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Abstract: Starting from December 2019, the COVID-19 pandemic has globally strained medical 

resources and caused significant mortality. It is commonly recognized that the severity of SARS-CoV-2 

disease depends on both the comorbidity and the state of the patient's immune system, which is reflected 

in several biomarkers. The development of early diagnosis and disease severity prediction methods 

can reduce the burden on the health care system and increase the effectiveness of treatment and 

rehabilitation of patients with severe cases. This study aims to develop and validate an ensemble 

machine-learning model based on clinical and immunological features for severity risk assessment and 

post-COVID rehabilitation duration for SARS-CoV-2 patients. The dataset consisting of 35 features 

and 122 instances was collected from Lviv regional rehabilitation center. The dataset contains age, 

gender, weight, height, BMI, CAT, 6-minute walking test, pulse, external respiration function, oxygen 

saturation, and 15 immunological markers used to predict the relationship between disease duration 

and biomarkers using the machine learning approach. The predictions are assessed through an area 

under the receiver-operating curve, classification accuracy, precision, recall, and F1 score performance 

metrics. A new hybrid ensemble feature selection model for a post-COVID prediction system is 

proposed as an automatic feature cut-off rank identifier. A three-layer high accuracy stacking ensemble 

classification model for intelligent analysis of short medical datasets is presented. Together with weak 

predictors, the associative rules allowed improving the classification quality. The proposed ensemble 

allows using a random forest model as an aggregator for weak repressors' results generalization. The 

performance of the three-layer stacking ensemble classification model (AUC 0.978; CA 0.920; F1 
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score 0.921; precision 0.924; recall 0.920) was higher than five machine learning models, viz. tree 

algorithm with forward pruning; Naïve Bayes classifier; support vector machine with RBF kernel; 

logistic regression, and a calibrated learner with sigmoid function and decision threshold optimization. 

Aging-related biomarkers, viz. CD3+, CD4+, CD8+, CD22+ were examined to predict post-COVID 

rehabilitation duration. The best accuracy was reached in the case of the support vector machine with 

the linear kernel (MAPE = 0.0787) and random forest classifier (RMSE = 1.822). The proposed three-

layer stacking ensemble classification model predicted SARS-CoV-2 disease severity based on the 

cytokines and physiological biomarkers. The results point out that changes in studied biomarkers 

associated with the severity of the disease can be used to monitor the severity and forecast the 

rehabilitation duration. 

Keywords: COVID-19; severity prediction; machine learning; ensemble classification; biomarkers 

 

1. Introduction 

The traditional healthcare business model is mainly based on the technological effects of blocking. 

At the same time, it has been confirmed that preventive measures are much more effective and 

economically feasible. Most EU countries are aging (around 17–20% according to Europa.eu), and 

by 2050 a third of the population is projected to reach 60 years of age and older [1]. A significant 

part of this population (14.1% based on Europa.eu) lives alone (Europa, 2016). But living alone means 

getting more professional help [2], which imposes enormous costs on the public health system. 

Until 2030, when mortality is declining, and the number of newborns is reaching an older 

population, this dependent population in Europe is expected to increase to around 70%. Although the 

percentage of healthy older people has increased, it is reported that more than 80% of older people 

have at least one chronic disease, and 50% have at least two [3]. 

Starting from December 2019, the COVID-19 pandemic has globally strained medical resources 

and caused significant mortality. As of 25 December 2021, more than 280,000,000 coronavirus cases 

have been reported worldwide, with more than 800,000 daily new cases, and over 5,400,000 patients 

have died with about 8,000 daily deaths [4]. About 80% of SARS-CoV-2 patients have mild illnesses 

whose symptoms usually disappear within two weeks [5]. However, 20% need hospitalization and 

increased medical support with a mortality rate of about 13.4% [5]. Therefore, there is a constant need 

for a SARS-CoV-2 severity risk assessment and prediction, preferably quantitatively, which is 

extremely important for patient management and medical resource allocation. 

Biomarkers of aging are used to predict possible changes in the body that lead to disability due to 

functional age-related changes. Biomarkers of aging are markers that can predict the functional 

capacity of an organism at a certain age better than chronological age. The immune system is a leading 

factor in the aging; its main impact is manifested through increased inflammation and reduced 

effectiveness of cellular immunity. Hence, the need to involve relevant markers to develop 

interventions to increase the duration of healthy longevity becomes clearer. Thus, control of chronic 

age-related diseases (diabetes and obesity) and biological markers can predict functional changes in 

the body. Besides, the analysis of other personal indicators will determine how to reduce the harmful 

effects of such changes by extending the period of active activity longevity. Sociological research also 

shows that people in certain regions remain active for a long time, and there are far fewer people who 
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are obese. Therefore, it is also advisable to analyze the environment and habitat parameters and their 

impact on the parameters of the organism. 

Diabetes increases the likelihood of severe COVID-19. New clinical data and experiments show 

that this can work in the opposite direction: scientists are recording new cases where COVID-19 has 

sharply provoked type 1 diabetes in humans. The World Health Organization views diabetes as a 

disease, on a par with respectable age, making someone more vulnerable to severe COVID-19 infection. 

Cellular immunity is an essential part of protection against viral diseases. Its effectiveness decreases 

with age due to a decrease in the pool of T-cell receptors. This process explains the significant increase 

in mortality of COVID-19 with age [6]. Therefore, another critical factor is the search for possible 

relationships between biomarkers of aging and COVID resistance. 

This paper aims to develop and validate a novel ensemble machine-learning model based on 

clinical and immunological features for severity risk assessment and post-COVID rehabilitation 

duration for SARS-CoV-2 patients. 

The main contribution of the paper is as follows: 

1) A new hybrid ensemble feature selection model for a COVID-19 severity prediction system 

is proposed as an automatic feature cut-off rank identifier. 

2) A high accuracy three-layer stacking ensemble classification model for intelligent analysis of 

short sets of medical data is proposed. Together with weak predictors, the associative rules were used 

to improve the classification quality. The proposed ensemble allows using a random forest model as 

an aggregator for weak repressors' results generalization. 

The remainder of the paper is organized as follows: Section 2 highlights the motivations of this 

paper and discusses related works and their limitations. Section 3 presents the dataset puts forward the 

proposed feature selection ensemble and three-layer stacking ensemble. Section 4 describes the 

experimental setup, presents and discusses the main results. Finally, Section 5 concludes this paper. 

2. State of the art 

The study of the SARS-CoV-2 severity and its prediction began from the first pandemic stages 

when the first data collections became available (see, e.g., [5,7–9]). The immune-based machine 

learning model for COVID-19 severity prediction was developed in paper [10] using a bioinformatics 

approach to study and forecast the immunologic phases of SARS-CoV-2 disease. The authors [10] 

have explored the role of CCR5 and its ligands to build an effective COVID-19 treatment strategy. The 

trial includes 26 moderate COVID-19 patients, 48 severe ones, 121 patients with post-acute sequelae 

of COVID-19 symptoms, accompanied by a 29 individual control group. The paper [10] concludes 

that severe patients are characterized by excessive inflammation and dysregulated T-cell activation, 

recruitment, and counteracting activities. The class imbalance problem in that study has been solved 

by minority class synthetic oversampling. Random forest was used as a classifier in paper [10] with 

multi-class accuracy of 0.8, precision 0.62, recall 0.65, and F1 value of 0.63. The paper concludes that 

the cytokine profiles could be used as a feature for effective COVID-19 severity classification. Paper [13] 

identifies the top ten proteins responsible for COVID-19 severity using an artificial intelligence 

approach, namely the gradient boosted tree algorithm. The authors of [11] showed that the proposed 

techniques outperform in classifying COVID-19 severity compared to deep learning and random forest 

models and concluded that effective predictive biomarkers for COVID-19 analysis and modeling could 

be revealed in further comprehensive studies. 
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The extensive study of COVID-19 severity for 1,926,526 US patients was reported in reference [12] 

using the National COVID Cohort Collaborative repository. The comorbidity, sex, race, ethnicity, body 

mass index (BMI), antimicrobial and immunomodulatory medication have been used for severity 

modeling and prediction in this study [12]. The authors conclude that patient demographic 

characteristics and comorbidities were associated with higher clinical severity in the developed statistical 

model. Another approach represents the study of X-Ray [13,14], computed tomography [15,16] or 

ultrasound [17] lung images with neural networks techniques to analyze and predict COVID-19 severity 

based on image processing. Thus, the authors of [17] present the rapid diagnosis approach to predict 

the disease course for COVID-19 patients based on lung ultrasound. They used a convolutional neural 

network architecture which includes an autoencoder network with long short-term memory layers to 

improve the classification accuracy. 

A comprehensive review of the machine learning approaches in COVID-19 diagnosis, mortality, 

and severity risk prediction was published in reference [18]. The authors have analyzed 113 papers 

published in 2020 and 2021 dealing with machine learning applications in COVID-19 diagnosis and 

prediction tasks. The paper [18] shows that the most used methods for COVID-19 diagnosing are 

XGBoost, random forest and linear regression models, and the combination of several methods, like 

the random forest, Naïve Bayes, and linear regression, support vector machines and k-nearest 

neighbors. The main limitations for practical machine learning application in COVID-19 diagnosis and 

prediction, according to [18], are imbalanced data sets and selection bias. Nevertheless, the results of 

machine learning models reviewed in paper [18] are consistent with those of medical studies. 

Paper [19] used multilayered perceptron and cross-validation for the COVID-19 regression task. 

The hyperparameters were selected based on the grid search algorithm. Gradient boost regressor is 

used for blood biomarkers predicting in paper [20]. The performed feature selection has extracted the 

ten best features from blood analysis. 

In addition, genetic algorithms are used for new cases of COVID-19 prediction and the estimation 

of epidemiology curve in paper [21].  

Studies based on the collected datasets using standard machine learning methods [22–25] have 

not demonstrated high prediction accuracy. Hence, different machine learning algorithms are combined 

in papers [26–30].  

Paper [31] uses feature selection, XGBoost and decision tree to determine COVID biomarkers; 

however, the F1-score does not rise above 0.7. In paper [32], the CH4 and CH8 immunodeficiency 

markers and their association with coronavirus infections were analyzed using statistical models, 

including the Cox model. Accordingly, it was not possible to prevent harmful situations. In paper [33], 

the empirical mode decomposition (EEMD) and the artificial neural network (ANN) were used to 

predict the COVID-19 epidemic. Thus, to prolong the active period of life, it is necessary to track the 

dynamics of changes in molecular and biochemical markers, anthropometric indicators, behavioral 

factors, environmental parameters, habitat, etc. As a result, it is necessary to use a big data-based 

approach to collect information from disparate datasets, process them, and further analyze them. On 

the other hand, it is needed to analyze small data samples, including multimodal time series of changes 

in human parameters. 

The analysis of literature sources showed the lack of a comprehensive approach to prolonging the 

active period of life and preventing exacerbation of chronic diseases. At the same time, as we see in 

the case of COVID, chronic diseases (diabetes and obesity) can reduce the ability to work and increase 

the likelihood of severe course of other diseases. Therefore, the paper's motivation is to identify 



6106 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 6102–6123. 

changes that mean the probability of aging, as well as factors that prevent (postpone) this moment 

based on methods of small data samples analysis. 

Many machine learning models can be used for small data samples analysis. The main problem is 

the generalization of the results. That is why forecasting models are often combined in an ensemble to 

obtain higher accuracy and stability in forecasting. Ensemble methods in classification problems are 

considered in paper [34]. Stacking technologies are often used to obtain higher generalized accuracy [35]. 

The idea of stacking is to combine predictive models into a multi-level ensemble [36]. At the first level, 

forecasts are obtained using machine learning models. The second level is the target level, at which 

the results of the first level are combined using some model. A cross-validation approach is often used 

to obtain a training data sample for the meta-level, in which the training sample is randomly divided 

into several subsamples. Then take one subsample to predict the target variable and the rest – to train 

the prediction model. This procedure is repeated to predict each subsample. In the case of non-

stationary data, the validation subsample for forecasting is selected by time division, so the data for 

validation are on the time axis after the data samples for training. 

The obtained forecast data on the validation subselection are used as independent variables for 

the forecast model of the second goal level of the stacking ensemble. The target variable on the target 

level is equal to the target variable on the data samples of the validation subsample. The cross-

validation approach for obtaining a training sample at the meta-levels of the stacking ensemble is used 

to avoid retraining effects. The retraining occurs when subsamples of data samples for which 

forecasting is performed are used in model training. In this case, the forecasting accuracy for such 

subsamples may be overestimated while underestimated for new data. Stacking approaches make it 

possible to improve the forecasting results on a given data sample. A set of meta-model parameters 

also determines the effectiveness of stacking ensembles. 

3. Materials and methods 

3.1. Dataset description 

Dataset consists of 35 features and 122 instances collected from Lviv regional rehabilitation 

center for post-COVID patients with short- and long-term (more than 20 days) treatment and 

rehabilitation. The personal data were removed from the dataset and replaced with unique random 

identifiers. The next feature, sex, is processed using one-hot encoding technics and in the final dataset 

is presented in two components – female and male. Features like age, weight, height, BMI, CAT, pulse, 

the function of external respiration are taken as physiological parameters measured before inpatient 

treatment. The rest of the features were immune-based biomarkers as described below. 

IL-8 is an important proinflammatory cytokine synthesized by neutrophils, monocytes, 

macrophages and endothelial cells. It has a pronounced chemoattractive activity against neutrophils; it 

protects the body from various pathogenic factors, especially infectious genesis, attracting neutrophils 

to the site of inflammation, thus inducing this neutrophilic interleukin type of inflammation. 

IL-4 and IL-10 are the determining cytokines in the formation of CD4+ type of immunoreactivity, 

thereby determining a different kind of inflammation. The appearance of the CD4+ sort of immune 

response is essential in developing an eosinophilic type of inflammatory process in the tissues of the 

respiratory tract. Besides, IL-4 activates the synthesis of growth factors that contribute to the 

respiratory tract remodeling. 
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TNF-α is a protein that, by function, belongs to cellular signaling proteins, participates in systemic 

inflammation processes, and is one of the cytokines that form the acute phase reaction. Tumor necrosis 

factor is produced mainly by activated macrophages, less synthesized by other cell types (CD4+ 

lymphocytes, NK-cells, neutrophils, mast cells, eosinophils, and neutrophils). The primary role of TNF 

is to regulate the interaction of immune cells, to trigger the cell apoptosis process, causes cachexia, 

inflammation and tumor growth inhibition and virus replication, in sepsis governs the production of 

proinflammatory interleukins IL-1 and IL-6. 

Zero cells (0-lymphocytes) do not carry markers like T- and B-cells. Zero cells make 10–20 % of 

the total lymphocytes in human peripheral blood. Some researchers consider them immature or 

overripe T- or B-lymphocytes because they have a small number of antigens common to B- and T-cells. 

Zero cells include K-cells and NK-cells. 

CD3+ is a surface marker specific to all T-lymphocyte subpopulation cells. By function, it belongs 

to the family of proteins that form a complex of membrane signaling associated with the T-cell receptor. 

Mature T-lymphocytes are "responsible" for cellular immune responses and perform immunological 

monitoring of antigenic homeostasis in the body. 

CD4+ is a characteristic of helper T-cells; also represented on monocytes, macrophages, dendritic 

cells. It binds to class II MHC molecules expressed on antigen-presenting cells, facilitating the 

recognition of peptide antigens. Helper T-lymphocytes (CD4+) are helpers (inducers) of the immune 

response, cells that regulate the strength of the body's immune response to a foreign antigen, as well 

as control the stability of the body's internal environment (antigenic homeostasis) and cause increased 

antibody synthesis. 

CD8+ is a characteristic of suppressor and cytotoxic T-cells, NK-cells, mostly thymocytes. It is a 

T-cell activation receptor that facilitates the recognition of cell-bound class I MHC antigens. 

CD16+ natural killers are part of innate immunity; they are involved in early response against 

viral infections and intracellular bacteria. Compared with cells of specific immunity (T- and B-

lymphocytes), they have the advantage that they do not require long-term activation. Besides, NK-

cells complement the action of T-cytotoxic cells can also regulate the immune response by producing 

various cytokines, including interferon-γ. They are the primary cells of antitumor protection. Their role 

is vital in manifesting cellular immunity in viral, protozoan, fungal and bacterial diseases caused by 

intracellular parasites. Their action is enhanced by interferon. The functions performed by natural 

killers can be divided into two main types: the production of cytokines that regulate the work of other 

cells of the immune system and the direct destruction of damaged cells. 

CD22+ markers are expressed by mature B-lymphocytes. B-lymphocytes are responsible for the 

humoral adaptive immune response, primarily at removing extracellular infectious agents. After 

binding to a specific antigen, B-lymphocytes, in cooperation with T-lymphocytes and T-helpers 

proliferate, differentiate into plasma cells that secrete antibodies/immunoglobulins and memory cells. 

Defects of humoral immunity associated with the B-cells are sporadic, so a common 

hypoimmunoglobulinemia is mainly caused by other reasons. 

CD4/CD8 immunoregulatory index reflects the ratio of CD4+ cells (T-helpers) to CD8+ cells (T-

cytotoxic cells). It is a relative indicator that has an indicative value. Its small increase or decrease has 

no independent diagnostic value. Changes in the index force the clinician to focus on the reasons for 

the deviation of this index.  

The immunoregulatory index is assessed relative to the phase of the immune response. In the 

period of exacerbation and remission of clinical manifestations, the immunoregulatory index reaches 
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high values due to the high percentage of T-helpers (CD4+ T-cells). During the recovery period, the 

value of the indicator decreases due to the increase in the level of CD8+ T-cells (killers). Violation of 

this pattern indicates the inadequacy of the immune response and the possibility of chronic infection 

due to incomplete removal of the pathogen. 

The indicators of the control group of almost healthy individuals are presented in Table 1. 

Table 1. The immunological markers of the control group. 

indicator value 

TNF-α, pg/ml 6.15  1.20 

IL-8, pg/ml 15.70 ± 2.00 

IL-4, pg/ml 16.10 ± 1.13 

IL-10, pg/ml 36.60 ± 1.96 

TNF-α + IL-8 + IL-4 + IL-10 0.65 ± 0.04 

CD3+, % 66.20 ± 0.60 

CD22+, % 15.20 ± 0.29 

0-lymphocytes, % 18.70 ± 0.65 

СD4+, % 38.10 ± 0.67 

CD8+, % 27.20 ± 0.39 

CD4+/CD8+ 1.410 ± 0.036 

CD3+/CD22+ 4.39 ± 0.11 

(CD3++CD22+) 0-lymphocytes 4.48 ± 0.22 

CD16+, % 17.10 ± 0.44 

CD4 and CD8 are known as aging biomarkers. Immunological studying of blood with the 

determination of the biomarkers of cellular (subpopulations of lymphocytes – CD3, CD4, CD8, CD16, 

CD22) and humoral immunity (specific immunoglobulins – IgA, IgM, IgG), cytokine status (IL-2, IL-

6, IL-8) is obtained to diagnose the duration of rehabilitation after COVID-19. 

3.2. Performance evaluation metrics 

The random sampling method was used for the validity of the model, randomly splitting the data 

into the training and testing set in the 80:20 proportion; the whole procedure was repeated ten times. 

The general performance evaluation metrics of the model were determined by averaging the 

corresponding values. 

For the categorical classification task, the following metrics were used to measure the prediction 

efficiency [31,36]: 

• Area under ROC (AUC) is the area under the receiver-operating curve. 

• Classification accuracy (CA) is the proportion of correctly classified examples: 

Accuracy = (TP + TN) / (TP + TN + FP + FN), 

where: TP – true positive; TN – true negative; FP – false positive; and FN – false negative. 

• Precision is the proportion of true positives among instances classified as positive. 

Precision = TP / (TP + FP), 
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• Recall is the proportion of true positives among all positive instances in the data. 

Recall = TP / (TP + FN), 

• F-1 is a weighted harmonic mean of precision and recall: 

F-1 = (2 * Precision * Recall) / (Precision + Recall). 

For regression analysis and prediction of the absolute value of post-COVID rehabilitation, the 

following performance evaluation metrics have been used: 

• Mean squared error (MSE) measures the average of the squares of the errors or deviations 

(the difference between the estimator and what is estimated). 

MSE = (1/n) * Σ(Actual – Forecast)2, 

where: n – number of items, Σ – summation notation, Actual – the original or observed y-value, 

Forecast – y-value from regression. 

• Root mean square error (RMSE) is the square root of the arithmetic mean of the squares of 

a set of numbers (a measure of the imperfection of the fit of the estimator to the data). RMSE 

is normalized by the mean value of actual values: 

𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸. 

• Mean absolute error (MAE) is used to measure how close forecasts or predictions are to 

eventual outcomes: 

MAE = (1/n) * Σ| xi – x |, 

where: n – the number of items, Σ – summation symbol, |xi – x| – the absolute errors. 

• Mean absolute percentage error (MAPE) is commonly used as a loss function for regression 

problems and in model evaluation: 

MAPE = (1/n) * Σ|(Actual – Forecast)/ Actual |, 

where: n – number of items, Σ – summation notation, Actual – original or observed y-value, Forecast 

– y-value from regression. 

• R2 is interpreted as the proportion of the variance in the dependent variable that is predictable 

from the independent variable: 

R2= Variance_in_the_dependent_variable/Total_variance. 

3.3. Preprocessing stage. A hybrid ensemble feature selection model development 

Selection of the right features is a very significant task during data processing. For example, in 

medicine [37], finding the minimum set of optimal attributes for the classification problem can help 

develop a diagnostic test. Selection of the important features (for example, determining genes 

responsible for a particular type of cancer) can help decipher the mechanisms underlying the problem 

of interest. There are three main classes of feature selection algorithms – filters, wrappers and built-in 

algorithms [38]. 

Filters are based on some metrics that are independent of the classification method. For example, 
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the correlation of features with the target vector and information content criteria. They are applied 

before classification. One of the benefits of filtering is that it can be used as preprocessing to reduce 

space dimensionality and overcome overfitting. Filtering methods are generally fast. Filters are used 

to select features in clustering, to build an initial approximation [39]. Unfortunately, such methods are 

not designed to detect complex relationships between features and, as a rule, are not sensitive enough 

to identify all dependencies in the data. 

Embedded algorithms perform feature selection during the classifier training procedure, and they 

explicitly optimize the set of features used to achieve better accuracy [40]. The main advantage of the 

built-in algorithms is that they usually find solutions faster, avoiding retraining data from scratch while 

eliminating the need to separate data into training and test subsamples. However, these algorithms are 

not universal. 

Wrappers rely on feature importance information from some classification or regression methods 

and can therefore find deeper patterns in the data than filters. Wrappers can use any classifier that 

determines the degree of importance of the features. 

The baseline of the hybrid ensemble feature selection model looks like the following: 

• Several selectors using. 

• Aggregation of the results. 

Several wrapper algorithms will be used in the preprocessing stage for the first stage. 

The correlation matrix shows the numerical value of the correlation coefficient for all possible 

combinations of variables. It is used mainly to find out the relationship between more than two variables. 

The decision tree returns the feature weight as the criterion for evaluating features. It allows 

building a ranked list of selected features using different measures. CART [23] was used for feature 

selection with Gini-index as a measure in our case. 

Random Forest [27] is an ensemble of numerous training-sensitive algorithms (decision trees). 

These algorithms have a slight offset. The bias of the training method is the deviation of the average 

response of the trained algorithm from the response of the ideal algorithm. Each of these classifiers is 

built on a random subset of objects and a random subset of features. 

Boruta is a heuristic algorithm for selecting significant features based on the use of Random 

Forest [41]. At each iteration, those features are removed for which the Z-measure is less than the 

maximum Z-measure among the added features. To get the Z-measure of a feature, it is necessary to 

calculate its importance, obtained using the built-in algorithm in Random Forest, and divide it by the 

standard deviation of the feature importance. Added features are obtained as follows: the characteristics 

available in the selection are copied, and then each new attribute is filled by shuffling its values. This 

procedure is repeated several times to get statistically significant results, and variables are generated 

independently at each iteration. 

The Jaccard index measures the similarity of the feature subsets selected by separated feature 

selectors (each selector is organized as a separated iteration): 

(𝑆1, … , 𝑆1𝑛) =
|𝑆1∩…∩𝑆𝑛|

|𝑆1∪…∪𝑆𝑛|
,, 

where Si is the subset of features at the i-th iteration, for i=1,…,n. The value of the Jaccard index varies 

from 0 to 1, where 1 implies the absolute similarity of subsets. 

The schema of the hybrid ensemble feature selection model is given in Figure 1. 
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Figure 1. The hybrid ensemble feature selection model. 

3.4. Processing stage. A three-layer stacking ensemble model development 

Three-layer stacking is proposed in the paper. Associative rules are often used in classification 

tasks [42,43]. Associative classification mining is an approach in data mining that utilizes the 

association rule discovery techniques to construct classification systems. First, the association rules 

are generated from the training dataset with given support and confidence thresholds. Next, a 

prediction for the test dataset is made, and the classifier's accuracy is measured. However, the accuracy 

of associative classification largely depends on the rules we have before the classification [44]. 

Hence, we propose combining associative classification with weak classifiers into an ensemble 

to generalize the results. 

The baseline of proposed three-layer classification models consists of the following steps: 

1) In the first layer, associative rules are built for hidden dependencies mining. The whole dataset 

is used. 

2) In the second layer, weak classifiers are chosen for the dataset consisting of important features. 

3) Random forest as an aggregative machine learning model is used in the last stacking layer. 

The schema of the three-layer stacking ensemble classification model is given in Figure 2. 
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Figure. 2. The three-layer stacking ensemble classifier. 
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4. Results and discussion 

We implemented our approach in Rstudio [45]. The essential packages we used were caret, rpart, 

Metrics, Boruta, Randomforest, rules and ggplot2 for visualization. To generate associative rules, we 

set the minimal support threshold in the a priori algorithm to 0.0001. We filtered out all rules with 

confidence below 0.001. 

Table 2. The summary of feature selection by different methods 

Feature selector Features list Weighted list 

Features without high correlation 

Age 

BMI 

CAT 

Pulse 

6 min test walk 

Sa02% 

Borg scale 

Force lung capacity 

Force exhalation volume 

Volume of peak flow at 25% (Vpeak25) 

Volume of peak flow at 50% (Vpeak50) 

Volume of peak flow at 75% (Vpeak75) 

CD16 

IL-8 

IL-10 

CD4/CD8 

no 

Decision tree (CART) 

Force lung capacity 

Force exhalation volume 

Vpeak25 

Vpeak50 

Vpeak75 

CD16 

IL-8 

CD4/CD8 

yes 

Random forest 

Force lung capacity 

Force exhalation volume 

Vpeak25 

Vpeak50 

CD16 

CD4/CD8 

Vpeak75 

yes 

Boruta 

Force lung capacity 

Force exhalation volume 

Vpeak25 

Vpeak50 

Vpeak75 

0-lymphocytes 

IL-8 

yes 
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First, a new hybrid ensemble feature selection model for a machine learning-based post-COVID 

prediction system is implemented as an automatic feature cut-off rank identifier. Correlation matrix, 

decision tree, random forest and Boruta are used. The results of feature selectors are collected in Table 2. 

Jaccard-index is used for the results aggregation. Based on results obtained from different feature 

selectors the list of important features is created as (Vpeak25 + Vpeak50 + Vpeak75 + Force exhalation 

volume + 0-lymphocytes + IL8 + CD4/CD8). 

Next, clustering is used for data discretization. First, the number of clusters was identified using 

gap statistics (Figure 3). 

 

Figure. 3. The optimal number of clusters according to gap statistics. 

According to Figure 2, two clusters are used. Next, a k-means algorithm with two clusters is 

applied. The results show that almost all objects are in a single class (see Figure 4). The same effect 

is obtained using Self-organizing maps (Figure 5) [46]. Therefore, the predictive models were used 

for all samples. 

 

Figure 4. Cluster plot for 2 cluster k-means algorithm. 
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Figure. 5. Heat map for self-organizing map clustering. 

First, the normalization is performed using the log function. The main goal of normalization is to 

bring various data in a wide variety of units and ranges of values to a single form, which allows them 

to be compared with each other or used to calculate the similarity of objects. Next, different machine 

learning models are used for treatment duration prediction (continuous variable is used). Random 

sampling; training test size 80%; repeat train/test = 10. Ten-fold cross-validation was used. The results 

are listed in Table 3. 

Table 3. The post-COVID rehabilitation duration prediction using different ML models 

Predictor MAPE RMSE 

Linear regression 0.0629 2.259 

Regression tree 0.1220 0.155 

Random forest 0.0191 0.071 

k-NN 0.0189 0.071 

SVM linear kernel 0.0163 0.076 

SVM polynomial kernel 0.0054 0.016 

ANN with 1 hidden layer, 12 neurons, sigmoid activation function 0.0096 0.034 

Besides, five-fold cross-validation was used as well. The results are listed in Table 4. It can be 

seen from the tables that the difference between "vanilla models" and cross-validated is relatively small. 

It can be explained by the limited size of the dataset. 
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Table 4. The post-COVID rehabilitation duration prediction using different ML models and 

cross-validation. 

Predictor MAPE RMSE 

Linear regression 0.0625 2.252 

Regression tree 0.1218 0.152 

Random forest 0.0185 0.064 

k-NN 0.0184 0.064 

SVM linear kernel 0.0159 0.072 

SVM polynomial kernel 0.0050 0.012 

ANN with 1 hidden layer, 12 neurons, sigmoid activation function 0.0093 0.030 

The same models are used in the prediction process for selected features. The results for this 

experiment are listed in Table 5. 

Table 5. The post-COVID rehabilitation duration prediction using different ML models 

using selected features only. 

Predictor MAPE RMSE 

Linear regression 0.0276 0.112 

Regression tree 0.0426 0.134 

Random forest 0.0192 0.070 

k-NN 0.0192 0.070 

SVM with linear kernel 0.0221 0.102 

SVM with polynomial kernel 0.0255 0.117 

ANN with 1 hidden layer, 12 neurons, sigmoid activation function 0.0280 0.110 

As can be seen from Tables 3 and 5, we obtained better results in some cases, particularly for 

Linear regression, Regression tree, Random Forest, and k-NN. Both SVM models and ANN gave the 

worse outcomes for the selected features. 

Next, the biomarkers indicating aging have been selected as features subset, and the regression 

analysis was applied to this model. These aging biomarkers include CD3, CD22, CD4, and CD8 

features. The results of the COVID-19 duration prediction using the same set of ML models are 

presented in Table 6. 

Table 6. The post-COVID rehabilitation duration prediction using different ML models 

based on aging biomarker predictors. 

Predictor MAPE RMSE 

Linear Regression 0.1121 2.649 

Regression Tree 0.1279 2.967 

Random Forest 0.0823 1.822 

k-NN 0.0823 1.822 

SVM with linear kernel 0.0787 2.402 

SVM with polynomial kernel 0.1006 2.739 

ANN with 1 hidden layer, 12 neurons, sigmoid activation function 0.0958 2.336 
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We tried to compare predictive accuracy for standard dimensionality reducing models during the 

next steps. We used Principal Component Analysis with eight components. The explained variance, in 

this case, is 86%. The results of COVID-19 duration prediction using ML models for all features and 

PCA-selected ones are summarized in Table 7. 

Table 7. The comparison of ML models prediction results using the whole set of features and 

eight PCA selected features subset. 

Model For the whole dataset For eight components 

MSE MAE R2 MSE MAE R2 

k-NN 7.029 2.155 −0.162 5.781 1,825 0.044 

SVM 5.753 1.828 0.049 5.821 1.830 0.038 

SGD 16.007 3.280 −1.647 12.328 2.603 −1.039 

Linear Regression 17.826 3.571 −1.948 14.836 2.760 −1.453 

MLP NN 5.717 1.777 0.055 6.469 2.034 −0.070 

From Table 7, one can see that the classification error has decreased after applying PCA analysis. 

In this experiment, the multilayered perceptron (MLP NN) is used with the following parameters: eight 

hidden layer neurons, ReLu activation function, Stochastic Gradient Descent solver, regularization 

(alpha) value – 65. 

So, both neural networks with the above configuration (12 neurons + sigmoid function and eight 

neurons + ReLu function) give the second most accurate result and even the best prediction for a 

complete dataset. In our case, they are less sensitive to the dimensionality of the feature space. But the 

number of neurons in the hidden layer is equal to or higher than 8, i.e., the number of significant 

components selected by PCA, so it is possible the network can predict the whole dataset with high 

enough accuracy. 

Table 8. Associative rules for post-COVID rehabilitation duration classification as mined 

by Apriori algorithm. 

No items support value 

1 {CD4 = [26,28)} 0.2222222 

2 {Vpeak25 = [94,100)} 0.2222222 

3 {SаО2 = [95,96)} 0.2222222 

4 {Age = [30,54)} 0.2777778 

5 {Age = [54,61)}  0.2777778 

6 {Height = [161,168)} 0.2777778 

7 {CD4 = [26,28), CD4/CD8 = [0.81,1.06)} 0.1111111 

8 {6min_test_walk = [365,420), CD4 = [26,28)}  0.1666667 

9 {CD4 = [26,28), CD8 = [21,25)} 0.1111111 

10 {Force_exhalation_volume = [100,105), CD4 = [26,28)} 0.1111111 

11 {CD4 = [26,28), TNF-α = [11.7,27.3]} 0.1111111 

12 {CD4 = [26,28), IL-10 = [3.7,7.83)}  0.1111111 

13 {CD4 = [26,28), IL-8 = [43.8,98.1]}  0.1111111 

14 {Weight = [59,75.7), CD4 = [26,28)} 0.1111111 
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In the next stage, we solve the classification task. For this purpose, the target attribute "Duration" 

was transformed into a categorical variable. The binary classification task – short and long 

rehabilitation classes are presented. The dataset is unbalanced (90 long and 32 short), so balancing 

technics are used. Dataset was balanced by two methods: random selection of data from a larger class 

in an amount equal to the number of samples belonging to a smaller class and SMOTE strategy, which 

synthetically increases the number of samples of a minority class. After balancing dataset is presented 

with 62 instances for long class and 60 instances for short class. 

The three-layer stacking ensemble classification model is now used for the transformed dataset. 

First, associative rules with the Apriori algorithm are used. The mined rules are presented in Table 8. 

At the second layer, five classifiers are used in the proposed ensemble: 

1) Tree – a tree algorithm with forward pruning 

2) Naïve Bayes classifier 

3) SVM with RBF kernel 

4) Logistic Regression 

5) Calibrated learner. This learner produces a model that calibrates the distribution of class 

probabilities and optimizes the decision threshold. A sigmoid function was used for 

probability calibration, while the decision threshold optimization was applied to optimize 

classification accuracy. 

Table 9 presents the average over classes prediction efficiency using the AUC, CA, F1, Precision 

and Recall metrics. In contrast, Table 10 contains the same metrics for the classification model based 

on the eight PCA-selected features. 

Table 9. COVID-19 duration categorical classification efficiency by five ML classifiers and 

three-layer stacking ensemble classification model applied to the whole set of features. 

Model AUC CA F1 Precision Recall 

Tree 0.854 0.760 0.762 0.766 0.760 

SVM 0.988 0.910 0.921 0.924 0.920 

Naive Bayes 0.957 0.860 0.861 0.869 0.860 

Calibrated Learner 0.917 0.920 0.921 0.933 0.920 

Logistic Regression 0.898 0.800 0.800 0.867 0.800 

Three-layer stacking ensemble classification model 

with Random forest aggregate 
0.992 0.930 0.960 0.964 0.960 

Table 10. COVID-19 duration categorical classification efficiency by five ML classifiers and 

three-layer stacking ensemble classification model applied to the selected subset of features. 

Model AUC CA F1 Precision Recall 

Tree 0.781 0.720 0.723 0.735 0.720 

SVM 0.908 0.840 0.842 0.847 0.840 

Naive Bayes 0.883 0.860 0.861 0.869 0.860 

Calibrated Learner 0.888 0.860 0.861 0.896 0.860 

Logistic Regression 0.880 0.840 0.841 0.886 0.840 

Three-layer stacking ensemble classification model 

with Random forest aggregate 
0.978 0.920 0.921 0.924 0.920 
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Tables 8 and 9 show some decrease in the prediction accuracy in the case of the classification 

model based on the eight selected features. This result needs further investigation and so far can be 

ascribed to the small size of the dataset, complex influence of the biomarkers on the COVID-19 

duration (which is supported by poor classification efficiency of Naïve Bayes classifier), the existence 

of some features/comorbidities not included in the present dataset or to the sensitiveness of the 

classifiers to the dimensionality of the feature space. 

Table 11 collects the “Long” target class prediction accuracy for the mentioned five ML classifiers 

and three-layer stacking ensemble classifier with Random forest aggregate for classification model 

based on the eight PCA selected features. 

Table 11. COVID-19 “Long” target class classification efficiency by five ML classifiers and 

three-layer stacking ensemble classification model applied to the selected subset of features. 

Model AUC CA F1 Precision Recall 

Tree 0.792 0.720 0.750 0.808 0.700 

SVM 0.922 0.860 0.846 0.958 0.821 

Naive Bayes 0.883 0.860 0.877 0.926 0.833 

Calibrated Learner 0.867 0.860 0.868 0.999 0.767 

Logistic Regression 0.867 0.840 0.846 0.999 0.733 

Three-layer stacking ensemble classification model 

with Random forest aggregate 
0.967 0.900 0.909 0.999 0.833 

 

Figure. 6. Models comparison. 
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Figure 6 shows that, in general, using the existing dataset, the "Long" target class prediction 

efficiency is somewhat higher than that for the average over classes. On the other hand, one can note 

from the table that the Precision metric is higher for all the classifiers used, while the Recall has lower 

values. This stays for the fact that this kind of model is more precise in the classification of positive 

items. At the same time, it is worse for the classification of true positives among all positive instances 

in the dataset. On the other hand, a weighted harmonic mean of precision and recall (F1 metric) is a 

bit higher in the case of "Long" target class classification. Hence, we can conclude that higher precision 

compensates for lower recall value for this experiment. 

Three-layer stacking ensemble classification model with Random Forest aggregate shows the best 

result compared with a decision tree, SVM and other classifiers. 

5. Conclusions and future work 

Over the past two years, SARS-CoV-2 disease has become one of the most significant burdens to 

the global health care system, causing fatalities and significantly depleting health care resources. The 

disease can occur differently for different patients: from asymptomatic illness to hospitalization in the 

intensive care unit or even death. The question of what determines the severity of the disease is of 

interest to researchers worldwide. However, there is still no definitive answer to this question. It is 

commonly recognized that the severity of SARS-CoV-2 disease depends on both the comorbidity and 

the state of the patient's immune system, which is reflected in several biomarkers that can be obtained 

from biochemical laboratory studies. 

Artificial intelligence techniques, particularly machine learning, can help conduct such clinical 

trials, as they can work with smaller data samples when using appropriate approaches. A study with a 

smaller sample of data, in this case, makes it possible to reduce the time to collect the dataset, which 

will reduce the number of clinical patients, and enable using predictive results faster, which will allow 

preventive measures for patients with potentially severe disease. This, in turn, can reduce the burden 

on the health care system and increase the effectiveness of treatment and rehabilitation of patients with 

severe cases. 

Based on a dataset collected at the Lviv regional rehabilitation center, which contains anonymized 

information on the immune profile and other important diagnostic indicators, including external 

respiration function and oxygen saturation, a post-COVID rehabilitation duration classification model 

was built using ensembling of machine learning methods. A new hybrid ensemble feature selection 

model and a three-layer stacking ensemble classification model have been developed. The proposed 

hybrid ensemble feature selection model for a machine learning-based post-COVID prediction system 

can be used as an automatic feature cut-off rank identifier. The three-layer stacking ensemble 

classification model shows high accuracy for intelligent analysis of short medical datasets. The 

associative rules, together with weak predictors, improve the classification quality. The proposed 

ensemble uses a random forest model as an aggregator for weak repressors' results generalization. 

The developed three-layer stacking ensemble classification model with Logistic Regression 

aggregate has the following values of performance evaluation metrics in the selected feature subset: 

area under ROC curve – 0.908; classification accuracy – 0.840; F1 score – 0.842; precision – 0.867; 

recall – 0.840. To summarize, the proposed model achieved a good prediction of SARS-CoV-2 disease 

severity based on the cytokines and physiological biomarkers. The results point out that changes in 

studied biomarkers associated with the severity of the disease may be used to monitor the severity and 
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forecast the rehabilitation duration. 

The main results are given below: 

• COVID-19 treatment duration, both in days and categorical (i.e., long and short), is predicted 

based on the important biomarkers obtained by blood cytokines profiling using a machine 

learning approach. 

• A new hybrid ensemble feature selection model for a machine learning-based post-COVID 

prediction system is proposed as an automatic feature cut-off rank identifier. 

• The associative rules, together with weak predictors, improve the classification quality. 

• The proposed three-layer stacking ensemble classification model uses the random forest model 

as an aggregator for weak generalization of repressor results. 

• Aging-related biomarkers, viz. CD3+, CD4+, CD8+, CD22+ were examined to predict post-

COVID rehabilitation duration. 

• The research offers predictive attributes that can be used to monitor the severity of the disease 

and forecast the rehabilitation duration. 

Further research will focus on increasing the data sample by adding information about new 

patients, refining the extended dataset model, and applying small data analysis approaches like input-

doubling using nonlinear kernels [47] or RBF-based input-doubling [48] to improve prediction 

accuracy and reliability. 

Conflict of interest 

The authors declare no conflict of interest. 

Acknowledgments 

This research was supported by the National Research Foundation of Ukraine. 

References 

1. A. M. Kalasic, O. K. Vidovic, Aging and health: priorities of the World Health Organization for 

the decade of healthy aging 2020-2030, Ageing Human Rights, (2018), 67. 

2. M. T. Tull, K. A. Edmonds, K. M. Scamaldo, J. R. Richmond, J. P. Rose, K. L. Gratz, 

Psychological outcomes associated with stay-at-home orders and the perceived impact of COVID-

19 on daily life, Psychiatry Res., 289 (2020), 113098. 

https://doi.org/10.1016/j.psychres.2020.113098 

3. W. Gardner, D. States, N. Bagley, The coronavirus and the risks to the elderly in long-term care. 

J. Aging Soc. Policy, 32 (2020), 310–315. https://doi.org/10.1080/08959420.2020.1750543 

4. Covid2019 coronavirus disease, Retrieved on: 26 December 2021, Available from: 

https://www.worldometers.info/coronavirus/. 

5. G. Wu, P. Yang, Y. Xie, H. C. Woodruff, X. Rao, J. Guiot, et al., Development of a clinical decision 

support system for severity risk prediction and triage of COVID-19 patients at hospital admission: 

an international multicentre study, Eur. Respir. J., 56 (2020), 2001104. 

https://doi.org/10.1183/13993003.01104-2020 

https://pubmed.ncbi.nlm.nih.gov/?term=Woodruff+HC&cauthor_id=32616597
https://pubmed.ncbi.nlm.nih.gov/?term=Guiot+J&cauthor_id=32616597
https://doi.org/10.1183/13993003.01104-2020


6121 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 6102–6123. 

6. M. Mittelbrunn, G. Kroemer, Hallmarks of T cell aging, Nat. Immunol., 22 (2021), 687–698. 

https://doi.org/10.1038/s41590-021-00927-z 

7. M. Jiang, Y. Guo, Q. Luo, Z. Huang, R. Zhao, S. Liu, et al., T-Cell subset counts in peripheral 

blood can be used as discriminatory biomarkers for diagnosis and severity prediction of 

coronavirus disease 2019, J. Infect. Dis., 222 (2020), 198–202. 

https://doi.org/10.1093/infdis/jiaa252 

8. H. Zhang, X. Wang, Z. Fu, M. Luo, Z. Zhang, K. Zhang, et al., Potential factors for prediction of 

disease severity of COVID-19 patients, medRxiv, 2020. 

https://doi.org/10.1101/2020.03.20.20039818 

9. C. Zhang, L. Qin, K. Li, Q. Wang, Y. Zhao, B. Xu, et al., A novel scoring system for prediction of 

disease severity in COVID-19, Front. Cell. Infect. Microbiol., 10 (2020), 318. 

https://doi.org/10.3389/fcimb.2020.00318 

10. B. K. Patterson, J. Guevara-Coto, R. Yogendra, E. B. Francisco , E. Long , A. Pise, et al., 

Immune-based prediction of COVID-19 severity and chronicity decoded using machine learning, 

Front. Immunol., 12 (2021), 700782. https://doi.org/10.3389/fimmu.2021.700782 

11. S. Yasar, C. Colak, S. Yologlu, Artificial intelligence-based prediction of Covid-19 severity on the 

results of protein profiling, Comput. Methods Program Biomed., 202 (2021), 105996. 

https://doi.org/10.1016/j.cmpb.2021.105996 

12. T. D. Bennett, R. A. Moffitt, J. G. Hajagos,  B. Amor, A. Anand, M. M. Bissell, et al., Clinical 

characterization and prediction of clinical severity of SARS-CoV-2 infection among US adults 

using data from the US national COVID cohort collaborative, JAMA Netw. Open, 4 (2021), 

e2116901. https://doi.org/10.1001/jamanetworkopen.2021.16901 

13. M. Balbi, A. Caroli, A. Corsi, G. Milanese, A. Surace, F. Di Marco, et al., Chest X-ray for 

predicting mortality and the need for ventilatory support in COVID-19 patients presenting to the 

emergency department, Eur. Radiol., 31 (2021), 1999–2012. https://doi.org/10.1007/s00330-020-

07270-1 

14. R. Fusco, R. Grassi , V. Granata, S. V. Setola, F. Grassi, D. Cozzi, et al.,  Artificial intelligence 

and COVID-19 using Chest CT scan and Chest X-ray images: Machine learning and deep learning 

approaches for diagnosis and treatment, J. Pers. Med., 11 (2021), 993. 

https://doi.org/10.3390/jpm11100993 

15. F. Shan, Y. Gao , J. Wang , W. Shi , N. Shi , M. Han, et al., Abnormal lung quantification in chest 

CT images of COVID-19 patients with deep learning and its application to severity prediction, 

Med. Phys., 48 (2021), 1633–1645. https://doi.org/10.1002/mp.14609 

16. Y. Z. Feng, S. Liu, Z. Y. Cheng, J. C. Quiroz, D. Rezazadegan, P. Chen, et al., Severity assessment 

and progression prediction of COVID-19 patients based on the LesionEncoder framework and 

chest CT, Information, 12 (2021), 471. https://doi.org/10.3390/info12110471 

17. A. G. Dastider, F. Sadik, S. A. Fattah, An integrated autoencoder-based hybrid CNN-LSTM model 

for COVID-19 severity prediction from lung ultrasound, Comput. Biol. Med., 132 (2021), 104296. 

https://doi.org/10.1016/j.compbiomed.2021.104296 

18. N. Alballa, I. Al-Turaiki, Machine learning approaches in COVID-19 diagnosis, mortality, and 

severity risk prediction: A review, Inform. Med. Unlocked, 24 (2021), 100564. 

https://doi.org/10.1016/j.imu.2021.100564 

https://doi.org/10.1093/infdis/jiaa252
https://doi.org/10.1101/2020.03.20.20039818
https://doi.org/10.3389/fcimb.2020.00318
https://pubmed.ncbi.nlm.nih.gov/?term=Patterson+BK&cauthor_id=34262570
https://pubmed.ncbi.nlm.nih.gov/?term=Guevara-Coto+J&cauthor_id=34262570
https://pubmed.ncbi.nlm.nih.gov/?term=Yogendra+R&cauthor_id=34262570
https://pubmed.ncbi.nlm.nih.gov/?term=Francisco+EB&cauthor_id=34262570
https://pubmed.ncbi.nlm.nih.gov/?term=Long+E&cauthor_id=34262570
https://pubmed.ncbi.nlm.nih.gov/?term=Pise+A&cauthor_id=34262570
https://doi.org/10.3389/fimmu.2021.700782
https://doi.org/10.1016/j.cmpb.2021.105996
https://pubmed.ncbi.nlm.nih.gov/?term=Amor+B&cauthor_id=34255046
https://pubmed.ncbi.nlm.nih.gov/?term=Anand+A&cauthor_id=34255046
https://pubmed.ncbi.nlm.nih.gov/?term=Bissell+MM&cauthor_id=34255046
https://doi.org/10.1001/jamanetworkopen.2021.16901
https://pubmed.ncbi.nlm.nih.gov/?term=Milanese+G&cauthor_id=33033861
https://pubmed.ncbi.nlm.nih.gov/?term=Surace+A&cauthor_id=33033861
https://pubmed.ncbi.nlm.nih.gov/?term=Di+Marco+F&cauthor_id=33033861
https://doi.org/10.1007/s00330-020-07270-1
https://doi.org/10.1007/s00330-020-07270-1
https://pubmed.ncbi.nlm.nih.gov/?term=Fusco+R&cauthor_id=34683133
https://pubmed.ncbi.nlm.nih.gov/?term=Grassi+R&cauthor_id=34683133
https://pubmed.ncbi.nlm.nih.gov/?term=Granata+V&cauthor_id=34683133
https://pubmed.ncbi.nlm.nih.gov/?term=Setola+SV&cauthor_id=34683133
https://pubmed.ncbi.nlm.nih.gov/?term=Grassi+F&cauthor_id=34683133
https://pubmed.ncbi.nlm.nih.gov/?term=Cozzi+D&cauthor_id=34683133
https://doi.org/10.3390/jpm11100993
https://pubmed.ncbi.nlm.nih.gov/?term=Shan+F&cauthor_id=33225476
https://pubmed.ncbi.nlm.nih.gov/?term=Gao+Y&cauthor_id=33225476
https://pubmed.ncbi.nlm.nih.gov/?term=Wang+J&cauthor_id=33225476
https://pubmed.ncbi.nlm.nih.gov/?term=Shi+W&cauthor_id=33225476
https://pubmed.ncbi.nlm.nih.gov/?term=Shi+N&cauthor_id=33225476
https://pubmed.ncbi.nlm.nih.gov/?term=Han+M&cauthor_id=33225476
https://doi.org/10.1002/mp.14609
https://scholar.google.com/citations?user=wVwn-dIAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=X2hoQqwAAAAJ&hl=zh-CN&oi=sra
https://scholar.google.com/citations?user=IifTX40AAAAJ&hl=zh-CN&oi=sra
https://doi.org/10.3390/info12110471
https://doi.org/10.1016/j.compbiomed.2021.104296
https://doi.org/10.1016/j.imu.2021.100564


6122 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 6102–6123. 

19. Z. Car , S. B. Šegota, N. Anđelić, I. Lorencin, V. Mrzljak, Modeling the spread of COVID-19 

infection using a multilayer perceptron, Comput. Math. Methods Med., 29 (2020), 5714714. 

https://doi.org/10.1155/2020/5714714 

20. A. Blagojević, T. Šušteršič, I. Lorencin, S. B. Šegota, N. Anđelić, D. Milovanović, et al., Artificial 

intelligence approach towards assessment of condition of COVID-19 patients-Identification of 

predictive biomarkers associated with severity of clinical condition and disease progression, 

Comput. Biol. Med., 138 (2021), 104869. https://doi.org/10.1016/j.compbiomed.2021.104869 

21. N. Anđelić, S. B. Šegota, I. Lorencin, V. Mrzljak, Z. Car, Estimation of COVID-19 epidemic 

curves using genetic programming algorithm, Health Informatics J., 27 (2021), 

1460458220976728. https://doi.org/10.1177/1460458220976728 

22. C. Iwendi, A. K. Bashir, A. Peshkar, R. Sujatha, J. M. Chatterjee, S. Pasupuleti, et al., COVID-19 

patient health prediction using boosted random forest algorithm, Front. Public Health, 8 (2020), 

357. https://doi.org/10.3389/fpubh.2020.00357 

23. R. K. Zimmerman, M. P. Nowalk, T. Bear, R. Taber, K. S. Clarke, T. M. Sax, et al., Proposed 

clinical indicators for efficient screening and testing for COVID-19 infection using Classification 

and Regression Trees (CART) analysis, Hum. Vaccin. Immunother., 17 (2021), 1109–1112. 

https://doi.org/10.1080/21645515.2020.1822135 

24. K. K. A. Ghany, H. M. Zawbaa, H. M. Sabri, COVID-19 prediction using LSTM algorithm: GCC 

case study, Inform. Med. Unlocked, 23 (2021), 100566. 

https://doi.org/10.1016/j.imu.2021.100566 

25. L. J. Muhammad, M. Islam, S. S. Usman, S. I. Ayon, Predictive data mining models for novel 

coronavirus (COVID-19) infected patients' recovery, SN Comput. Sci., 1 (2020), 1–7. 

https://doi.org/10.1007/s42979-020-00216-w 

26. S. K. Bandyopadhyay, S. Dutta, Machine learning approach for confirmation of COVID-19 cases: 

positive, negative, death and release, medRxiv, 2020. 

https://doi.org/10.1101/2020.03.25.20043505 

27. F. De Felice, A. Polimeni, Coronavirus disease (COVID-19): a machine learning bibliometric 

analysis, In Vivo, 34 (2020), 1613–1617. https://doi.org/10.21873/invivo.11951 

28. S. Kushwaha, S. Bahl, A. K. Bagha, K. S. Parmar, M. Javaid, A. Haleem, et al., Significant 

applications of machine learning for COVID-19 pandemic, J. Ind. Integr. Manag., 5 (2020), 453–

479. https://doi.org/10.1142/S2424862220500268 

29. N. S. Punn, S. K. Sonbhadra, S. Agarwal, COVID-19 epidemic analysis using machine learning 

and deep learning algorithms, MedRxiv, 2020. https://doi.org/10.1101/2020.04.08.20057679 

30. Kaggle Datasets, Retrieved on: 26 December 26 2021, Available from: 

https://www.kaggle.com/search?q=dataset+cd4+covid,  

31. L. Yan, H. T. Zhang, J. Goncalves, Y. Xiao, M. Wang, Y. Guo, et al., An interpretable mortality 

prediction model for COVID-19 patients, Nat. Mach. Intell., 2 (2020), 283–288. 

https://doi.org/10.1038/s42256-020-0180-7 

32. A. Trickey, M. T. May, P. Schommers, J. Tate, S. M. Ingle, J. L. Guest, et al., CD4: CD8 ratio and 

CD8 count as prognostic markers for mortality in human immunodeficiency virus-infected 

patients on antiretroviral therapy: the Antiretroviral Therapy Cohort Collaboration (ART-CC), 

Clin. Infect. Dis., 65 (2017), 959–966. https://doi.org/10.1093/cid/cix466 

33. N. Hasan, A methodological approach for predicting COVID-19 epidemic using EEMD-ANN 

hybrid model, Internet Things, 11 (2020), 100228. https://doi.org/10.1016/j.iot.2020.100228 

https://pubmed.ncbi.nlm.nih.gov/?term=Car+Z&cauthor_id=32565882
https://pubmed.ncbi.nlm.nih.gov/?term=Baressi+%C5%A0egota+S&cauthor_id=32565882
https://pubmed.ncbi.nlm.nih.gov/?term=An%C4%91eli%C4%87+N&cauthor_id=32565882
https://pubmed.ncbi.nlm.nih.gov/?term=Lorencin+I&cauthor_id=32565882
https://pubmed.ncbi.nlm.nih.gov/?term=Mrzljak+V&cauthor_id=32565882
https://doi.org/10.1142/S2424862220500268
https://doi.org/10.1016/j.iot.2020.100228


6123 

Mathematical Biosciences and Engineering  Volume 19, Issue 6, 6102–6123. 

34. H. M. Gomes, J. P. Barddal, F. Enembreck, A. Bifet, A survey on ensemble learning for data stream 

classification, ACM Comput. Surveys, 50 (2017), 23. https://doi.org/10.1145/3054925 

35. S. Dˇzeroski, B. Zenko, Is combining classifiers with stacking better than selecting the best one?, 

Mach. Learn., 54 (2004), 255–273. https://doi.org/10.1023/B:MACH.0000015881.36452.6e 

36. O. Sagi, L. Rokach, Ensemble learning: A survey, WIREs Data Mining Knowl. Discov., 8 (2018), 

e1249. https://doi.org/10.1002/widm.1249 

37. The all relevant feature selection using random forest MB Kursa, preprint, arXiv:1106.5112.  

38. G. Chandrashekar, F. Sahin, A survey on feature selection methods. Comput. Electr.l Eng., 40 

(2014), 16–28. https://doi.org/10.1016/j.compeleceng.2013.11.024 

39. A. Bommert, X. Sun, B. Bischl, J. Rahnenführer, M. Lang, Benchmark for filter methods for 

feature selection in high-dimensional classification data. Comput. Stat. Data Anal., 143 (2020), 

106839. https://doi.org/10.1016/j.csda.2019.106839 

40. B. Venkatesh, J. Anuradha, A review of feature selection and its methods, Cybern. Inform. 

Technol., 19 (2019), 3–26. https://doi.org/10.2478/cait-2019-0001 

41. L. N. Sanchez-Pinto, L. R. Venable, J. Fahrenbach, M. M. Churpek, Comparison of variable 

selection methods for clinical predictive modeling, Int. J. Med. Inform., 116 (2018), 10–17. 

https://doi.org/10.1016/j.ijmedinf.2018.05.006 

42. M. Azmi, G. C. Runger, A. Berrado, Interpretable regularized class association rules algorithm for 

classification in a categorical data space, Inform. Sci., 483 (2019), 313–331. 

https://doi.org/10.1016/j.ins.2019.01.047 

43. F. Thabtah, P. Cowling, Y. Peng, MCAR: multi-class classification based on association rule. 

In The 3rd ACS/IEEE International Conference on Computer Systems and Applications, (2005), 

33. https://doi.org/10.1109/AICCSA.2005.1387030 

44. K. Mittal, G. Aggarwal, P. Mahajan, A comparative study of association rule mining techniques 

and predictive mining approaches for association classification, I. J. Adv. Res. Comput. Sci., 8 

(2017). 

45. J. Allaire, RStudio: integrated development environment for R, Boston MA, 770 (2012), 165–171. 

46. W. Gardner, R. Maliki, S. M. Cutts, B. W. Muir, D. Ballabio, D. A. Winkler, et al., Self-organizing 

map and relational perspective mapping for the accurate visualization of high-dimensional 

hyperspectral data, Anal. Chem., 92 (15), 10450–10459. 

https://doi.org/10.1021/acs.analchem.0c00986 

47. I. Izonin, R. Tkachenko, N. Shahovska, N. Lotoshynska, The additive input-doubling method 

based on the SVR with nonlinear kernels: small data approach, Symmetry, 13 (2021), 612. 

https://doi.org/10.3390/sym13040612 

48. I. Izonin, R. Tkachenko, I. Droniuk, P. Tkachenko, M. Gregus, M. Rashkevych, Predictive 

modeling based on small data in clinical medicine: RBF-based additive input-doubling method, 

Math. Biosci. Eng., 31 (2021), 2599. https://doi.org/10.3934/mbe.2021132 

 

©2022 the Author(s), licensee AIMS Press. This is an open access 

article distributed under the terms of the Creative Commons 

Attribution License (http://creativecommons.org/licenses/by/4.0) 

https://doi.org/10.1145/3054925
https://doi.org/10.1002/widm.1249
https://doi.org/10.1016/j.compeleceng.2013.11.024
https://doi.org/10.1016/j.csda.2019.106839
https://doi.org/10.2478/cait-2019-0001
https://doi.org/10.1016/j.ins.2019.01.047
http://dx.doi.org/10.1109/AICCSA.2005.1387030
https://doi.org/10.3390/sym13040612
https://doi.org/10.3934/mbe.2021132

