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Abstract: We study symmetry reductions of nonlinear partial differential equations that can be used
for describing diffusion processes in heterogeneous medium. We find ansatzes reducing these equa-
tions to systems of ordinary differential equations. The ansatzes are constructed using generalized
symmetries of second-order ordinary differential equations. The method applied gives the possibility
to find exact solutions which cannot be obtained by virtue of the classical Lie method. Such solu-
tions are constructed for nonlinear diffusion equations that are invariant with respect to one-parameter
and two-parameter Lie groups of point transformations. We prove a theorem relating the property of
invariance of a found solution to the dimension of the Lie algebra admitted by the corresponding equa-
tion. We also show that the method is applicable to non-evolutionary partial differential equations and
ordinary differential equations.
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1. Introduction

It is of common knowledge, that the most effective method for constructing solutions of nonlinear
partial differential equations (PDEs) of mathematical physics is the symmetry reduction method. The
method can be both classical [1] and non-classical [2—7]. In these cases the construction of a proper
ansatz (by which we mean a general form of an invariant solution) boils down to solving a quasilin-
ear first-order differential equation, therefore an ansatz includes one arbitrary function and the initial
equation reduces to a single differential equation with fewer independent variables, especially an or-
dinary differential equation (ODE). Reductions of differential equations to algebraic equations were
considered in detail in [8] and [9].

Papers [10] and [11] presented a concept of conditional symmetry of evolution equations, which
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is a natural generalization of nonclassical symmetry. By using this method one can reduce nonlinear
evolution equations with two independent variables to a system of ODEs. In [11] Zhdanov proved the
theorem on the connection between the generalized conditional symmetry and reduction of evolution-
ary equations to a system of ODEs. It is worth pointing out that the number of differential equations in
this system is equal to the number of unknown functions. The approach is used to construct exact so-
lutions of nonlinear diffusion equations in [12]. The relationship between the generalized conditional
symmetry of evolution equations and compatibility for overdetermined system of differential equations
is studied in [13].

An approach on symmetry reduction of evolutionary equations is well developed. However, the
problem of reducing of non-evolutionary equations is significantly less studied. The relation between
the compatibility and reduction of partial differential equations in two independent and one dependent
variables has been studied in [14]. Svirshchevskii [15] put forward the inverse symmetry reduction
method for evolution equations of the form

u, = Klul,

where u = u(t, x) and K[u] .= K (t, X, U, %, e, %) One can use this approach if K[u]d, is the gen-

eralized infinitesimal symmetry of a linear homogeneous ODE. In [16] the generalization of Svirsh-
hchevskii’s method was proposed. It provides an explicit characterization of all nonlinear differential
operators that leave a given subspace of functions invariant. It turns out that the inverse symmetry
reduction method is also applicable to non-evolutionary differential equation [17-19]. We are looking
for the ansatz reducing PDEs by solving ODEs that do not necessarily have to be linear.

More specifically, let u, denote the set of all kth order partial derivatives of u = u(z, x) with respect
to (¢, x). Suppose that a generalized vector field

X = U(Z,X, u, u(l),...,u(k))au (11)
is a generalized symmetry of an ordinary differential equation
H(txuw %, 2%%) =0, (1.2)

where H is a smooth function of its arguments, and ¢ plays the role of a parameter [17]. Then an ansatz
reducing the equation

I](I, X, U, u(l),...,u(k)) =0 (1.3)
to a system of ODEs can be constructed via finding the general solution of the ODE (1.2) [17]. Inte-
grating the reduced system, one obtain exact solutions of PDEs (1.3). Exact solutions of differential
equations are useful for understanding physical phenomena described by these equations and testing
approximate and numerical methods for solving them. The method can be applied to non-evolutionary
equations and even to ODEs. Moreover, in the framework of our approach one can construct an ansatz
that reduces non-evolutionary PDEs to a system of ODEs and also the number of equations is smaller
than the number of unknown functions. This enabled us to find solutions depending on arbitrary
functions, which will be shown in Section 3.1. It is worth pointing out that the suggested method is
applicable in multi-dimensional case as well [17,20,21]. We see that the ODE (1.2) includes the para-
metric variable ¢, apart from dependent and independent variables u and x. This allowed us to construct
integrable PDEs. For example the equation

Uy —alt,x)u =0 (1.4)
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admits the symmetry operator X = 70, = (#; — . + 322%)d, provided that a(t, x) satisfies the KdV
equation
a, = A, — 0aa, (1.5

as was shown in [17]. Then it is clear that the method is related to the inverse scattering transformation
method. We emphasize that 7 depends on u, and the condition of invariance of Eq (1.4) with respect to
the group with generator X in classical sense leads to a determining equation which is the well-known
integrable KdV equation. This approach belongs to a class of nonclassical symmetry methods in a
sense that it produces results unobtainable within the classical methods. The idea is to use generalized
symmetries of ODEs for constructing solutions of evolutionary equations. In this paper we consider
a nonlinear evolutionary equation that describes transport phenomena in heterogeneous medium and
apply a reduction method based on the symmetries of second-order nonlinear ODEs.

Extended symmetry analysis of porous medium equations with absorption and convection terms,
including nonclassical symmetries, was carried out in papers [22-24]. Those equations included a
factor dependent on a spatial variable x. We also studied diffusion-type equations for which the right-
hand side involves a spatial variable and found solutions which are not invariant in classical sense by
using the suggested method. We present the results obtained for the model medium with exponential
and polynomial heterogeneity. Within the method applied, nonlinear transport equation is reduced to a
system of two ODEs. After integrating (solving) the system of ODEs, we obtain exact solution of the
initial equation. Right now main two differences from classical symmetry reduction should become
apparent. With classical symmetry reduction there is only one reduced equation, not a system, and the
solution from classical reduction will always be classically invariant. Since the method applied differs
from the classical Lie method, it is not suitable for constructing algorithms for the generation of new
solutions, or production of conservation laws. Its only advantage is the preservation of the reduction
property. In addition, it doesn’t ensure that none of the obtained solutions could also be found within
the classical method. Therefore there is a very important question of distinguishing truly new solutions
obtained within the method proposed. Many new local and nonlocal symmetries have been found
for nonlocally related PDE systems [25]. Nonlocal symmetries alongside Béicklund transformations
helped finding solutions for the (2+1)-dimensional KdV-mKdV equation [26].

Based on the fact that a set of point and generalized symmetry operators (of the ODE) form a Lie
algebra, we distinguish a class of diffusion equations whose solutions, obtained with the help of the
aforementioned approach, cannot be obtained through the classical Lie method. Furthermore, it can be
used to construct a large class of nonlinear evolution equation all of which are reduced to systems of
ODE:s by the same ansatz and possess solutions which are not invariant in the classical Lie sense. We
emphasize that evolutionary equations are widely used and referenced in mathematical biology (see
for instance [27] and references given there).

The organization of the article is as follows: We give the definition of generalized symmetry of an
ODE and outline and explanation of the method in Section 2. In Section 3.1 we discuss applying of
the method to PDEs. We find the classes of nonlinear evolutionary equations for which the method
can be applied in the Section 3.2. In Section 3.3 we show the application of the method for finding
solutions and obtain the solutions which cannot be constructed by the classical Lie method for the
modified diffusion equations. The Theorem on a sufficient condition for the solution to be invariant
one in classical sense is given too. In Section 4 we discuss the obtained results and provide some
conclusions.
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2. Materials and methods

Consider the differential equation (1.2). Let us denote by L the set of all differential consequences
of (1.2) with respect to # and x. Let

~ o~ u du &u & u
)7 - n(t’x9u759a, %a""ﬁ)'

We treat (1.2) as it was a PDE which does not include the partial derivatives with respect to z.

Definition 1. We say that a generalized vector field

X_ﬁ(t Y. U du du u Hku)a
- tdd) u

>3t 9x® B1dx’ " Ak

is a generalized infinitesimal symmetry of equation (1.2) if the condition

XPH (1, x,u, 8, ... 24)

2 0x T OxP

=0 2.1

L

holds, where
P
X0 = Y Do,
i=0

is the standard pth prolongation ( pth extension) of X and D, = a% + u % + ulta% + Ltz% +...1s the
operator of total derivative with respect to x, uy = u, u; = %, DY =1, D' = Dy(D)), i, JjeN.

For a more elaborate take on the basics of symmetry methods please refer to [28]. The invariance
property (2.1) ensures a reduction of the equation

it x,u, 2, 08 P Sy (2.2)

G0 o x> O

to a system of ordinary differential equations. Let

u=Fx,t,01(0),0200), ..., 0p(0)), (2.3)
where F is a smooth function of (x,7, ¢, ..., ¢,), be the general solution of Eq (1.2). Then the ansatz
(2.3), where ¢;(2), ..., ¢,(t) are unknown functions of the variable ¢, reduces partial differential equa-

tion (2.2) to the system of k; ordinary differential equations, where k; < p [17]. For evolutionary
equations k; = p, and for non-evolutionary equations, this number may be less than p. This property is
illustrated by Egs (3.9) and (3.13). The necessary computation was made in Maple™ with the addition
of a software Jets for differential calculus on jet spaces and diffieties, which was created by H. Baran
and M. Marvan and is distributed under the GNU General Public License. The tool and the user guide
can be found at https://jets.math.slu.cz/.

3. Results

3.1. On application of the generalized symmetry reduction method to differential equations with two
independent variables

In this subsection we show how to apply the method to PDE’s. At first we consider differential

equations obtained with the help of symmetry operators of Eq (1.4). One can find the solution a = 722
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of Eq (1.5) when % = 0 (the stationary Korteweg—de Vries equation). Then the equation

2
Uy — —u=0 (3.1

admits the three-dimensional Lie algebra with basic operators Q; = ©,0,, Q2 = (Upxx — 37)0,, O3 =

ud, in this case. Equation (3.1) is integrable by quadratures and thus we obtain the ansatz

U= o> + ‘OQT(I), (3.2)

where ¢ (t), ¢,(t) are unknown functions, which reduces nonlinear evolution equation

Uy — e + 3220 4y = 0, (3.3)
u

with A = const, to the system of two ODEs
01D = Ap1,  @y(t) = Ap, — 12¢.
The solution of this system has the form
o1 =Cie", ¢, =(C, - 12C1)e", C,, C, = const. (3.4)

Substituting (3.4) into (3.2) one can obtain the solution of (3.3). Note that for a = w,, where w is a
solution of the stationary Calogero—Bogoyavlenskii—Shiff equation

Woxxx — 2szxx - 4szwx =0,

Eq (1.4) is also integrable by quadratures [29]. The reduction method can also be applied for reducing
the Cauchy problem for Eq (3.3) with an initial condition u(0, x) = f(x) to the Cauchy problem for a
system of ODEs.

Our next goal is to show that the method is applicable to non-evolutionary type PDEs. For this
purpose we first consider the following differential equation:

X 5
u”_(6(t+ D + 16x2)u =0. 3.5)

It is invariant with respect to the two-parameter Lie group of point transformations with generators

2 1 _
YO = uau, Yl = ($ux + E-x 3/2u) 614 = nlau.
From this it immediately follows that the Eq (3.5) is integrable by quadratures. To obtain non-
evolutionary equations we look for symmetry operators of the form Y = n(t, x, u, u,, u,, u;)o,. We
prove that the Eq (3.5) admits the generalized infinitesimal symmetries given by

32 31+ 1)

2

2 1 X
Yo = | —uy + —x>?

N R TP o

)au =m0, Y3= \/E( n - uz) ud, = 130,
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as well. We emphasize that the coefficient 77, depends explicitly on the (parametric) variable ¢ and the
derivative u,,. This enabled us to find non-evolutionary nonlinear differential equations that can be
reduced to a system of ODEs by appropriate ansatz. One can use linear combinations or commutators
of the operators Y, Y, and Y3. We consider the symmetry operator Y, — Y3. Then the corresponding
non-evolutionary differential equation takes the form

m = 1ns. (3.6)

By using symmetry properties we integrate Eq (3.5) and thus obtain the ansatz

u=x"" (o1 + pr(De ), 37
where w = x*2, k(t) = 33—\/%, and ¢;(¢) and ¢ (¢) are unknown functions, which reduces (3.6) to the
system of ODEs

’ @1 2 ’ Y2 2
- =-=-246(t+1 , - =24/6(t+1 . 3.8
e D) Vo + Dgipa, ¢ G+ D) Vo(t + 113 (3.8)

The application of the same method to non-evolutionary nonlinear hyperbolic equation
Usyxy = Uy Fuy, —u), (3.9)
with F being an arbitrary function of u,, — u, yields the solution
U= —i(x,) + CeH et c = congt, (3.10)

parameterized by an arbitrary function ¢;(x;). This solution is obtained by using the generalized
infinitesimal symmetries Q; = u,,,,0, and Q> = u,, F(u,, — u)d, of the ODE u,,,, — u,, =0.
It is clear that an ODE generating an ansatz may be nonlinear. For example, the equation
Uz + 167, =0 (.11)

Ux

admits the generalized infinitesimal symmetries Q; = u;_"’z 0, and QO = F(u + Inu,,)0,, where F is an

arbitrary function of u + Inu,,. Thus, it admits the generalized infinitesimal symmetry Q = Q; — O, as
well. The general solution of (3.11) gives the ansatz

u = 1n(x; + @1(x2)) + Do(x2), (3.12)
where @;(x;) and ®,(x,) are arbitrary smooth functions, which reduces the nonlinear PDE
Uy x, = uil F(u+Inu,,) (3.13)

to the single ODE
D = —F(Dy).

From this we obtain the family of solutions of (3.13)
u= 11'1 (x1 - fF((Dz(Xz))d)Q) + (I)z()CQ), (314)
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which is parameterized by the arbitrary smooth function ®,(x;). Therefore, the method allows us to
construct solutions, which contain arbitrary functions. We recall that second order in time nonlinear
partial differential equations, which have only one higher symmetry and have a solution depending on
one arbitrary function were called partially integrable equations in [30].

Note that setting F(u + Inu,,) = e 2" in (3.13), we obtain the equation u,,,, = e 2* which is
transformed to the classical Liouville equation v,, = ¢” by means of the change of variables v = —2u,
x==-2x1,t = x5.

It is obvious that Eq (3.11) is invariant with respect to the Lie group of translations in ¢, which is
generated by the vector field Q; = u,0,. Therefore, the generalized vector field Q; + Q; — Q> is a
generalized infinitesimal symmetry of Eq (3.11). Then the ansatz

u = In(x; + @1(x2,1)) + @2(x2, 1) (3.15)

reduces the partial differential equation with three independent variables of evolution type

U+ =32 = F(u+Inu,,) (3.16)

X1

to the system of two partial differential equations with two independent variables

¢, =0, ¢, —¢), =Flp). (3.17)
At the same time we do not obtain such reduction for the non-evolutionary equation

Ux)xy

Uy + = = F(u+1Inu,,). (3.18)

Note that the generalized vector field Q3 = u,d, is not an infinitesimal symmetry of Eq (3.11).
In [16], it was shown that the reduction method can be applied to partial differential equations of the
form u,, = Q[u] or the more general form T[u] = Q[u], where T is a linear ordinary differential
operator in ¢. Each of ansatzes used in [16] in this case to reduce partial differential equations is a
solution of a linear ordinary differential equation whose coefficients do not depend on ¢ and, therefore,
the generalized vector fields u,,0, and T[u]0, are the generalized symmetries of this equation. These
facts substantiate the reduction of considered partial differential equations u,, = Q[u] and T[u] = Q[ul].

The above examples demonstrate rather strikingly that the method can be applied to non-
evolutionary type PDE. The main idea of applying the method to evolutionary equations can be il-
lustrated by the example of the Korteweg—de Vries equation. One can verify that the equation

2

U+ % =0 (3.19)

is invariant with respect to the generalized vector field X = (u,., + uu,)0,. Note that we can obtain any
desired coeflicients for the terms of Eq (1.5) by rescaling dependent variable and independent variables
t and x. We have proved that the Eq (3.19) is invariant with respect to a two-parameter group of contact
transformations. A basis of the corresponding Lie algebra consists of the generalized vector fields

01 = u,hy (it + 1)d,, (3.20)

" ds
0, (3.21)

0, = u (Gl +v’) | ———————
0o (2+5-3%)2
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where h; and h;, are arbitrary smooth functions. The advantage of using the approach lies in the fact that
a linear combination a; X + @, Q; + a3, with arbitrary real constants @, a, and a3 is also a symmetry
operator of (3.19) and, therefore, the method can be applied to the nonlinear differential equation

d
Uy = Uper + Ully + Uy (3 + 10) + u o (3 + ) f sl (3.22)
5 -5
Then the ansatz
f =X+ (1) (3.23)
0 e -%
generated by (3.19) reduces the PDE (3.22) to the system of two ODEs

1) = 2 Be1(1),  @3(1) = hi(3ei(1)). (3.24)

Equation (3.22) in the general form is invariant with respect to the two-dimensional Lie algebra
(0;,0;). Since the derivatives 0% and (% are linearly independent, one can easily see that among
solutions of (3.22) constructed with the ansatz (3.23), there are those that are invariant with respect to
no one-parameter Lie group with generator in {(d,, d,). Hence we conclude that the method enables us

to construct solutions to equations from class (3.22) that are not invariant in the classical Lie sense.

3.2. The classes of evolutionary equations for which the method can be applied

Next we consider a nonlinear evolutionary equation which can be used for describing diffusion
processes in heterogeneous medium and for which the method can be applied. We are looking for the
second-order ODEs of the form

Uy = U(x,u,u,) (3.25)
(which belong to the class (1.2)) admitting a generalized symmetry with a generator of the form X =
(H;x) ),.,0u corresponding to the right hand side of our diffusion equation. Note that the Eq (3.25) is
invariant with respect to the translation group ¢ = ¢ + a, where a is a group parameter and therefore
it admits the symmetry operator X; = u,0,. From this it follows that the method is applicable to any
equation from the class kyu, + kz(H(")) = 0, where k, k, are arbitrary constants. We assume H and U
are some sufficiently smooth functions and H is nonzero. Function U should satisfy the determining
equation

X2y — Ux, u, 1)) , =0

as stated in Definition 1, for a given function H, with L being the set of all differential consequences
of Eq (3.25) with respect to the variable x. For the sake of being able to split the equation above
into an overdetermined system of differential equations, we restrict our search to a function U =
2ijez Ai H(ou' ul, thatisa power series in both # and u,. We focus not a complete classification but rather
particular H and U for which this method may produce nonclassical solutions. Due to a great number
of determining equations and cases to consider we will move past the explanation of calculations and
present some of the results in the following proposition.

Proposition 1. An equation u,, = U(x,u,u,) admits the LBS operator X = (H(x)) Oy if H(x) and U
have the form
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a) H(x) = & U = 3% — 38u, + B,

b) H(x) = (x +y)% U = 3% ¢ 33y, 4 @Dy,

x+y (x+y)?

2,13 -2
) H(x) = (x+ )%, U =3% + ey, + gw;;‘u,

d) Hx) = (x+9) 2 U =3+ Ly +

8
x+y (x+y)? u,

- 110 15
e) Hx)=(x+y)% U= 3”7 + oyl T ot

Terms «a, B, v are all constants.

It must be noted that because of the said restrictions this is not a complete classification. Solutions
of ODEs can be used as ansatzes which produce a reduction of the equation

= (22 (3.26)

u

to a system of two ODEs. Equation (3.26) can be written in the form

u; = (D(x, wu,), + P(x, wu, + O(x, u), (3.27)

where D(x,u) = —%, P(x,u) = —H;;‘), O(x,u) = # Assumption of constancy D is not always
justified — often the diffusion coeflicient depends on the concentration of the diffusant, concentration
gradient, spatial coordinate and time of the diffusion experiment (and sometimes - from all these pa-

rameters together). In [31] the reaction-diffusion equation of the typical form
u; = DAu + f(u) (3.28)

is considered. u = u(x,t) is a state variable and describes density/concentration of a substance, a
population at point x: x € Q C R" (Q is an open set). A denotes the Laplace operator. The second term,
f(u) is a smooth function, and describes processes with really “change” the present u, i.e., something
happens to it (birth, death, chemical reaction), not just diffuse in the space. It is also possible, that the
reaction term depends not only on u, but also on the first derivative of u, i.e., Vu and/or explicitly on x.
Instead of a scalar equation, one can also introduce systems of reaction diffusion equations, which are
of the form

u; = DAu + f(x,u, Vu), (3.29)

where u(x, t) € R” [31]. The system of equations

u = ((dy + diu+dipvu),, + (K, + ulky + kou + ksv), (330)
VvV, = ((dz + d211/t + dsz)V)xx + (I(,CV))C + u(k4 + k5u + k6V) '

is used in [32] to describe the densities of two biological species, considering nonlinear movements of
the individuals of populations. Here K(x) is environmental potential describing the heterogeneity of
environment. Equations (3.26) and (3.27) belong to the class of Eq (3.29) and the method is applicable
to any equation from this class or (3.30). Note that Eq (3.26) can be used for describing fast diffusion
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in heterogeneous medium if H(x) # const and homogeneous medium if H(x) = const. We use the fact
that the equation

Uy = (%)xx +n(x, u, uy)

also allows reduction with the same ansatz, for 17 such that 70, is the symmetry of the ODE. Note that
if we take H = —1 and n = 0O then we get the well-known equation describing nonlinear diffusion
processes, which possesses an infinite generalized symmetry. We consider separate cases from Propo-
sition 1 depending on the type of heterogeneity of the medium H(x) and the ODE (which is not unique
for the choice of H), calculate the full contact symmetry of the ODE and obtain the reduced equations.
From now on A; are arbitrary smooth functions on their two arguments. We put y = 0 in these cases.

(i) When H(x) = e#* and
2
Uy = 3% = 3Bu, + fu (3.31)

the most general formula for n(x,u, u,) is n = Y=, e P u’A; (2%@ - %), e;ix (2% - u)) From

what already has been shown it follows that the ansatz

_ +ef*

which is general solution of (3.31), reduces the equation

efx - ebx u. er, u
— |- —iBx_3 ) e _oxy 2 x
= (), + Do (25 (u- ). Selely - ) 53
to the system of ODEs
2
¢+ 50t +24,(p1,¢2) = 0, (3.34)
@ + Brp102 + 2A5(¢1, ¢2) = 0. (3.35)

2
(i) When H(x) = x*, @ # 0, and u,, = 3= + 3‘3"ux + ("_2;2‘1_1) u we obtain, in a similar way, the

equation
X 2 ) 2xa—2 x2(y—2
u, = (_) + Z x2_’“u3A,-( —((@ = Du - xu,), —-(2 - a)u + 2xux)) (3.36)
u xx P au au
and the ansatz
u(x,t) = —=22 (3.37)

Verox+e )
Substituting (3.36) into (3.37) yields the reduced system

¢+ YD 124 (¢1,92) = 0,

@y + ala + Dg1gr + 2A5(¢1, ¢2) = 0.

Analysis similar to that in the first two cases gives the following results:
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2
(iii) When H(x) = x%, @ # -2 and u,, = 3% + 2%, + (“;#u, the equation

@ 2 a—=2 2a
_(x aits) 3, (2X (o = xuy) X2 — a)u + 2xu,)
=(=) +> A; ,
MI ( )xx i=1 * ! ( (a/ + 2)”3 ((l’ + 2)M3

is reduced by the ansatz

+ x(Y

Ver x40

u(x,t) =

to the system

¢+ 2D 1 24 (g1, 02) = 0,
@5 + (@ + D(a + 2)p192 + 2A2(¢p1, ¢2) = 0.

2
(iv) When H(x) = x? and u,, = 3% + Zu, + Su, the equation

1 2 4 i 3 Xty +2u 2xInxu, + dInx + Du
u, = (—)xx + Z X In(x)"'u’A; (—2 IR Pip

2
xu i=1

is reduced by the ansatz

+1

2 o1 I +e2(t)”

u(x,t) =

to the system
@) = 90% +2A1(p1,2) = 0,

@5 — 207 — 012 + 245(¢1,¢2) = 0.

2
(v) When H(x) = x 2 and u,, = 3% + 2, + Bu, the equation

2
1 . Su+2xu, 3u+ xu
T-i 3 x x
u,z(—z +Ex’uAl-— e ,2 =
xXuf, xbu xu

is reduced by the ansatz
u(x, 1) = =l

x2 \/(pl(t)x2+¢>2(t)x,
to the system
@) — %tpf +2A1(p1,2) = 0,
@5 +2A5(¢p1, ¢2) = 0.
We calculated all n(x, u, u,) for which the method can be applied. In general, n(x, u, u,) is a nonlinear
function on its arguments. Note that the nonlinear terms are essential in realistic models [33]. In special
cases we can obtain from n(x, u, u,) the terms describing external forces, absorbent rate, sources or

sinks and convection (advection) processes. We show that the well known nonlinearity A ulnu [34]
can be obtained in the framework of the approach by using the stationary solution of equation

U = () (3.38)
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Indeed, it is obvious that the vector field O = (=*).d, is the generalized symmetry of ordinary
differential equation
(=), =0. (3.39)

u

The solution of (3.39) satisfies condition u, = 0 and is the stationary solution of (3.38) The contact
symmetry of (3.39) is given by vector field Q; = 710, = (xu F(w;, w,) + u Fr(w1, w,))d,, where Fy,

F, are arbitrary smooth functions on two variables w; = =, w, = Inu — =*. Imposing conditions
om _

5. = 0and Z% = 0 yields F| = Aw;, F, = Aw,, where A is an arbitrary real constant. Then we have

the diffusion equation
u = () + Aulnu. (3.40)

This equation possessing point nonclassical symmetry has been obtained in [34]. If F| = Aw;,
F> = Adw, + h(wy), where h is a smooth function then we obtain the generalization of (3.40)

u = () + Aulnu + uh(). (3.41)

The ansatz
U= ew(l)x‘m(t)

generated by the stationary solution of (3.38) reduces Eq (3.41) to system of two ODEs
@1(0) = Ap1(D),  @3(1) = Apa (D) In o(1) + Pa(Dh(1 (1))
Applying the method to the two-component diffusive system we have
= () +u(iinu+ LInv) v= () +v(A3Iny + A4 Inw) (3.42)

Next consider the equation
Uy = (3)ax (3.43)

when H(x) = 1. It is obvious that the vector field Q = (5)”(1, is the generalized symmetry of ordinary
differential equation

(i)xx =0.
This equation is also invariant with respect to the Lie group of point symmetry given by vector field
0> = (ku? + kju + u(ky + %))8u, where k, k1, k>, k3 are real constants. From the stationary solution of

(3.43) we obtain the ansatz
U= ——— (3.44)

e1(Dx—@a (1)’
which reduces nonlinear diffusion equation

= (5o + ku? + ku + u (o +2) (3.45)
to the system of ordinary differential equations
—(1) = kipr —kagt,  —h(D) = k + ks — kot — kagr10n.
In the framework of this approach one can obtain the two-component diffusive system

2 k 2 2 ki 2
= (D + ki + kju+ uglho +2) + ki, v = (e +ksV + kev + vilky + ) + ko,
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where ky, ks, k¢, k7, ks, ko are real constants. Note that the method based on stationary solutions, in
general, is not applicable to the non-evolutionary equations. Although the approach described here is
purely mathematical, however, it is sufficiently general to be applied to differential equations used in
various fields of science including biological. For example, the diffusion coefficients which are used
in [35] and are proportional to C#z”, where the values of 8, m may be positive, negative or zero, z
is the scaled height and C is the scaled concentration of the diffusing material, closely correlate with
results described in (ii), (iii), (iv) and (v). There is a plausible physical justification for an inverse
relation between the diffusion coeflicient and the concentration C [35]. The relevant nonlinear differ-
ential equation is demonstrated as a model of turbulent dispersion in the atmosphere in [35], thermal
wave propagation in plasma physics and fluid flow in porous media [36]. The approach can be also
applied to the systems of Lotka—Volterra type which are used in mathematical biology [27] and equa-
tions describing fast diffusion processes. Here we use the method which rather belong to nonclassical
symmetry approach since it provides solutions that cannot be obtained by using the classical Lie group
method. In general A; may depend on parametric variable ¢ and the corresponding diffusion equation
may be used for simulation of nonstationary media. It is obvious that the method is applicable to the
ODE (%)x}C + n(x,u,u,) = 0. The corresponding ansatz reduces an ODE to a system of algebraic (not
differential) equations in this case. For example ansatz (3.32) reduces the ODE

283x

X 2 X
(e%) + Y el (2i(u -=2), eu—3(2% - u)) =0 (3.46)

to the system of two algebraic equations

2
ol +241(01,92) =0,  BAo1s + 245(p1, 2) = 0. (3.47)

One can easily choose such A;, A, that the system (3.47) will not have solutions. In general, the
method ensures the reduction of ODEs to a system of algebraic equations but does not guarantee the
existence of even one solution of reduced system and consequently solution of overdetermined system
given by the ODE under study and the ODE possessing the corresponding generalized symmetry. It
means that the ordinary differential equation is reduced to the system of algebraic equations but the
appropriate overdetermined system of ordinary differential equations is not compatible.

3.3. How to construct solutions using a 2"* order ODE

In this subsection we show the application of the method for finding solutions and obtain the so-
lutions which cannot be constructed by the classical Lie method for the modified diffusion equations.
We modify our original diffusion equation by some selected characteristics of point symmetries repre-
senting some physical properties of nonlinearity on heterogeneity. Let’s start with the equation

e = 3% = 3Bu, +fu, B0, (3.48)

The ansatz is

— M
u(x,t) = N (3.49)

We will consider equation

eﬁx
u, = (—) +au+ aru, + azile P + aule P + as(Bue P —ePu,), ay,a,...,as = const (3.50)
u ’xx
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which is obtained from (3.33) by letting

Al = —alll - azgll + as,

A, = —a1, + Clzﬁ[z + ay + Cl5§1],
where [} = 2%(14 - %), L, = e;ix (2% - u). By choosing only those five of all eight characteristics
of the symmetry operators it is easy to solve the reduced equations. Note, that the Eq (3.48) can be
linearized using a point change of variables, but we don’t do such thing, because it would change also
the term ( %) . The property of reduction for Eq (3.50) is not limited to linear ODE:s, it is also valid for
nonlinear ODEs. For example, Korteweg—de Vries equation admits reduction with an ansatz obtained
from a solution to an ODE which is an arbitrary linear combination of higher-order symmetries. One
can also use any linear combination of higher-order symmetries of KdV to produce the ansatz. After

substituting the ansatz (3.49) into (3.50) we obtain reduced equations:

20, + B2t + 2(2a; + Pay)p; + 4az = 0, (3.51)

205 + 2821y + daip, + 4Barp; + day + 2Basp; = 0. (3.52)

Now, the evolutionary equation (3.50) admits the following symmetry operators:
Yl = ata

Y, = é(?x + g@u, ifa4 =das5 = O,

Y, = t6t+§6x+ %uau, ifa=a=a3=a5=0, as # 0,
Y2:t8,+éax+u8u, ifay=a=a3=a,=0, as # 0,
Y = ety _ g el @PH2a0ig 4 que Py if as = ay = as = 0, a8+ 2a; %0,
Y3 = 10, — apt0, + (a1t + %)u@u ifas =a4 =as =0, a +2a, =0.

Depending on the choice of a; the reduced system is integrable and we can construct the solutions
to the modified evolutionary equation.

Foray # 0,y = +\(af + 2a,)* — 4B%a3,y # 0,6 = % a +ajaf — azB* # 0 the reduced
system (3.51) and (3.52) has the following solution: 1 ‘

Y
7y tanh (—(t+s1))—ﬁa2—2a1
‘)Dl(t) = 2 ﬂz B

526 PR —(2a5+Bar8) cosh(y(t+s1))+8y sinh(y(t+s, ))+,B472 (ajas—Bas)+2as

apeosh® (r+s1))

(1) =

Substituting ¢, ¢, into (3.49) gives the solution of (3.50) with the restrictions above.
The construction of solutions in the rest of the cases runs as before.
The imposition of condition a, = 0 on (3.50) slightly simplifies the reduced system as well as its

solution, which then is:

@1(1) = % tanh(X(r + 51) - 2,
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) = s +(@as—Bay) (y(r+s)+sinh(vt+s1)  as
¥2 ,BycoshZ (%(Hsl)) B’

y now representing +2 ./ a? — B*az # 0. Equating in (3.50) a nonzero term as to (5 + %)2 leads to quite

a different solution:

_ 2 ap+2a
gpl(t) - BZ(H_SI) - '32 s

_ s P24 A(as(axf+a)—Bar)(1—Bar(t+s1)) | as(axf+2a1)—=2Bas
a2(0) = Btas(t+s1)? * Brar :

Similarly, putting in (3.50) a; = 0 and a3 = ;—E results in solutions:

_ 2 _ 2a
‘Pl(t) = B(t+s1) R

2(ajas—ayq)

(102(t) = (t+s;|)2 + 38 (t + Sl) - %
Lastly, for a; = 0 and a, + Ba; = 0in (3.50):

_ 2ap
ng(t) = Tre-@Birs)

= 22ay +a2a5)e"25(’”1 ) +(ag+aras )Czazﬁ(tﬂl ) +2asaqt+so
(102( ) - ar(1+e02P+s1))2 .

When Jicus) : a; # 0 and Jjej12345),2 : a; # 0 the maximal Lie invariance algebra of the Eq
(3.50) is one-dimensional and is spanned by d,. The presented solutions are clearly not invariant under
translations of the variable . When exactly one of the constants ay, as is nonzero and a; = a; = a3 =0
or az is nonzero and both a4 and as are zeros, the maximal Lie invariance algebra of the Eq (3.50) is
two-dimensional, and invariance under one-parameter symmetry group with the generator oY, + a,Y>
must be verified from the definition, that is solution # = wu(x,t) is invariant when there exist real
numbers @, a», at least one nonzero, that (a;Y; + a2 Y2)(u — u(x, t))|u:u 5y = 0. Otherwise, the solution
is not invariant. Instead of checking the invariance by the definition, we will compare them with the
invariant solutions in the class (3.49). Functions ¢; for invariant solutions are as follows.

Fora; #0,as =as =0

$1=C, P2=0C CXP(Z—TI),
fora, #0,a, =a,=az3=as =0

— C1 — (]
‘701 (11+azt’ (’02 (Y]+(122"

andforas #0,a1 =ay =a3; =a;, =0

— C1 —
901 - (11+a/2t’ S02 - Cz

where ¢, ¢3, @1, @, are all constants. By plain comparison, in those 3 cases, none of the five solutions
in general form obtained from the reduced equations is invariant under a;Y; + @, Y, (¥> depending on
the choice of nonzero a;).

One does not always have to solve the reduced equations to determine if the solution is or isn’t
invariant. Let’s for example take equation

e \
Uy = (7) + e (Bu - u)(as + P uar) +as (<), a; = const, i =6,7,8 (3.53)
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which is obtained from (3.33) by letting

B B B
A1 = —616512 - a751112 + 085112,
Ay = —a7§I§ + agglllz.
It admits the same ansatz as in the previous example,
u(x,t) = —L (3.54)

Ver (e +ea(t)”

and is reduced to a system
¢\ — Baer — Parpips + Blas + 3Pt =0,

@ — Bargs + Blas + Bpips = 0.

The Eq (3.53) possesses three symmetry operators when as = a; = 0 and only one symmetry
operator (J;,) when both a¢ # 0 and a; # 0. Let’s consider the case as = 0, a; # 0 with two-
dimensional Lie algebra. Here Q, = 9,, O, = 10, + %uau is the basis of the algebra for Eq (3.53) (with
as = 0). Invariance criterion in terms of functions ¢; after splitting with respect to the powers of e’* is

(a1 + art)gp| + gy =0,

(a1 + axt)g) + argps = 0.

Reduced equations do have an explicit solution but it is invariant, because ¢; = 0. They also have
an implicit solution. At this point all we need is to solve the reduced equations for the derivatives of ¢;
and substitute those into the system above. The result is another system,

@1(Blar + art)(arpr — aspr — 3Bp1) + @) = 0,

©2(B(ay + azt)(azps — aser — Per1) + az) = 0.

The two equations are very similar. After dividing the ith equation by B¢ ¢; and subtracting one
from another we have
%(01 +ant) =0,

meaning
ay = = O,

so the Eq (3.54), where both ¢; are nonzero solutions of the reduced equations, wouldn’t be an invariant
solution.

Now we will find the solution to the system of the reduced equation. But firstly, we will show how
to find a symmetry of the reduced equations having the symmetry of the PDE. We consider a case,
when the symmetry operator Q of the PDE is admitted also by the ODE (3.48) (we treat the ODE as a
PDE that does not include the derivative u;) and condition

oM = Fi(x,u,uy) = fi(l, L), O = Fa(x,u,uy) = fo(Iy, I) (3.55)
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holds, where Q'!! is the first prolongation of operator Q, fi(I, ), f>(I;, I,) are arbitrary smooth func-
tions,
L = ¢ Zeﬁx{%—%%}, 122902262&{%%—;—2},

are the first integrals of Eq (3.48). For an independent variable we impose the condition
Ot = m(1), (3.56)

where m(t) is arbitrary smooth function. One can construct the symmetry operator for reduced system
in the form Q = m()0, + fi(¢1, ©2)0,, + fo(@1, ¢2)d,, if the conditions (3.55) and (3.56) are fulfilled.
Obviously, we obtain a nontrivial symmetry for a system of reduced equations, if fi, > and m are not
identically zeros. It’s pretty obvious that Q; 1 Q, satisfy all the conditions, namely for Q; we have
f1=0, f,=0and m = 1, and for Q, we have f; = -1}, f = —I, and m = ¢t. Thus we conclude that the
ODE system

@} — Bazpix + Blas + 3B)ei =0,
@) — Bazp; + Blas + B)e1er = 0.
is invariant with respect to 2-parameter Lie group of point transformations whose Lie algebra is given
by basic elements
Xl = ata
X2 = tal - ‘)Dlagm - "pzagaz’

which are obtained from Q;, Q. It means that the system is solvable in quadratures. A point transfor-
mations
T=%
[
W(T) =1,
Z(T) =Ing,

maps the symmetry operators X, X, into
Y, = dy,

Y2 = Waw—az.

The transformed system can be simplified into

WT =

2
eZﬁZ T2

Zr = Zl~(as + B)T + ar)

We can easily solve for Z,
—2(ag+p)
ZM)=InfeT F  exp(F)),

which in initial coordinates is an algebraic equation

—2(ag+B)

pr=c(2) 7 exp (%%), ¢ = const. (3.57)
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Solution )
a8
W(T) =25 f T F exp(F)dT +¢co,  co. ¢ = const, (3.58)
is trickier to utilize once going back to the original coordinates. If we were to use Wy = (3Z,B+7“2’ this
equation would imply a differential equation
ey - B8
(902) =75 (3.59)
that can be alternatively written as
2
(%)' = _%902, (3.60)
The only invariant solution of the form u(x, ) = i% is the one where ¢; = mi—azt Ci,@j =
p1P +py

const, i, j = 1,2. In that case i—; = E—; = const, and it is visible that such ¢; do not satisfy Eqgs (3.57) to
(3.60).
If we take ag = —f3, then

— _ 24
Z=Inc AT

but most importantly the integral in (3.58) can be easily calculated,

2ay

—__1 T
W = ﬂmeﬁ + Cop.

From this we obtain
_2a7 _

1
ar =0 (g
Taking the equations above into account, we see that

V4 1

¢ = Baz(co—W)’

N
T= BnBazc(co—-W))*

Because W = t, ¢, = €%, ¢; = T,, the solution of the reduced system in original coordinates is

_ 1
P2 = Baz(co—1)’

1= P
The solutions we constructed have the property that corresponding solutions ¢y, ¢, are not (identi-
cally) zero. At least we can say that there exist values of ag such that the proposed method allows us
to construct non-invariant solutions, i.e., solutions that cannot be obtained by the classical Lie method.
In conclusion, we have found ¢;’s for which the solution u(x, 1) = u(x, ¢,(t), ¢2(¢)) is not invariant under
the point symmetries of the evolution equation. Consider the equation

= (), (3.61)
A basis of its Lie algebra Az of point symmetries consists of the vector fields

Xi =0, Xo=210,+udy Xs=20,+pud,. (3.62)
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The solution to the reduced equations

+1%¢1 =0, ¢+ B pipr =0. (3.63)

is
) : 64
O1= Fier 2= Ghaay  C1» €2 = const. (3.64)

We call ansatz (3.54) together with solutions (3.64) a particular solution of (3.61).

Theorem 1. Any particular solution of (3.61) given by (3.54) and (3.64) is invariant with respect to a
one-parameter Lie invariance group of (3.61).

ou
dp
Otherwise, for some S, 5,, equation ,81 + ,82 = 0 would be true, and therefore u would be

dependent on only one constant,

Proof of Theorem 1. Note that in the general case, the derivatives ;— and (% are linearly independent.

u= f(x,1,B¢1 — B1¢2),

which is impossible because it is the general solution of second-order ODE (3.48) Moreover the deriva-
thCS = and are linearly independent since the pair (¢, ¢,) is the general solution of (3.63) and has
the form 3. 64)

The action of the operator X = &;(x, u)aixj + n(x, u)d,, is the following

X(h) = W)y = €505 0B — e, w)|

u=h(x)

where x = (xy, ..., x,) for some integer n, h(x) is a differentiable function. Then we show that

Q(f(x7 t) - l/t))

wmfien) € W, (3.65)
where W, = span{ ac“ s Fes 1 and Q € A;. To prove this, it is enough to show this property for each of the
basis elements X;, X», X3

By direct computation we show that for X; = 9,

Xl(f(x7 t) - M)) u=f(xf) = ﬁ2667”1’
for X, = 210, + uo,
Xo(f et = )], _ppy = 201505 = 20258
and for X3 = 20, + Bud,
X3(f(x,1) — u)) e = —2Bc, n o

where f(x, 1) is the solution of (3.61) given by (3.54) and (3.64).

From the fact that any three vectors in two-dimensional vector space are linearly dependent, it
follows that for any special solution (3.54) and (3.64) there can be selected @y, a;, a3 such that
X(f(x,1) —w) —_— 0, where X = a1 X + a2 X, + @3X; and not all o; are equal to zero.

We conclude that every solution given by (3.54) and (3.64) can be found using a classical method
of invariant solutions with respect to a one-parameter Lie group a1 X; + @, X5 + a3X;.
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This theorem is only sufficient but not necessary condition for a solution to be invariant in a classical
sense. In fact, let us consider the two-dimensional abelian subalgebra of Lie algebra As;, with basis
elements Q,, O», where

Q1 =2c1X; + Xy = 2B°t + ¢1)d; + B ud,,
Q2 =X; = 2(9x +,81/t(9u

(these operators clearly commute, [Q;, Q] = 0). Because

QD= =2
and
= ou
QZ(f(X, - I/t)) u=f(xp) _2BC2£,

the solution u = f(x, f) is invariant with respect to a linear combination Q; —8Q,. On the other hand, it
is obvious that this solution cannot be obtained with a classical method using just any two-dimensional
subalgebra, because not every two-dimensional algebra has the aforementioned properties, for example
{X1, X5}. No nonzero linear combination of X; and X5 leaves the solution invariant.

4. Discussion

We have constructed solutions of nonlinear evolution equations which can be used for describing
the diffusion processes in heterogeneous medium by using the method based on the generalized sym-
metry of ODEs [17]. We show that the method gives us the possibility to obtain solutions which are
not invariant ones in the classical Lie sense. We use the generalized symmetry of the second-order
ODEs. The corresponding ansatzes reduce nonlinear diffusion equations to systems of two ODEs. One
can obtain the solutions which can not be constructed by the classical Lie method in the cases when
the dimension of the invariance Lie algebra is equal to 1 or 2. When the Lie algebra of the Lie invari-
ance group of studied diffusion equation is three-dimensional then the solutions obtained by using our
method could also be obtained via the classical Lie symmetry method as follows from Theorem 1. We
have found wide classes of diffusion-type equations (and exact solutions) for which this method can
be used. It is also shown that the method is applicable to non-evolutionary PDEs and enables us to
construct solution depending on an arbitrary function for nonlinear hyperbolic (wave-type) equation.
In fact, we show that the approach extends the applicability of the symmetry method for constructing
exact solutions to PDEs. Exact solutions of differential equations are useful for understanding physical
phenomena described by these equations and testing approximate and numerical methods for solving
them.
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