

(
eβx

u

)
xx

+

2∑
i=1

e−iβxu3Ai

(
2

eβx

u3

(
u −

ux

β

)
,

e2βx

u3

(
2

ux

β
− u

))
(3.33)

to the system of ODEs

ϕ′1 +
β2

2 ϕ
2
1 + 2A1(ϕ1, ϕ2) = 0, (3.34)

ϕ′2 + β2ϕ1ϕ2 + 2A2(ϕ1, ϕ2) = 0. (3.35)

(ii) When H(x) = xα, α , 0, and uxx = 3 u2
x

u + 3−3α
x ux +

(α−2)(α−1)
x2 u we obtain, in a similar way, the

equation

ut =

(
xα

u

)
xx

+

2∑
i=1

x2−iαu3Ai

(
2xα−2

αu3

(
(α − 1)u − xux

)
,

x2α−2

αu3

(
(2 − α)u + 2xux

))
(3.36)

and the ansatz
u(x, t) = ±xα−1

√
ϕ1(t)xα+ϕ2(t)

. (3.37)

Substituting (3.36) into (3.37) yields the reduced system

ϕ′1 +
α(α+1)

2 ϕ2
1 + 2A1(ϕ1, ϕ2) = 0,

ϕ′2 + α(α + 1)ϕ1ϕ2 + 2A2(ϕ1, ϕ2) = 0.

Analysis similar to that in the first two cases gives the following results:

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6962–6984.



6972

(iii) When H(x) = xα, α , −2 and uxx = 3u2
x

u + 1−3α
x ux +

(α−2)α
x2 u, the equation

ut =

(
xα

u

)
xx

+

2∑
i=1

x4−i(α+2)u3Ai

(
2xα−2(αu − xux)

(α + 2)u3 ,
x2α((2 − α)u + 2xux

)
(α + 2)u3

)
is reduced by the ansatz

u(x, t) = ±xα√
ϕ1(t)xα+2+ϕ2(t)

,

to the system
ϕ′1 +

α(α+1)
2 ϕ2

1 + 2A1(ϕ1, ϕ2) = 0,

ϕ′2 + (α + 1)(α + 2)ϕ1ϕ2 + 2A2(ϕ1, ϕ2) = 0.

(iv) When H(x) = x−2 and uxx = 3u2
x

u + 7
xux + 8

x2 u, the equation

ut =

(
1

x2u

)
xx

+

2∑
i=1

x4 ln(x)2−iu3Ai

(
−2

xux + 2u
x4u3 ,

2x ln xux + (4 ln x + 1)u
x4u3

)
is reduced by the ansatz

u(x, t) = ±1
x2
√
ϕ1(t) ln(x)+ϕ2(t)

,

to the system
ϕ′1 − ϕ

2
1 + 2A1(ϕ1, ϕ2) = 0,

ϕ′2 −
1
2ϕ

2
1 − ϕ1ϕ2 + 2A2(ϕ1, ϕ2) = 0.

(v) When H(x) = x−2 and uxx = 3u2
x

u + 10
x ux + 15

x2 u, the equation

ut =

(
1

x2u

)
xx

+

2∑
i=1

x7−iu3Ai

(
−

5u + 2xux

x6u3 , 2
3u + xux

x5u3

)
is reduced by the ansatz

u(x, t) = ±1

x2
√
ϕ1(t)x2+ϕ2(t)x

,

to the system
ϕ′1 −

1
2ϕ

2
1 + 2A1(ϕ1, ϕ2) = 0,

ϕ′2 + 2A2(ϕ1, ϕ2) = 0.

We calculated all η(x, u, ux) for which the method can be applied. In general, η(x, u, ux) is a nonlinear
function on its arguments. Note that the nonlinear terms are essential in realistic models [33]. In special
cases we can obtain from η(x, u, ux) the terms describing external forces, absorbent rate, sources or
sinks and convection (advection) processes. We show that the well known nonlinearity λ u ln u [34]
can be obtained in the framework of the approach by using the stationary solution of equation

ut = ( ux
u )x. (3.38)

Mathematical Biosciences and Engineering Volume 19, Issue 7, 6962–6984.



6973

Indeed, it is obvious that the vector field Q =
(ux

u

)
x∂u is the generalized symmetry of ordinary

differential equation
(ux

u )x = 0. (3.39)

The solution of (3.39) satisfies condition ut = 0 and is the stationary solution of (3.38) The contact
symmetry of (3.39) is given by vector field Q1 = η1∂u = (x u F1(ω1, ω2) + u F2(ω1, ω2))∂u, where F1,
F2 are arbitrary smooth functions on two variables ω1 = ux

u , ω2 = ln u − xux
u . Imposing conditions

∂η1
∂x = 0 and ∂η1

∂ux
= 0 yields F1 = λω1, F2 = λω2, where λ is an arbitrary real constant. Then we have

the diffusion equation
ut = ( ux

u )x + λu ln u. (3.40)

This equation possessing point nonclassical symmetry has been obtained in [34]. If F1 = λω1,
F2 = λω2 + h(ω1), where h is a smooth function then we obtain the generalization of (3.40)

ut = ( ux
u )x + λu ln u + uh( ux

u ). (3.41)

The ansatz
u = eϕ1(t)xϕ2(t)

generated by the stationary solution of (3.38) reduces Eq (3.41) to system of two ODEs

ϕ′1(t) = λϕ1(t), ϕ′2(t) = λϕ2(t) lnϕ2(t) + ϕ2(t)h(ϕ1(t))

Applying the method to the two-component diffusive system we have

ut = ( ux
u )x + u(λ1 ln u + λ2 ln v) vt = ( vx

v )x + v(λ3 ln v + λ4 ln u) (3.42)

Next consider the equation
ut = ( 1

u )xx (3.43)

when H(x) = 1. It is obvious that the vector field Q =
(1

u

)
xx∂u is the generalized symmetry of ordinary

differential equation
(1

u )xx = 0.

This equation is also invariant with respect to the Lie group of point symmetry given by vector field
Q2 = (ku2 + k1u + ux(k2 + k3

u ))∂u, where k, k1, k2, k3 are real constants. From the stationary solution of
(3.43) we obtain the ansatz

u = 1
ϕ1(t)x−ϕ2(t) , (3.44)

which reduces nonlinear diffusion equation

ut = ( 1
u )xx + ku2 + k1u + ux(k2 + k3

u ) (3.45)

to the system of ordinary differential equations

−ϕ′1(t) = k1ϕ1 − k3ϕ
2
1, −ϕ′2(t) = k + k1ϕ2 − k2ϕ1 − k3ϕ1ϕ2.

In the framework of this approach one can obtain the two-component diffusive system

ut = (1
u )xx + ku2 + k1u + ux(k2 + k3

u ) + k4
u2

v , vt = ( 1
v )xx + k5v2 + k6v + vx(k7 + k8

v ) + k9
v2

u ,
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where k4, k5, k6, k7, k8, k9 are real constants. Note that the method based on stationary solutions, in
general, is not applicable to the non-evolutionary equations. Although the approach described here is
purely mathematical, however, it is sufficiently general to be applied to differential equations used in
various fields of science including biological. For example, the diffusion coefficients which are used
in [35] and are proportional to Cβzm, where the values of β, m may be positive, negative or zero, z
is the scaled height and C is the scaled concentration of the diffusing material, closely correlate with
results described in (ii), (iii), (iv) and (v). There is a plausible physical justification for an inverse
relation between the diffusion coefficient and the concentration C [35]. The relevant nonlinear differ-
ential equation is demonstrated as a model of turbulent dispersion in the atmosphere in [35], thermal
wave propagation in plasma physics and fluid flow in porous media [36]. The approach can be also
applied to the systems of Lotka–Volterra type which are used in mathematical biology [27] and equa-
tions describing fast diffusion processes. Here we use the method which rather belong to nonclassical
symmetry approach since it provides solutions that cannot be obtained by using the classical Lie group
method. In general Ai may depend on parametric variable t and the corresponding diffusion equation
may be used for simulation of nonstationary media. It is obvious that the method is applicable to the
ODE ( H

u )xx + η(x, u, ux) = 0. The corresponding ansatz reduces an ODE to a system of algebraic (not
differential) equations in this case. For example ansatz (3.32) reduces the ODE(

eβx

u

)
xx

+

2∑
i=1

e−iβxu3Ai

(
2

eβx

u3

(
u −

ux

β

)
,

e2βx

u3

(
2

ux

β
− u

))
= 0 (3.46)

to the system of two algebraic equations
β2

2 ϕ
2
1 + 2A1(ϕ1, ϕ2) = 0, β2ϕ1ϕ2 + 2A2(ϕ1, ϕ2) = 0. (3.47)

One can easily choose such A1, A2 that the system (3.47) will not have solutions. In general, the
method ensures the reduction of ODEs to a system of algebraic equations but does not guarantee the
existence of even one solution of reduced system and consequently solution of overdetermined system
given by the ODE under study and the ODE possessing the corresponding generalized symmetry. It
means that the ordinary differential equation is reduced to the system of algebraic equations but the
appropriate overdetermined system of ordinary differential equations is not compatible.

3.3. How to construct solutions using a 2nd order ODE

In this subsection we show the application of the method for finding solutions and obtain the so-
lutions which cannot be constructed by the classical Lie method for the modified diffusion equations.
We modify our original diffusion equation by some selected characteristics of point symmetries repre-
senting some physical properties of nonlinearity on heterogeneity. Let’s start with the equation

uxx = 3u2
x

u − 3βux + β2u, β , 0. (3.48)

The ansatz is
u(x, t) = eβx

√
ϕ1(t)eβx+ϕ2(t)

. (3.49)

We will consider equation

ut =
(eβx

u

)
xx

+ a1u + a2ux + a3u3e−βx + a4u3e−2βx + a5(βue−βx − e−βxux), a1, a2, . . . , a5 = const (3.50)
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which is obtained from (3.33) by letting

A1 = −a1I1 − a2
β

2
I1 + a3,

A2 = −a1I2 + a2βI2 + a4 + a5
β

2
I1,

where I1 = 2 eβx

u3

(
u − ux

β

)
, I2 = e2βx

u3

(
2ux
β
− u

)
. By choosing only those five of all eight characteristics

of the symmetry operators it is easy to solve the reduced equations. Note, that the Eq (3.48) can be
linearized using a point change of variables, but we don’t do such thing, because it would change also
the term

(
eβx

u

)
xx

. The property of reduction for Eq (3.50) is not limited to linear ODEs, it is also valid for
nonlinear ODEs. For example, Korteweg–de Vries equation admits reduction with an ansatz obtained
from a solution to an ODE which is an arbitrary linear combination of higher-order symmetries. One
can also use any linear combination of higher-order symmetries of KdV to produce the ansatz. After
substituting the ansatz (3.49) into (3.50) we obtain reduced equations:

2ϕ′1 + β2ϕ2
1 + 2(2a1 + βa2)ϕ1 + 4a3 = 0, (3.51)

2ϕ′2 + 2β2ϕ1ϕ2 + 4a1ϕ2 + 4βa2ϕ2 + 4a4 + 2βa5ϕ1 = 0. (3.52)

Now, the evolutionary equation (3.50) admits the following symmetry operators:

Y1 = ∂t,

Y2 = 1
β
∂x + u

2∂u, if a4 = a5 = 0,

Y2 = t∂t + 2
β
∂x + 3

2u∂u, if a1 = a2 = a3 = a5 = 0, a4 , 0,

Y2 = t∂t + 1
β
∂x + u∂u, if a1 = a2 = a3 = a4 = 0, a5 , 0,

Y3 = e(a2β+2a1)t∂t − a2e(a2β+2a1)t∂x + a1ue(a2β+2a1)t∂u, if a3 = a4 = a5 = 0, a2β + 2a1 , 0,

Y3 = t∂t − a2t∂x + (a1t + 1
2 )u∂u if a3 = a4 = a5 = 0, a2β + 2a1 = 0.

Depending on the choice of ai the reduced system is integrable and we can construct the solutions
to the modified evolutionary equation.

For a2 , 0, γ = ±
√

(a2β + 2a1)2 − 4β2a3, γ , 0, δ =
a1a5−a4β+a2a5β

a2
1+a1a2β−a3β2 , a2

1 + a1a2β−a3β
2 , 0 the reduced

system (3.51) and (3.52) has the following solution:

ϕ1(t) =
γ tanh

(γ
2 (t+s1)

)
−βa2−2a1

β2 ,

ϕ2(t) =
s2e−βa2t−(2a5+βa2δ) cosh(γ(t+s1))+δγ sinh(γ(t+s1))+ 4

βa2
(a1a5−βa4)+2a5

4β cosh2
(γ

2 (t+s1)
) .

Substituting ϕ1, ϕ2 into (3.49) gives the solution of (3.50) with the restrictions above.
The construction of solutions in the rest of the cases runs as before.
The imposition of condition a2 = 0 on (3.50) slightly simplifies the reduced system as well as its

solution, which then is:
ϕ1(t) =

γ

β2 tanh(γ2 (t + s1)) − 2a1
β2 ,
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ϕ2(t) =
s2+(a1a5−βa4)

(
γ(t+s1)+sinh(γ(t+s1))

)
βγ cosh2

(γ
2 (t+s1)

) −
a5
β
,

γ now representing ±2
√

a2
1 − β

2a3 , 0. Equating in (3.50) a nonzero term a3 to (a2
2 + a1

β
)2 leads to quite

a different solution:
ϕ1(t) = 2

β2(t+s1) −
a2β+2a1

β2 ,

ϕ2(t) =
s2e−βa2t+4(a5(a2β+a1)−βa4)(1−βa2(t+s1))

β4a3
2(t+s1)2 +

a5(a2β+2a1)−2βa4
β2a2

.

Similarly, putting in (3.50) a2 = 0 and a3 =
a2

1
β2 results in solutions:

ϕ1(t) = 2
β2(t+s1) −

2a1
β2 ,

ϕ2(t) = s2
(t+s1)2 +

2(a1a5−a4)
3β (t + s1) − a5

β
.

Lastly, for a1 = 0 and a2 + βa3 = 0 in (3.50):

ϕ1(t) = 2a2
1+e−a2β(t+s1) ,

ϕ2(t) = −
2(2a4+a2a5)ea2β(t+s1)+(a4+a2a5)e2a2β(t+s1)+2a2a4t+s2

a2(1+ea2β(t+s1))2 .

When ∃i∈{4,5} : ai , 0 and ∃ j∈{1,2,3,4,5}, j,i : a j , 0 the maximal Lie invariance algebra of the Eq
(3.50) is one-dimensional and is spanned by ∂t. The presented solutions are clearly not invariant under
translations of the variable t. When exactly one of the constants a4, a5 is nonzero and a1 = a2 = a3 = 0
or a3 is nonzero and both a4 and a5 are zeros, the maximal Lie invariance algebra of the Eq (3.50) is
two-dimensional, and invariance under one-parameter symmetry group with the generator α1Y1 +α2Y2

must be verified from the definition, that is solution u = u(x, t) is invariant when there exist real
numbers α1, α2, at least one nonzero, that (α1Y1 +α2Y2)(u− u(x, t))

∣∣∣
u=u(x,t)

= 0. Otherwise, the solution
is not invariant. Instead of checking the invariance by the definition, we will compare them with the
invariant solutions in the class (3.49). Functions ϕi for invariant solutions are as follows.

For a3 , 0, a4 = a5 = 0
ϕ1 = c1, ϕ2 = c2 exp(α2

α1
t),

for a4 , 0, a1 = a2 = a3 = a5 = 0

ϕ1 = c1
α1+α2t , ϕ2 = c2

α1+α2t ,

and for a5 , 0, a1 = a2 = a3 = a4 = 0

ϕ1 = c1
α1+α2t , ϕ2 = c2

where c1, c2, α1, α2 are all constants. By plain comparison, in those 3 cases, none of the five solutions
in general form obtained from the reduced equations is invariant under α1Y1 + α2Y2 (Y2 depending on
the choice of nonzero ai).

One does not always have to solve the reduced equations to determine if the solution is or isn’t
invariant. Let’s for example take equation

ut =
(eβx

u

)
xx

+ eβx(β2u − ux)(a6 + eβxu−2a7) + a8
( eβx

u

)
x, ai = const, i = 6, 7, 8 (3.53)
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which is obtained from (3.33) by letting

A1 = −a6
β

2
I2 − a7

β

2
I1I2 + a8

β

2
I2
1 ,

A2 = −a7
β

2
I2
2 + a8

β

2
I1I2.

It admits the same ansatz as in the previous example,

u(x, t) = eβx
√
ϕ1(t)eβx+ϕ2(t)

, (3.54)

and is reduced to a system

ϕ′1 − βa6ϕ2 − βa7ϕ1ϕ2 + β(a8 + 1
2β)ϕ2

1 = 0,

ϕ′2 − βa7ϕ
2
2 + β(a8 + β)ϕ1ϕ2 = 0.

The Eq (3.53) possesses three symmetry operators when a6 = a7 = 0 and only one symmetry
operator (∂t) when both a6 , 0 and a7 , 0. Let’s consider the case a6 = 0, a7 , 0 with two-
dimensional Lie algebra. Here Q1 = ∂t, Q2 = t∂t + 1

2u∂u is the basis of the algebra for Eq (3.53) (with
a6 = 0). Invariance criterion in terms of functions ϕi after splitting with respect to the powers of eβx is

(α1 + α2t)ϕ′1 + α2ϕ1 = 0,

(α1 + α2t)ϕ′2 + α2ϕ2 = 0.

Reduced equations do have an explicit solution but it is invariant, because ϕ1 = 0. They also have
an implicit solution. At this point all we need is to solve the reduced equations for the derivatives of ϕi

and substitute those into the system above. The result is another system,

ϕ1
(
β(α1 + α2t)(a7ϕ2 − a8ϕ1 −

1
2βϕ1) + α2

)
= 0,

ϕ2
(
β(α1 + α2t)(a7ϕ2 − a8ϕ1 − βϕ1) + α2

)
= 0.

The two equations are very similar. After dividing the ith equation by βϕ1ϕi and subtracting one
from another we have

1
2 (α1 + α2t) = 0,

meaning
α1 = α2 = 0,

so the Eq (3.54), where both ϕi are nonzero solutions of the reduced equations, wouldn’t be an invariant
solution.

Now we will find the solution to the system of the reduced equation. But firstly, we will show how
to find a symmetry of the reduced equations having the symmetry of the PDE. We consider a case,
when the symmetry operator Q of the PDE is admitted also by the ODE (3.48) (we treat the ODE as a
PDE that does not include the derivative ut) and condition

Q[1]I1 = F1(x, u, ux) = f1(I1, I2), Q[1]I2 = F2(x, u, ux) = f2(I1, I2) (3.55)
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holds, where Q[1] is the first prolongation of operator Q, f1(I1, I2), f2(I1, I2) are arbitrary smooth func-
tions,

I1 = ϕ1 = eβx{ 2
u2 −

2
β

ux
u3 }, I2 = ϕ2 = e2βx{ 2

β
ux
u3 −

1
u2 },

are the first integrals of Eq (3.48). For an independent variable we impose the condition

Qt = m(t), (3.56)

where m(t) is arbitrary smooth function. One can construct the symmetry operator for reduced system
in the form Q̃ = m(t)∂t + f1(ϕ1, ϕ2)∂ϕ1 + f2(ϕ1, ϕ2)∂ϕ2 if the conditions (3.55) and (3.56) are fulfilled.
Obviously, we obtain a nontrivial symmetry for a system of reduced equations, if f1, f2 and m are not
identically zeros. It’s pretty obvious that Q1 i Q2 satisfy all the conditions, namely for Q1 we have
f1 = 0, f2 = 0 and m = 1, and for Q2 we have f1 = −I1, f2 = −I2 and m = t. Thus we conclude that the
ODE system

ϕ′1 − βa7ϕ1ϕ2 + β(a8 + 1
2β)ϕ2

1 = 0,

ϕ′2 − βa7ϕ
2
2 + β(a8 + β)ϕ1ϕ2 = 0.

is invariant with respect to 2-parameter Lie group of point transformations whose Lie algebra is given
by basic elements

X1 = ∂t,

X2 = t∂t − ϕ1∂ϕ1 − ϕ2∂ϕ2 ,

which are obtained from Q1, Q2. It means that the system is solvable in quadratures. A point transfor-
mations

T =
ϕ1
ϕ2
,

W(T ) = t,

Z(T ) = lnϕ2

maps the symmetry operators X1, X2 into
Y1 = ∂W ,

Y2 = W∂W − ∂Z.

The transformed system can be simplified into

WT = 2
eZβ2T 2 ,

ZT = 2
βT 2 {−(a8 + β)T + a7}.

We can easily solve for Z,

Z(T ) = ln{c T
−2(a8+β)

β exp
(−2a7
βT

)
},

which in initial coordinates is an algebraic equation

ϕ2 = c (ϕ1
ϕ2

)
−2(a8+β)

β exp
(−2a7

β

ϕ2
ϕ1

)
, c = const. (3.57)
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Solution

W(T ) = 2 c
β2

∫
T

2a8
β exp(2a7

βT )dT + c0, c0, c = const, (3.58)

is trickier to utilize once going back to the original coordinates. If we were to use WT = 2
eZβ2T 2 , this

equation would imply a differential equation

(ϕ1
ϕ2

)′ =
β2

2
ϕ2

1
ϕ2

(3.59)

that can be alternatively written as
(ϕ2
ϕ1

)′ = −
β2

2 ϕ2. (3.60)

The only invariant solution of the form u(x, t) = ± eβx
√
ϕ1eβx+ϕ2

is the one where ϕi = ci
α1+α2t , ci, α j =

const, i, j = 1, 2. In that case ϕ1
ϕ2

= c1
c2

= const, and it is visible that such ϕi do not satisfy Eqs (3.57) to
(3.60).

If we take a8 = −β, then
Z = ln c − 2a7

βT

but most importantly the integral in (3.58) can be easily calculated,

W = − 1
βca7

e
2a7
βT + c0.

From this we obtain
−

2a7
βT = ln

( 1
βa7c (c0−W)

)
.

Taking the equations above into account, we see that

eZ = 1
βa7(c0−W) ,

T = 2a7
β ln(βa7c (c0−W)) .

Because W = t, ϕ2 = eZ, ϕ1 = Tϕ2, the solution of the reduced system in original coordinates is

ϕ2 = 1
βa7(c0−t) ,

ϕ1 = 2
β2(c0−t) ln(βa7c (c0−t)) .

The solutions we constructed have the property that corresponding solutions ϕ1, ϕ2 are not (identi-
cally) zero. At least we can say that there exist values of a8 such that the proposed method allows us
to construct non-invariant solutions, i.e., solutions that cannot be obtained by the classical Lie method.
In conclusion, we have found ϕi’s for which the solution u(x, t) = u(x, ϕ1(t), ϕ2(t)) is not invariant under
the point symmetries of the evolution equation. Consider the equation

ut =
( eβx

u

)
xx. (3.61)

A basis of its Lie algebra A3 of point symmetries consists of the vector fields

X1 = ∂t, X2 = 2t∂t + u∂u, X3 = 2∂x + βu∂u. (3.62)
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The solution to the reduced equations

ϕ′1 + 1
2β

2ϕ2
1 = 0, ϕ′2 + β2ϕ1ϕ2 = 0. (3.63)

is
ϕ1 = 2

β2t+c1
, ϕ2 = c2

(β2t+c1)2 , c1, c2 = const. (3.64)

We call ansatz (3.54) together with solutions (3.64) a particular solution of (3.61).

Theorem 1. Any particular solution of (3.61) given by (3.54) and (3.64) is invariant with respect to a
one-parameter Lie invariance group of (3.61) .

Proof of Theorem 1. Note that in the general case, the derivatives ∂u
∂ϕ1

and ∂u
∂ϕ2

are linearly independent.
Otherwise, for some β1, β2, equation β1

∂u
∂ϕ1

+ β2
∂u
∂ϕ2

= 0 would be true, and therefore u would be
dependent on only one constant,

u = f (x, t, β2ϕ1 − β1ϕ2),

which is impossible, because it is the general solution of second-order ODE (3.48) Moreover the deriva-
tives ∂u

∂c1
and ∂u

∂c2
are linearly independent since the pair (ϕ1, ϕ2) is the general solution of (3.63) and has

the form (3.64).
The action of the operator X = ξ j(x, u) ∂

∂x j
+ η(x, u)∂u, is the following

X
(
h(x) − u)

)∣∣∣
u=h(x)

=
(
ξ j(x, u)∂h(x)

∂x j
− η(x, u)

)∣∣∣∣
u=h(x)

where x = (x1, . . . , xn) for some integer n, h(x) is a differentiable function. Then we show that

Q
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

∈ W2 (3.65)

where W2 = span{ ∂u
∂c1
, ∂u
∂c2
} and Q ∈ A3. To prove this, it is enough to show this property for each of the

basis elements X1, X2, X3.
By direct computation we show that for X1 = ∂t

X1
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= β2 ∂u
∂c1
,

for X2 = 2t∂t + u∂u

X2
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= −2c1
∂u
∂c1
− 2c2

∂u
∂c2

and for X3 = 2∂x + βu∂u

X3
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= −2βc2
∂u
∂c2
,

where f (x, t) is the solution of (3.61) given by (3.54) and (3.64).
From the fact that any three vectors in two-dimensional vector space are linearly dependent, it

follows that for any special solution (3.54) and (3.64) there can be selected α1, α2, α3 such that
X
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= 0, where X = α1X1 + α2X2 + α3X3 and not all αi are equal to zero.

We conclude that every solution given by (3.54) and (3.64) can be found using a classical method
of invariant solutions with respect to a one-parameter Lie group α1X1 + α2X2 + α3X3.
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This theorem is only sufficient but not necessary condition for a solution to be invariant in a classical
sense. In fact, let us consider the two-dimensional abelian subalgebra of Lie algebra A3, with basis
elements Q1, Q2, where

Q1 = 2c1X1 + β2X2 = 2(β2t + c1)∂t + β2u∂u,

Q2 = X3 = 2∂x + βu∂u

(these operators clearly commute, [Q1,Q2] = 0). Because

Q1
(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= −2c2β
2 ∂u
∂c2

and
Q2

(
f (x, t) − u)

)∣∣∣
u= f (x,t)

= −2βc2
∂u
∂c2
,

the solution u = f (x, t) is invariant with respect to a linear combination Q1−βQ2. On the other hand, it
is obvious that this solution cannot be obtained with a classical method using just any two-dimensional
subalgebra, because not every two-dimensional algebra has the aforementioned properties, for example
{X1, X3}. No nonzero linear combination of X1 and X3 leaves the solution invariant.

4. Discussion

We have constructed solutions of nonlinear evolution equations which can be used for describing
the diffusion processes in heterogeneous medium by using the method based on the generalized sym-
metry of ODEs [17]. We show that the method gives us the possibility to obtain solutions which are
not invariant ones in the classical Lie sense. We use the generalized symmetry of the second-order
ODEs. The corresponding ansatzes reduce nonlinear diffusion equations to systems of two ODEs. One
can obtain the solutions which can not be constructed by the classical Lie method in the cases when
the dimension of the invariance Lie algebra is equal to 1 or 2. When the Lie algebra of the Lie invari-
ance group of studied diffusion equation is three-dimensional then the solutions obtained by using our
method could also be obtained via the classical Lie symmetry method as follows from Theorem 1. We
have found wide classes of diffusion-type equations (and exact solutions) for which this method can
be used. It is also shown that the method is applicable to non-evolutionary PDEs and enables us to
construct solution depending on an arbitrary function for nonlinear hyperbolic (wave-type) equation.
In fact, we show that the approach extends the applicability of the symmetry method for constructing
exact solutions to PDEs. Exact solutions of differential equations are useful for understanding physical
phenomena described by these equations and testing approximate and numerical methods for solving
them.
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