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Abstract: In this paper, we investigate the global dynamics of a viral infection model with defectively
infected cells. The explicit expression of the basic reproduction number of virus is obtained by using
the next generation matrix approach, where each term has a clear biological interpretation. We show
that the basic reproduction number serves as a threshold parameter. The virus dies out if the basic
reproduction number is not greater than unity, otherwise the virus persists and the viral load eventually
approaches a positive number. The result is established by Lyapunov’s direct method. Our novel argu-
ments for the stability of the infection equilibrium not only simplify the analysis (compared with some
traditional ones in the literature) but also demonstrate some correlation between the two Lyapunov
functions for the infection-free and infection equilibria.
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1. Introduction

Infectious diseases caused by viral infections such as influenza, AIDs, heptitis B/C, and the current
COVID-19 pandemic have always been being a big threat to both public health and economy. Though
the underlying infection mechanisms in hosts are very complex, mathematical modeling has been an
effective tool to understand the infection and to provide guidelines on control. One of the simplest viral
infection models, 

dx
dt = λ − µx − βxv,
dy
dt = βxv − δy,
dv
dt = ky − cv

(1.1)

was proposed and investigated by Nowak et al. [1–3]. Here x(t), y(t), and v(t) are the densities of
uninfected target cells, infected target cells, and free viruses at time t, respectively. We refer the readers
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to the citations for the biological meanings of the positive parameters. Model (1.1) has been modified
by many researchers to better understand the interaction mechanism between viruses and host cells in
more detail and to evaluate the efficiency of associated therapies. For example, we refer to some on
latent infection [4], on eclipse stage [5], on immune response [6–8], on cellular reservoirs [9–11], on
treatment [9], on the effects of delay [10, 12], on co-infection [6, 13], on the effect of drug abuse on
HIV dynamics [14].

It was pointed out in [15,16] that, for some infectious diseases induced by viruses, the infected cells
could contain defective viruses, that is, these infected cells produce defective proviruses that will not
produce any offspring viruses. To model this phenomenon, Nowak and May [17] divided the infected
cells into three classes, longer lived latently infected cells (y1), actively infected cells (y2) that produce
large quantities of free viruses in a short time, and defectively infected cells (y3) that contain mutated
virus genomes and cannot produce new virions. They proposed the following viral infection model,

dx
dt = λ − µx − βxv,
dy1
dt = p1βxv − (δ1 + γ)y1,

dy2
dt = p2βxv + γy1 − δ2y2,

dy3
dt = p3βxv − δ3y3,

dv
dt = k1y1 + k2y2 − cv,

(1.2)

where the parameter pi (i = 1, 2, 3) denotes the probability that upon infection a cell will become an
infected cell of type yi,

∑3
i=1 pi = 1, δi (i = 1, 2, 3) is the death rate of the associated infected cells, γ

is the transfer rate of latently infected cells to actively infected ones, k1 and k2 are the numbers of free
viruses produced by a latently infected cell and an actively infected cell, respectively. Model (1.2) can
also be used to describe low steady state viral loads [18].

Model (1.2) includes some previously studied viral infection models. For example, Ko-
robeinikov [19] investigated the global stability of the case where p2 = p3 = k1 = 0, that is, after
being infected, susceptible cells must undergo a latent stage before producing viruses and there is no
defectively infected cells. The case where, after being infected, susceptible cells become either latent
or active, and only actively infected cells can produce viruses, that is, p3 = k1 = 0 and p1 = 1 − α,
p2 = α with α ∈ (0, 1), was studied in [20, 21]. When p3 = γ = 0 and p1 = 1 − α, p2 = α with
α ∈ (0, 1), the corresponding model is the same as that with treatment in [21], where y1 and y2 are the
populations of infected cells under different drug effects. However, to the best of our knowledge, the
dynamical behavior of model (1.2) with p1 p2 p3γ , 0 is not completely understood.

With respect to the analysis of viral dynamic models, the stability of equilibria plays a very im-
portant role in understanding the mechanism of virus infection and outcome of treatment. To name a
few, [19] dealt with some basic virus dynamics models, [9, 20] considered models with eclipse stages
of infected cells, [21, 22] investigated models with nonlinear incidences, [23, 24] modeled Zika virus,
and [25, 26] included the immune response. One of the most powerful approaches to determine the
global stability of equilibria of differential equations is Lyapunov’s direct method. The key to applying
this method is to construct an appropriate Lyapunov function. It requires both that the constructed
function be positively definite and that its derivative along solutions of the system be negative defi-
nite or negative semi-definite. These two requirements are interrelated. In practice, it is often difficult
to fulfill the second requirement or it is complicated to verify it for a positive definite function. By
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now, lots of techniques and methods have been developed for studying the stability of dynamic mod-
els in some applied disciplines. We refer to some for the basic framework [27]. In [28] we found a
new type of function to construct Lyapunov functions while in [29] we provided a new way to do so
with commonly used Volterra-type functions and quadratic functions. Moreover, to verify the negative
(semi-)definiteness of the derivative of a class of Lyapunov functions along solutions of the system,
a graph-theoretic approach and an algebraic approach were developed by Guo et al. [30] and Li et
al. [31], respectively. Recently, for stability of disease models with immigration of infected hosts,
McCluskey [32] gave a general result on finding algebraic conditions under which the Lyapunov func-
tion for a model without immigration of infected hosts extends to be a valid Lyapunov function for
the corresponding system with immigration of infected hosts. In spite of the rich literature, the global
stability of equilibria of many dynamical models still can not be proved theoretically.

The purpose of this paper is to provide a new approach to discuss the global stability of equilibria of
system (1.2). Our approach has three features. Firstly, there is a correlation between the two Lyapunov
functions used to prove global stability of the infection-free equilibrium and the infection equilibrium.
Secondly, the specific form of Lyupunov functions used is universal. Lastly, compared with existing
approaches, ours here to verify the negative definiteness or negative semi-definiteness of the derivatives
of the Lyapunov functions along solutions is relatively simple. We would mention that viral dynamical
models share many features with the classical compartmental models of infectious diseases (see, for
example, [33] on SIR and SIRS models with nonlinear incidences, [34] for stage-structured epidemic
models, [35, 36] for models with asymptomatic and symptomatic infectious individuals, and [37] for
some cholera models) and even models of vector-borne diseases (to name a few, see [38–40] for vector-
borne disease models with two transmission routes for the host population, [41] for a model on vector-
borne relapsing diseases, [42] for a vector-borne disease model with human and vectors immigration,
and references therein). We expect that the approach here can be applied to study the global stability
of equilibria of such models.

Note that y3 is decoupled from the other equations in model (1.2). As a result, we only need to focus
on 

dx
dt = λ − µx − βxv,
dy1
dt = p1βxv − c1y1,

dy2
dt = p2βxv + γy1 − c2y2,

dv
dt = k1y1 + k2y2 − cv,

(1.3)

where c1 = δ1 + γ, c2 = δ2, and 0 < p1 + p2 ≤ 1. It is easy to see that every solution of (1.3) with a
nonnegative initial condition exists globally and is also nonnegative. The rest of the paper is organized
as follows. In the next section, we derive the expression of the basic reproduction number of viruses
with the approach of the next generation matrix and determine the equilibria of (1.3). Section 3 is the
main part of this paper, which is devoted to establishing a threshold dynamics for (1.3). The paper ends
with a brief conclusion and discussion.

2. The basic reproduction number and equilibria

We first obtain the expression of the basic reproduction number (of viral particles) of model (1.3)
by employing the method of the next generation matrix developed by van den Driessche and Wat-
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mough [43]. For this purpose, we denote z = (y1, y2, v, x)T . Then model (1.3) can be rewritten as

dz
dt

= F (z) −V(z), (2.1)

where

F (z) =


p1βxv
p2βxv

0
0

 , V(z) =


c1y1

−γy1 + c2y2

−k1y1 − k2y2 + cv
−λ + µx + βxv

 .
Obviously, model (1.3) always has the infection-free equilibrium P0 = (x0, 0, 0, 0), where x0 = λ

µ
.

Accordingly, system (2.1) has an equilibrium P̄0(0, 0, 0, x0) corresponding to P0.
The Jacobian matrices of F (z) andV(z) at the infection-free equilibrium P̄0 are

DF (P̄0) =

(
F3×3 0

0 0

)
and DV(P̄0) =

 V3×3
0
0

0 0 βx0 µ

 ,
respectively, where

F3×3 =


0 0 p1βx0

0 0 p1βx0

0 0 0

 , V3×3 =


c1 0 0
−γ c2 0
−k1 −k2 c

 .
Then the basic reproduction number, R0, of model (1.3) is the spectral radius of the next generation
matrix FV−1, that is,

R0 =
βx0

c

[
k1 p1

c1
+

k2

c2

(
p2 +

p1γ

c 1

)]
. (2.2)

The three terms in R0 correspond to the three ways that viral particles are produced. In a wholly
population of uninfected target cells of size x0, suppose a viral particle is introduced. During its
lifespan, 1

c , it will infect βx0
c uninfected target cells. Among them p1

βx0
c will be latently infected and

p2
βx0
c will be actively infected. For the latently infected cells, during their lifespan 1

c1
, p1βx0k1

cc1
viral

particles will be produced and γp1βx0
cc1

actively infected cells will be produced. Then during the lifespan
1
c2

, the total p2βx0
c +

γp1βx0
cc1

actively infected cells will produce k2
c2

( p2βx0
c +

γp1βx0
cc1

) viral particles. Therefore,
a total of R0 viral particles will be produced. This biologically explains R0 as the average number of
secondary viral particles produced by introducing a typical viral particle into a population of uninfected
cells.

Next we find the equilibria of (1.3). An equilibrium satisfies

λ − µx − βxv = 0, (2.3a)
p1βxv − c1y1 = 0, (2.3b)

p2βxv + γy1 − c2y2 = 0, (2.3c)
k1y1 + k2y2 − cv = 0. (2.3d)

It follows from (2.3a) that

x =
λ

µ + βv
. (2.4)
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Substituting it into (2.3b) gives

y1 =
p1βλv

c1(µ + βv)
. (2.5)

Now substituting (2.4) and (2.5) into (2.3c), we get

y2 =
βλv

c2(µ + βv)

(
p2 +

γp1

c1

)
. (2.6)

Finally, substituting (2.4)–(2.6) into (2.3d) yields

v
{

βλ

µ + βv

[
k2 p2

c2
+

p1

c1

(
k1 +

k2γ

c2

)]
− c

}
= 0.

Thus, for (2.3), we have

v = 0 or v =
λ

c

[
k2 p2

c2
+

p1

c1

(
k1 +

k2γ

c2

)]
−
µ

β
=
µ

β
(R0 − 1) , v∗.

Obviously, v = 0 produces the infection-free equilibrium P0. For v∗ to give a biologically relevant
equilibrium, we require v∗ > 0 or equivalently R0 > 1. In summary we have obtained the following
result on equilibria of (1.3).

Theorem 1. Model (1.3) always has the infection-free equilibrium P0. Furthermore, when R0 > 1,
there is also a unique infection equilibrium P∗(x∗, y1

∗, y2
∗, v∗), where v∗ =

µ

β
(R0 − 1) and

x∗ =
λ

µ + βv∗
, y∗1 =

p1βλv∗

c1(µ + βv∗)
, y∗2 =

βλv∗

c2(µ + βv∗)

(
p2 +

γp1

c1

)
.

3. A threshold dynamics

In this section, by applying the approach of Lyapunov’s direct method, we establish a threshold
dynamics determined by R0 for (1.3).

We first show the boundedness of solutions of (1.3). Let q ∈ (0,min{ c1−γ

k1
, c2

k2
}). A straightforward

calculation yields

d(x + y1 + y2 + qv)
dt

= λ − µx − (c1 − γ − qk1)y1 − (c2 − qk2)y2

−qcv + (p1 + p2 − 1)βxv

≤ λ − ρ(x + y1 + y2 + qv),

where ρ = min{µ, c1 − γ − qk1, c2 − qk2, c}. It follows that

x(t) + y1(t) + y2(t) + qv(t) ≤
λ

ρ
+ e−ρt

[
x(0) + y1(0) + y2(0) + qv(0) −

λ

β

]
and hence

lim sup
t→∞

(x(t) + y1(t) + y2(t) + qv(t)) ≤
λ

ρ
.
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Moreover, similarly, it follows from dx
dt ≤ λ − µx that

x(t) ≤ x(0)e−µt +
λ

µ
(1 − e−µt) and lim sup

t→∞
x(t) ≤

λ

µ
.

The above discussion implies that solutions of (1.3) are bounded. Moreover, it is easy to see that the
set

Ω =

{
(x, y1, y2, v) ∈ R4

+ : x ≤
λ

µ
, x + y1 + y2 + qv ≤

λ

ρ

}
is positively invariant and attracting for system (1.3).

The following result on the existence of solutions to a set of inequalities will be used to construct
appropriate Lyapunov functions.

Lemma 2. For the parameters γ, c, β, and pi, ki, ci (i = 1, 2) of (1.3), if

0 < ρ ≤
cc2c1

β[p1k1c2 + k2(p1γ + p2c1)]
, (3.1)

then the following system of inequalities on m, n, and q,
mp1 + np2 − 1 ≤ 0,
nγ + qk1 − mc1 ≤ 0,
qk2 − nc2 ≤ 0,
βρ − qc ≤ 0,

(3.2)

must have positive solutions.

Proof. It follows from the first two inequalities of (3.2) that

nγ + qk1

c1
≤ m ≤

1 − np2

p1
. (3.3)

Hence it is necessary that
np2 < 1 (3.4)

and
n(p1γ + p2c1) + qp1k1 ≤ c1. (3.5)

This, combined with the last two inequalities of (3.2), gives the following system of inequalities on n
and q, 

n(p1γ + p2c1) + qp1k1 ≤ c1,

qk2 − nc2 ≤ 0,
βρ − qc ≤ 0.

(3.6)

It is easy to see that the system of linear equations on n and q, n(p1γ + p2c1) + qp1k1 = c1,

qk2 − nc2 = 0,
(3.7)
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has a unique solution

n =
k2c1

p1k1c2 + k2(p1γ + p2c1)
, n∗, q =

c2c1

p1k1c2 + k2(p1γ + p2c1)
, q∗. (3.8)

Note that q∗ < c1
p1k1

and the condition (3.1) is equivalent to βρ

c ≤ q∗. Then the solution set of (3.6) is
given by

D =

{
(n, q)

∣∣∣∣ βρc ≤ q ≤ q∗,
qk2

c2
≤ n ≤

c1 − qp1k1

p1γ + p2c1

}
,

where n1(q) =
qk2
c2

and n2(q) =
c1−qp1k1
p1γ+p2c1

are derived from system (3.7) corresponding to the first two
inequalities of (3.6) (see Fig. 1).

D

O

n

βρ
c

q∗ q

(q∗, n∗)

n = n1(q)

n = n2(q)

1

Figure 1. Solution set of inequalities (3.6).

Clearly, for (n, q) ∈ D, we have n < 1
p2

and nγ+qk1
c1

< 1−np2
p1

. Thus, for (n, q) ∈ D, we can choose m
according to (3.3). Then such (m, n, q) is a positive solution of (3.2). �

Notice that cc2c1
β[p1k1c2+k2(p1γ+p2c1)] = x0

R0
according to the expression of R0 defined by (2.2). Then the

condition (3.1) can be rewritten as 0 < ρ ≤ x0
R0

.
The next two results follow from the proof of Lemma 2 and will be useful in applying Lyapunov’s

direct method.

Corollary 3. Suppose ρ < x0
R0

, i.e., βρ

c < q∗. Then there are positive numbers m, n, and q satisfying the
following system of inequalities, 

mp1 + np2 − 1 ≤ 0,
nγ + qk1 − mc1 < 0,
qk2 − nc2 < 0,
βρ − qc < 0.

(3.9)

Corollary 4. Suppose ρ = x0
R0

, i.e., βρ

c = q∗. Then (3.2) only has the unique solution,

m =
1
p1

(
1 −

p2k2βρ

c2c

)
, n =

k2βρ

c2c
, q =

βρ

c
, (3.10)

in other words, only the equalities hold.
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Denote
Ω0 = {(x, y1, y2, v) ∈ Ω : y1 + y2 + v > 0}.

Let (x(t), y1(t), y2(t), v(t)) be a solution of (1.3) with (x0, y10, y20, v0) ∈ Ω. Then x(t) > 0 for t > 0. If
further (x0, y10, y20, v0) ∈ Ω0, then the solution is positive for t > 0. Thus Ω0 is a positively invariant set
of (1.3).

Now we are ready to prove the main result of this paper, a threshold dynamics of (1.3) determined
by the basic reproduction number R0.

Theorem 5. If R0 ≤ 1, then the infection-free equilibrium P0 of (1.3) is globally asymptotically stable
in Ω, while if R0 > 1, then the infection equilibrium P∗ is globally asymptotically stable in Ω0.

Proof. As mentioned earlier, the approach is Lyapunov’s direct method. To construct appropriate
Lyapunov functions, we need the Volterra-type function g : (0,∞) 3 u 7→ u − 1 − ln u. Note that
g is nonnegative and attains its global minimum 0 only at u = 1.

We first consider the infection-free equilibrium P0 with a Lyapunov function of the form,

L1 = x0g
(

x
x0

)
+ my1 + ny2 + qv,

where m, n, and q are positive numbers to be determined. Note that L1 can be regarded as well-defined
by the discussion just a few lines above. Clearly, L1 is positive definite about P0, that is, the function
L1 is zero only at P0 and positive at other points. The derivative of L1 along solutions of system (1.3)
is given by

L′1 =

(
1 −

x0

x

) dx
dt

+ m
dy1

dt
+ n

dy2

dt
+ q

dv
dt

= −
µ(x − x0)2

x
+ (nγ + qk1 − mc1)y1 (3.11)

+(qk2 − nc2)y2 + (βx0 − qc)v + (mp1 + np2 − 1)βxv.

For L′1 ≤ 0 on Ω, it is sufficient that 
mp1 + np2 − 1 ≤ 0,
nγ + qk1 − mc1 ≤ 0,
qk2 − nc2 ≤ 0,
βx0 − qc ≤ 0.

(3.12)

With the definition of q∗ in (3.8) and x0 = λ
µ
, we see that R0 can be expressed as R0 =

βx0
cq∗ . Then R0 ≤ 1

is equivalent to x0 ≤
cq∗

β
. Thus (3.12) is the same as (3.2) with ρ = x0. We distinguish two cases to

finish this part.
Case 1: R0 < 1. Then x0 <

cq∗

β
. By Corollary 3, we can choose positive m, n, and q satisfying (3.9)

with ρ = x0. As a result, L′1 is negative definite about P0, namely, the function L′1 is zero only at P0

and negative at other points. It follows from Lyapunov Theorem [44] that P0 is globally asymptotically
stable in Ω if R0 < 1.
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Case 2: R0 = 1. Then x0 =
cq∗

β
and Corollary 4 tells us that the positive numbers m, n, and q

determined by (3.10) with ρ = x0 are the unique solution of the inequalities (3.12). Consequently,
L′1 = −

µ(x−x0)2

x ≤ 0 and

M1 = {(x, y1, y2, v) ∈ Ω : L′1 = 0} = {(x, y1, y2, v) : x = x0}.

Let (x(t), y1(t), y2(t), v(t)) be a solution of (1.3) in M1. Then x(t) = x0. It follows that 0 =
dx(t)

dt =

λ − µx(t) − βx(t)v(t) = −βx0v(t), which gives v(t) ≡ 0. Thus 0 =
dv(t)

dt = k1y1(t) + k2y2(t) − cv(t) =

k1y1(t) + k2y2(t) produces y1(t) = y2(t) = 0 as y1(t) ≥ 0 and y2(t) ≥ 0. This shows that the largest
invariant set of (1.3) in M1 is the singleton {P0}. Therefore, by LaSalle Invariance Principle [27], P0 is
globally asymptotically stable in Ω if R0 = 1.

To sum up, P0 is globally asymptotically stable in Ω if R0 ≤ 1.
Next, we consider the stability of the infection equilibrium P∗ in Ω0 with the Lyapunov function

candidate,

L2 = x∗g
( x

x∗

)
+ my1

∗g
(

y1

y1
∗

)
+ ny2

∗g
(

y2

y2
∗

)
+ qv∗g

( v
v∗

)
, (3.13)

where m, n, and q are positive numbers to be determined. Again we can assume that L2 is well-defined
on Ω0. L2 is positive definite about P∗ and the derivative of L2 along solutions of system (1.3) is

L′2 =

(
1 −

x∗

x

)
dx
dt

+ m
(
1 −

y1
∗

y1

)
dy1

dt
+ n

(
1 −

y2
∗

y2

)
dy2

dt
+ q

(
1 −

v∗

v

)
dv
dt

=

(
1 −

x∗

x

)
(λ − µx − βxv) + m

(
1 −

y1
∗

y1

)
(p1βxv − c1y1)

+n
(
1 −

y2
∗

y2

)
(p2βxv + γy1 − c2y2) + q

(
1 −

v∗

v

)
(k1y1 + k2y2 − cv)

= C + F(x, y1, y2, v), (3.14)

where

C = λ + µx∗ + mc1y∗1 + nc2y∗2 + cqv∗,

F(x, y1, y2, v) = (mp1 + np2 − 1)βx∗v∗
xv

x∗v∗
+ (nγ + qk1 − mc1)y∗1

y1

y∗1

+(qk2 − nc2)y∗2
y2

y∗2
+ (βx∗ − cq)v∗

v
v∗
− λ

x∗

x
− µx∗

x
x∗

−mp1βx∗v∗
xvy∗1

x∗v∗y1
− np2βx∗v∗

xvy∗2
x∗v∗y2

−nγy∗1
y1y∗2
y∗1y2

− qk1y∗1
y1v∗

y∗1v
− qk2y∗2

y2v∗

y∗2v
.

Since L′2 = 0 for x
x∗ =

y1
y∗1

=
y2
y2

= v
v∗ = 1, we have C = −F(x∗, y∗1, y

∗
2, v
∗).
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We define a function F∗(x, y1, y2, v) related to F(x, y1, y2, v) by

F∗(x, y1, y2, v) = (mp1 + np2 − 1)βx∗v∗ ln
xv

x∗v∗
+ (nγ + qk1 − mc1)y∗1 ln

y1

y∗1

+(qk2 − nc2)y∗2 ln
y2

y∗2
+ (βx∗ − cq)v∗ ln

v
v∗
− λ ln

x∗

x
− µx∗ ln

x
x∗

−mp1βx∗v∗ ln
xvy∗1

x∗v∗y1
− np2βx∗v∗ ln

xvy∗2
x∗v∗y2

− nγy∗1 ln
y1y∗2
y∗1y2

−qk1y∗1 ln
y1v∗

y∗1v
− qk2y∗2 ln

y2v∗

y∗2v
.

A straightforward calculation shows

F∗(x, y1, y2, v) = (λ − µx∗ − βx∗v∗) ln
x
x∗

+ m(p1βx∗v∗ − c1y∗1) ln
y1

y∗1
+n(p2βx∗v∗ + γy∗1 − c2y∗2) ln

y2

y∗2
+ q(k1y∗1 + k2y∗2 − cv∗) ln

v
v∗
.

According to system (2.3) satisfied by the infection equilibrium P∗(x∗, y∗1, y
∗
2, v
∗), we have

F∗(x, y1, y2, v) = 0. Therefore,

L′2 =F(x, y1, y2, v) − F(x∗, y∗1, y
∗
2, v
∗) − F∗(x, y1, y2, v)

=(mp1 + np2 − 1)βx∗v∗g
( xv

x∗v∗

)
+ (nγ + qk1 − mc1)y∗1g

(
y1

y∗1

)
+ (qk2 − nc2)y∗2g

(
y2

y∗2

)
+ (βx∗ − cq)v∗g

( v
v∗

)
− λg

(
x∗

x

)
− µx∗g

( x
x∗

)
− mp1βx∗v∗g

(
xvy∗1

x∗v∗y1

)
− np2βx∗v∗g

(
xvy∗2

x∗v∗y2

)
− nγy∗1g

(
y1y∗2
y∗1y2

)
− qk1y∗1g

(
y1v∗

y∗1v

)
− qk2y∗2g

(
y2v∗

y∗2v

)
.

(3.15)

Recall that g(u) ≥ 0 for u > 0 and g(u) = 0 if and only if u = 1. To make L′2 ≤ 0, it suffices that the
positive numbers m, n, and q satisfy the following system of inequalities,

mp1 + np2 − 1 ≤ 0,
nγ + qk1 − mc1 ≤ 0,
qk2 − nc2 ≤ 0,
βx∗ − cq ≤ 0.

(3.16)

Again, (3.16) is the same as (3.2) with ρ = x∗. According to Corollary 4, the system of inequali-
ties (3.16) has a unique positive solution,

m =
1
p1

(
1 −

p2k2βx∗

c2c

)
, n =

k2βx∗

c2c
, q =

βx∗

c
,
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and in fact all the equalities of (3.16) hold. Then with these m, n, and q, L′2 becomes

L′2 = −λg
(

x∗

x

)
− µx∗g

( x
x∗

)
− mp1βx∗v∗g

(
xvy∗1

x∗v∗y1

)
−np2βx∗v∗g

(
xvy∗2

x∗v∗y2

)
− nγy∗1g

(
y1y∗2
y∗1y2

)
−qk1y∗1g

(
y1v∗

y∗1v

)
− qk2y∗2g

(
y2v∗

y∗2v

)
.

It follows that L′2 ≤ 0 and

M2 = {(x, y1, y2, v) ∈ Ω0 : L′2 = 0} =

{
(x, y1, y2, v) ∈ Ω0 : x = x∗,

y1

y∗1
=

y2

y∗2
=

v
v∗

}
.

Let (x(t), y1(t), y2(t), v(t)) be a solution of (1.3) in M2. Then x(t) = x∗ and y1(t)
y∗1

=
y2(t)
y∗2

= v
v∗ = θ(t) for a

positive function θ. It follows from 0 =
dx(t)

dt = λ − µx(t) − βx(t)v(t) = λ − µx∗ − βx∗v(t) = βx∗(1 − θ(t))
that θ(t) ≡ 1, which implies that the largest invariant set of system (1.3) in M2 is the singleton {P∗}.
Therefore, LaSalle Invariant Principle [27] tells us that P∗ is globally asymptotically stable in Ω0. �

4. Conclusion and discussion

In this paper, for a viral infection model with defectively infected cells, we obtained a threshold
dynamics, which is completely determined by the basic reproduction number of virus R0. That is, the
virus dies out when R0 ≤ 1 while the virus persists and the viral load approaches a positive number
when R0 > 1. In practice, for diseases described by this model, any measure makes R0 below unity
is quite effective. The explicit expression of R0 provides guidelines on how to increase or decrease
parameter values by appropriate control strategies. Even if we cannot make R0 ≤ 1, the global stability
of the infection equilibrium tells us that we can still change the values of parameters to make the viral
load below the tolerance level.

The obtained result is established by Lyapunov’s direct method. The Lyapunov function for the
infection-free equilibrium is a linear combination of the Volterra-type function (for the uninfected
target cells) and linear functions (for the other three variables) but the one for the infection equilibrium
is a linear combination of only Volterra-type functions. Surprisingly, the coefficients satisfy the same
set of inequalities to make the derivatives along solutions negative (semi-)definite. This shows that
there is a correlation between the two Lyapunov functions with given forms. It solves the problem of
constructing Lyapunov functions used to prove the global stability of infection equilibrium to certain
extent, since it is often difficult to find a suitable Lyapunov function for the positive equilibrium, but
easy for the boundary equilibrium.

Furthermore, for the given form of Lyapunov function, we used the method of undetermined coeffi-
cients to determine them. By this method, all the suitable coefficients of the given form can be found.
Therefore, it has the advantage of universality, which has been shown in [31, 45]. But, with respect
to proving the negative definiteness or negative semi-definiteness of the derivative of the Lyapunov
function along solutions of the model, the approach used here is different from those in [31, 45].
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According to the algebraic approach proposed in [31, 45], even if the coefficients of the Lyapunov
function (L2) are given, in order to show the negative or negative semi-negative definiteness of its
derivative (L′2), the derivative (L′2) must be expressed in the following form

b1

(
2 − x − 1

x

)
+ b2

(
3 − 1

x −
xv
y1
−

y1
v

)
+b3

(
3 − 1

x −
xv
y2
−

y2
v

)
+ b4

(
4 − 1

x −
xv
y1
−

y1
y2
−

y2
v

)
,

where the expressions of bi’s (i = 1, 2, 3, 4) also need to be determined. For low dimensional differ-
ential systems, the approach of rearranging the terms in the derivative is feasible, but it is not so easy
for systems with higher dimensions. Thus the approach of proving the global stability of the infection
equilibrium here is concise. It can also indicate that this approach is relatively simple for proving the
global stability of the endemic equilibria of high dimensional epidemic models in [37, 46].
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