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Abstract: The dynamical behaviors of the quorum sensing (QS) system are closely related to the
release drugs and control the PH value in microorganisms and plants. However, the effect of the main
molecules AiiA, LuxI, H2O2, and time delayed individual and combinatorial perturbation on the QS
system dynamics and the above-mentioned biological phenomena is still unclear, which are seen as
a key consideration in our paper. This paper formulates a QS computational model by incorporating
these several substances. First, for the protein production time delay, a critical value is given by Hopf
bifurcation theory. It is found that a larger time delay can lead to a larger amplitude and a longer
period. This indicates that the length of time for protein synthesis has a regulatory effect on the release
of drugs from the bacterial population. Second, hen the concentrations of AiiA, LuxI, and H2O2 is
modulated individually, the QS system undergoes periodic oscillation and bistable state. Meanwhile,
oscillatory and bistable regions can be significantly affected by simultaneously perturbing any two
parameters related to AiiA, LuxI, and H2O2. This means that the individual or simultaneous changes
of the three intrinsic molecular concentrations can effectively control the drugs release and the PH
value in microorganisms and plants. Finally, the sensitivity relationship between the critical value of
the delay and AiiA, LuxI, H2O2 parameters is analyzed.
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1. Introduction

Quorum sensing (QS) is a signaling system that senses bacterial population density and coordinates
gene expression by secreting small diffusible autoinducer signaling molecules [1–5]. Autoinducers
are also well-known signaling molecules, which can diffuse into the extracellular space and provide
a communication mechanism for cell aggregation [6, 7]. Acyl-homoserine lactone (AHL) is a com-
monplace autoinducer chemical signaling molecule in the QS system, which consists of a homoserine

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022225


4813

lactone (HSL) loop carrying acyl chains of length C4 to C18 [8] and can be produced by LuxI enzymat-
ically [9]. Moreover, there are many differences in the production and diffusion of AHL autoinducer
between low cell density (LCD) and high cell density (HCD). At LCD, LuxI is expressed at a basal
level. The autoinducer AHL synthesized as a result of LuxI expression does not accumulate in the
cell, but instead rapidly diffuses out. When population density rises (HCD), AHL accumulates in
the cell owing to the lowered diffusion gradient across the cell membrane [10]. The detection of the
minimum stimulation concentration threshold of AHL will cause changes in gene expression. As we
know, bacteria control the gene expression in response to changes in cell density and species complex-
ity through the QS mechanism. In many cases, bacterial communities can recognize themselves and
foreign objects, which is very beneficial, especially in symbiosis, niche adaptation, and production of
secondary metabolites [11]. When the bacterial colony perform these beneficial activities, they will
work cooperatively and synchronously [12].

Dynamical behaviors are commonplace in QS system, which controls various aspects of biological
events [13–16]. Extensive evidences show that the urease PH value of plants and microorganisms and
drug delivery depend on the oscillation and bistable states of the QS system. Quorum sensing of plants
and microorganisms is accomplished by the diffusion of enzyme particles. The diffusion of different
enzyme loads corresponds to different states of quorum sensing. The PH exhibits an s-shaped switch
when high enzyme load, oscillations when intermediate enzyme load, and a hysteresis switch when low
enzyme load [17]. Furthermore, many scientists are committed to building a QS circuit for purpose
to prompt bacterial populations to carry medicine to treat disease [18, 19]. Research has shown that
minor changes in the amplitude and period of the QS circuit can severely affect the dose and time of
the bacteria spilling the drug on the target [20].

Previously, some Repressilator models (TetR CI LacI) have been proposed [21–28], which showed
some oscillatory dynamics from a mathematical point of view. However, none of these models explain
which phenomena may be affected by changes in the concentration of some important substances in
the QS system. In addition, some evidences indicate that LuxI, AiiA and H2O2 are key substances
involved in quorum sensing [29–32]. In addition, a problem often encountered is that there may be a
wide range of time intervals in the process of gene expression. However, in previous studies, for the
sake of simplicity, many models implicitly assumed that the gene expression during the QS regulation
process was transient. In this regard, it is important to note that most gene expression time delays are
estimated to be about 15–27 minutes, including about 10–20 minutes for transcription, about 4 minutes
for transport out of the nucleus, and about 1–3 minutes for translation [33, 34]. Therefore, ignoring
the impact of such a time delay in the QS module is disadvantageous [35]. However, considering the
effects of combinatorial perturbations to LuxI, AiiA, H2O2, and delay on the system dynamics is not
easily achieved due to the complexity of the network. Moreover, most studies fix the number of multi-
cells and analyze the regulation effect of internal elements on a certain protein [23–25, 28]. Thus, here
we chose a research approach similar to [25] to consider the dynamical effects of the co-regulation
of these three substances and delays on single cell. Therefore, a new single cell computational model
containing these substances and delay is established on the basis of the original model [28]. To simplify
the analysis, all time delays are assumed to be the same. When they are different, similar analysis can
be performed.

To sum up, the novelty of this paper is mainly reflected in the following aspects. First, the indi-
vidual effect of time delay on the QS system is investigated. The stability and oscillations of the QS
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system are studied for the system with and without delay. Secondly, the individual effects of the three
substances AiiA, LuxI, and H2O2 on the QS system dynamics are discussed. Furthermore, based on
two-parameter bifurcation analysis, the impact of the combinatorial perturbation of AiiA, LuxI and
H2O2 on oscillatory behaviors of the QS system is performed. Finally, the influence of combinatorial
of perturbation of AiiA, LuxI, H2O2 and delay on QS system is analyzed. That is, the sensitivity of the
delay bifurcation value τ0 to AiiA, LuxI and H2O2 is systematically discussed. Interestingly, the effects
of changes in the concentration of these internal substances on the drug release and the PH value is
also revealed.

2. Dynamic modelling
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Figure 1. The diagram is the core circuit of QS network. The green arrows represent pro-
motion, and the black lines with blunt ends represent inhibition. The light blue dashed
double-headed arrows mean that the signal molecule AHL is a small molecule with diffu-
sion function. Two proteins LuxI, AiiA, and H2O2 molecular are introduced into the initial
mathematical model. Two substances LuxI and AiiA are positive and negative regulator of
the signal molecule AHL, respectively. The important role of H2O2 is to promote the for-
mation of LuxI and AiiA. To better understand the relationship between each term in the
mathematical model and the network, the corresponding terms are displayed besides the reg-
ulations.

In this paper, we use the dimensional repressilator model (LacI, CI, TetR) and AHL as the original
model [28]. To capture the important impact of the transcriptional processes on the QS system, we
convert them into a time delay. Crucially, the time delay of protein synthesis is objective, which is a
complex and time-consuming process [36]. In addition, AiiA and LuxI are mainly used to inhibit and
generate AHLs, which are signal molecules for communication between bacterial populations [29,30].
In comparison, H2O2 is relatively rare in quorum sensing interaction networks. However, studies have
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shown that H2O2 has a significant effect on inducing the production of AiiA and LuxI [32]. To reveal
their key roles in dynamics and regulatory mechanisms, we incorporate them into the QS network and
analyze their effects on dynamics and biological phenomena. The new QS circuit is shown in Figure
1. Based on these descriptions, the mathematical model is construed as follows:

ẋ = a
[
−x(t) + eKn

m
δm(Kn

m+(z(t−τ))n)

]
,

ẏ = b
[
−y(t) +

eKn
p

δp(Kn
p+(x(t−τ))n)

]
,

ż = c
[
−z(t) +

eKn
f

δ f
(
Kn

f+(y(t−τ))n
) + o(w(t−τ))n

Jn+(w(t−τ))n +
Q(v(t−τ))n

Mn+(v(t−τ))n +
kp(t)

N+p(t)

]
,

ẇ = m
[
−w(t) + u(z(t−τ))n

qn+(z(t−τ))n +
ξ(δi+s(t))

V+s(t)

]
,

v̇ = γ
[
−v(t) + d(z(t−τ))n

δn+(z(t−τ))n +
µ(δl+s(t))

H+s(t)

]
,

ṗ = − f p(t) + gy(t − τ) − rw(t−τ)p(t)
h+p(t) +

βv(t−τ)p(t)
α+p(t) − l(p(t) − U),

ṡ = ρv(t−τ)s(t)
σ+s(t) − ϕs(t).

(2.1)

Here, x, y, z, w, v, p, and s represent the concentrations of TetR, CI, LacI, AiiA, LuxI, AHL, and
H2O2 at time t, respectively. First, protein levels of TetR, CI, and LacI are explained. The nonlinear
functions eKn

m
δm(Kn

m+(z(t−τ))n) ,
eKn

p

δp(Kn
p+(x(t−τ))n) and

eKn
f

δ f (Kn
f+(y(t−τ))n) respectively indicate that the TetR is inhibited

by LacI, CI is inhibited by TetR, and LacI is inhibited by CI, which constitutes a negative feedback
loop. These terms are consistent with the original model. Studies have shown that AHL degradation
enzymes AiiA and LuxI have a certain promotion effect on LacI in the QS system [37]. The promotion
of AiiA on LacI is reflected by the term o(w(t−τ))n

Jn+(w(t−τ))n in the third equation. These two terms represent
protein-protein interactions, and we choose the Hill function modeling method similar to the original
model. The fourth term Q(v(t−τ))n

Mn+(v(t−τ))n represents that the promotion of LuxI on LacI. The term kp(t)
N+p(t)

represents LacI is promoted by AHL, which is consistent with the original model.
Next, protein levels of AiiA and LuxI are explained. The term u(z(t−τ))n

qn+(z(t−τ))n represents that AiiA is
promoted by LacI with rate u. The term d(z(t−τ))n

δn+(z(t−τ))n reflects that LuxI is promoted by LacI with rate d.
However, H2O2 promotes AiiA and LuxI mainly in an unique way. Under normal conditions, ArcA
partially inhibits Lux promoter. However, it is inactivated under oxidative conditions triggered by
H2O2, alleviating the inhibition of Lux and increasing AiiA and LuxI [32]. In addition, the evidence
shows that the production of H2O2 on AiiA can be controlled by fi(Z) = (δi + Z)/(ci + Z) [38]. Based
on these chemical reactions, the promotion effects of H2O2 on AiiA and LuxI are represented by two
functions, i.e., ξ(δi+s(t))

V+s(t) and µ(δl+s(t))
H+s(t) , with rates ξ and µ, respectively.

Finally, the levels of AHL and H2O2 are explained. The term − rw(t−τ)p(t)
h+p(t) represents that AHL is

hydrolyzed by AiiA. The term βv(t−τ)p(t)
α+p(t) represents that AHL is promoted by LuxI. Study has shown

that AiiA and LuxI have a binding process with AHL [32]. Therefore, we treat the process as a form
of multiplication, which is similar to most kinetic modeling. l refers to the diffusion coefficient of
AHL out of the cell membrane. Here, U refers to the extracellular concentration of AHL. In fact,

U = N
Q

N∑
i=1

pi, N is the total cell number, Q is the intensity of communication. However, here we

consider the regulation of the above three molecules and delay on the single cell dynamics, so choose
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Table 1. Parameters are used for calculation and simulation.

Parameters Descriptions Values References
a The relative inverse lifetime of TetR protein 0.1 min−1 [28]
b The relative inverse lifetime of CI protein 0.1 min−1 [28]
c The relative inverse lifetime of LacI protein 0.1 min−1 [28]
m The relative inverse lifetime of AiiA protein 0.1 min−1 [28]
γ The relative inverse lifetime of LuxI protein 0.1 min−1 [28]
δm TetR mRNA degradation rate 1 min−1 [28]
δp CI mRNA degradation rate 1 min−1 [28]
δ f LacI mRNA degradation rate 1 min−1 [28]
Km Dissociation constant of TetR protein 1 nM [28]
Kp Dissociation constant of CI protein 1 nM [28]
K f Dissociation constant of LacI protein 1 nM [28]
e The maximum regulator strength 8 nM· min−1 [28]
o The production rate of LacI by AiiA 0.5 nM Estimated
J Michaelis constant of LacI dependent AiiA 0.5 nM [37]
Q The production rate of LacI by LuxI 0.5 nM Estimated
M Michaelis constant of LacI dependent LuxI 0.5 nM [37]
k The AHL-induced synthesis rate for LacI 20 nM [37]
N Michaelis constant of LacI dependent AHL 1 nM [28]
u The production rate of AiiA by LacI 1 nM Estimated
q Michaelis constant of AiiA dependent LacI 0.3 nM [37]
ξ The production rate of AiiA by H2O2 20 nM [37]
δi AiiA promoter (ptopA) be activated by H2O2 0 nM [38]
V Michaelis constant of AiiA dependent H2O2 1 nM [28]
d The the production rate of LuxI by LacI 1 nM Estimated
δ Michaelis constant of LuxI dependent LacI 0.5 nM [37]
µ The production rate of LuxI by H2O2 18 nM [37]
δl LuxI promoter (plux) be activated by H2O2 0 nM Estimated
H Michaelis constant of LuxI dependent H2O2 1 nM [28]
n Hill coefficient 2 [28]
f Decay rate of Auto-inducer AHL 1 min−1 [37]
g The CI-induced synthesis rate for AHL 0.025 min−1 [32]
r The degradation rate of AHL induced by AiiA 1 min−1 Estimated
h Michaelis constant of AHL dependent AiiA 1 nM [32]
β The AHL production rate induced by LuxI 1 min−1 [32]
α Michaelis constant of AHL dependent AiiA 1 min−1 [32]
l The diffusion coefficient for AHL 2 min−1 [32]

U The extracellular concentration of AHL 0 nM [32]
ρ The LuxI-induced production for H2O2 1 min−1 [32]
σ Michaelis constant of H2O2 dependent LuxI 0.1 nM [32]
ϕ Decay rate of H2O2 1 min−1 [32]
τ Delay for gene expression 15 − 27 min [33, 34]
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the approach similar to [25], i.e., U = 0. In other words, we mainly study the single cell dynamics and
omit the effects of cell-cell communication. Studies have shown that LuxI can promote the production
of H2O2, and LuxI also has a binding process with H2O2 [32]. Therefore, the promotion effect of LuxI
to H2O2 is represented by ρv(t−τ)s(t)

σ+s(t) .
The complete list of parameter descriptions and default values is given in Table 1. We adopt some

parameter values within the ranges, which are used in other similar quorum sensing studies [28,32,37,
38]. Other non-reference parameter values are selected within a certain range, which can be referred
to [39]. The reason for choosing these parameters accurately is to approach the production rate and
degradation rate of most proteins in the QS network. In the model, positive regulation, i.e., promotion,
and negative regulation including degradation or inhibition are all represented by Hill functions. In
addition, here, the time delay τ of each protein synthesis in this network is considered to be the same.
The formation of a protein requires a certain time τ, when another protein or substance interacts with
it, the starting time is t − τ, which is similar to the introduction principle of time delay in p38 and p53
network [34, 40].

3. Theoretical and numerical results

In the section, we will focus on the influence the protein synthesis time delay and related parameters
of AiiA, LuxI, and H2O2 on the QS network. All theoretical analyses and computer simulations are
given by using XPPAUT, Mathematica and Matlab. All parameter descriptions and default values are
given in Table 1, and are used in all calculations and simulations.

3.1. Theoretical analysis

From the perspective of dynamical system, changes in protein synthesis delays in most systems usu-
ally cause oscillations, which enrich dynamic behavior and increase mathematical complexity. There-
fore, we need to clearly know the critical value of protein synthesis delay, which is the beginning of the
oscillation behavior of the QS system. To this end, oscillatory dynamics of the system (2.1) is analyzed
by using Hopf bifurcation theory. From the viewpoint of biology, only positive equilibria are of inter-
est. It is assumed that system (2.1) has a unique positive equilibrium E∗ = (X∗,Y∗,Z∗,W∗,V∗, P∗, S ∗),
which satisfies the following equation:

a[−X∗ + eKn
m

δm(Kn
m+(Z∗)n) ] = 0,

b[−Y∗ +
eKn

p

δp(Kn
p+(X∗)n) ] = 0,

c[−Z∗ +
eKn

f

δ f (Kn
f+(Y∗)n) +

o(W∗)n

Jn+(W∗)n +
Q(V∗)n

Mn+(V∗)n +
kP∗

N+P∗ ] = 0,

m[−W∗ +
u(Z∗)n

qn+(Z∗)n +
ξ(δi+S ∗)

V+S ∗ ] = 0,
γ[−V∗ + d(Z∗)n

δn+(Z∗)n +
µ(δl+S ∗)

H+S ∗ ] = 0,
− f P∗ + gY∗ − rW∗P∗

h+P∗ +
βV∗P∗

α+P∗ − l(P∗ − U) = 0,
ρV∗S ∗

σ+S ∗ − ϕS
∗ = 0.

(3.1)

From Eq (3.1), replace Y∗, W∗, V∗, P∗ with the equations for Z∗ and substitute them into the third
equation in Eq (3.1).
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Let

H(Z∗) = −Z∗ +
eK2

f

δ f (K2
f + (Y∗)2)

+
o(W∗)2

J2 + (W∗)2 +
Q(V∗)2

M2 + (V∗)2 +
kP∗

N + P∗
,

where

Y∗ =
eK2

p

δp

[
K2

p +
(

eK2
m

δm(K2
m+(Z∗)2)

)2] ,W∗ =
u(Z∗)2

q2 + (Z∗)2 +

ξ

δi +

(
d(Z∗)2

δ2+(Z∗)2

)
ρ+uρ+σϕ

ϕ


V +

(
d(Z∗)2

δ2+(Z∗)2

)
ρ+uρ+σϕ

ϕ

,

V∗ =
ϕ

σ + ( d(Z∗)2

δ2+(Z∗)2

)
ρ+uρ+σϕ

ϕ


ρ

, P∗ =
−A2 ±

√
A2

2 − 4A1A3

2A1
,

where

A1 = −( f + l), A2 = gY∗ + vρ − f − l −W∗, A3 = gY∗,

then

H(0) =
eK2

f

δ f (K2
f + (Y∗)2)

+
o(W∗)2

J2 + (W∗)2 +
Q(V∗)2

M2 + (V∗)2 +
kP∗

N + P∗
,

where

Y∗ =
eK2

p

δp

[
K2

p +
(

e
δm

)2] > 0,W∗ =
ξ
(
δi +

uρ+σϕ
ϕ

)
V +
(

uρ+σϕ
ϕ

) > 0,

V∗ =
ϕ
(
σ + uρ+σϕ

ϕ

)
ρ

> 0, P∗ =
−A2 ±

√
A2

2 − 4A1A3

2A1
.

Therefore, H(0) > 0 if and only if −A2 ±

√
A2

2 − 4A1A3 < 0. And limZ∗→+∞H(Z∗) = −∞.
Thus, there is at least one positive equilibrium point for the system (2.1) under this condition.
Moreover

H′(Z∗) = −1 +
d
(

eK2
f

δ f (K2
f+(Y∗)2)

)
dZ∗

+
d
(

o(W∗)2

J2+(W∗)2

)
dZ∗

+
d
(

Q(V∗)2

M2+(V∗)2

)
dZ∗

+
d
(

kP∗
N+P∗

)
dZ∗

,

Let

O0 =

d
(

eK2
f

δ f (K2
f+(Y∗)2)

)
dZ∗

+
d
(

o(W∗)2

J2+(W∗)2

)
dZ∗

+
d
(

Q(V∗)2

M2+(V∗)2

)
dZ∗

+
d
(

kP∗
N+P∗

)
dZ∗

.

Therefore, the system (2.1) has a unique positive equilibrium point if and only if O0 < 1.
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Let x̄(t) = x(t − τ) − X∗, ȳ(t) = y(t − τ) − Y∗, z̄(t) = z(t − τ) − Z∗, w̄(t) = w(t − τ) − W∗, v̄(t) =
v(t − τ) − V∗, p̄(t) = p(t) − P∗, and s̄(t) = s(t) − S ∗, x̄, ȳ, z̄, w̄, v̄, p̄, s̄ are still denoted by x, y, z, w, v,
p, s, respectively. Therefore, the linearized equation of system (2.1) at the positive equilibrium point
E∗ = (X∗,Y∗,Z∗,W∗,V∗, P∗, S ∗) is given:

ẋ = −ax(t) + b11z(t − τ),
ẏ = −by(t) + b12x(t − τ),
ż = −cz(t) + b13y(t − τ) + b14w(t − τ) + b15v(t − τ) + b16 p(t),
ẇ = −mw(t) + b17z(t − τ) + b18s(t),
v̇ = −γv(t) + b19z(t − τ) + b20s(t),
ṗ = [−( f + l + b21) + b22]p(t) + gy(t − τ) − b23w(t − τ) + b24v(t − τ),
ṡ = b25v(t − τ) + (b26 − 1)s(t),

(3.2)

where

b11 = −
2aeZ∗

(1 + (Z∗)2)2 , b12 = −
2beX∗

(1 + (X∗)2)2 , b13 = −
2ceY∗

(1 + (Y∗)2)2 ,

b14 =
2coJ2W∗

(J2 +W∗2)2 , b15 =
2cQM2V∗

(M2 + V∗2)2 , b16 =
ck

(1 + P∗)2 ,

b17 =
2muq2Z∗

(q2 + Z∗2)2 , b18 =
ξm

(1 + P∗)2 , b19 =
2γdδ2Z∗

(δ2 + Z∗2)2 ,

b20 =
µγ

(1 + P∗)2 , b21 =
hrW∗

(h + P∗)2 , b22 =
αβV∗

(h + P∗)2 ,

b23 =
rP∗

h + P∗
, b24 =

βP∗

α + P∗
, b25 =

ρS ∗

σ + S ∗
, b26 =

σρV∗

(σ + S ∗)2 ,

The characteristic equation of the linearized system (3.2) is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ + a 0 −b11e−λτ 0 0 0 0
−b12e−λτ λ + b 0 0 0 0 0

0 −b13e−λτ λ + c −b14e−λτ −b15e−λτ −b16 0
0 0 −b17e−λτ λ + m 0 0 −b18

0 0 −b19e−λτ 0 λ + γ 0 −b20

0 −ge−λτ 0 b23e−λτ −b24e−λτ λ + U 0
0 0 0 0 −b25e−λτ 0 λ + F

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (3.3)

where

U = ( f + l + b21) − b22, F = 1 − b26.

Then the following exponential polynomial equation is obtained

λ7 + P1λ
6 + P2λ

5 + P3λ
4 + P4λ

3 + P5λ
2 + P6λ + P7

+(R1λ
2 + R2λ + R3)e−4λτ + (Q1λ

4 + Q2λ
3 + Q3λ

2

+Q4λ + Q5)e−3λτ + (H1λ
5 + H2λ

4 + H3λ
3 + H4λ

2

+H5λ + H6)e−2λτ + (L1λ
5 + L2λ

4 + L3λ
3 + L4λ

2

+L5λ + L6)e−λτ = 0,

(3.4)
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where

P1 = a + b + c + m + γ + U + F,

P2 = −(−ab − ac − bc + aF + bF + cF − am − bm − cm + Fm − ar − br − cr

+Fr − mr − aU − bU − cU + FU − mU − rU),
P3 = −(−abc + abF + acF + bcF − abm − acm − bcm + aFm + bFm + cFm

−abr − acr − bcr + aFr + bFr + cFr − amr − bmr − cmr + Fmr

−abU − acU − bcU + aFU + bFU + cFU − amU − bmU − cmU + FmU

−arU − brU − crU + FrU − mrU),
P4 = −(abcF − abcm + abFm + acFm + bcFm − abcr + abFr + acFr + bcFr

−abmr − acmr − bcmr + aFmr + bFmr + cFmr − abcU + abFU

+acFU + bcFU − abmU − acmU − bcmU + aFmU + bFmU

+cFmU − abrU − acrU − bcrU + aFrU + bFrU + cFrU − amrU

−bmrU − cmrU + FmrU),
P5 = −(abcFm + abcFr − abcmr + abFmr + acFmr + bcFmr + abcFU

−abcmU + abFmU + acFmU + bcFmU − abcrU + abFrU + acFrU

+bcFrU − abmrU − acmrU − bcmrU + aFmrU + bFmrU + cFmrU),
P6 = −(abcFmr + abcFmU + abcFrU − abcmrU + abFmrU + acFmrU

+bcFmrU),
P7 = −(abcFmrU),R1 = −(−b11b12b13b20b25),
R2 = −(−mb11b12b13b20b25 − Ub11b12b13b20b25 − gb11b12b16b20b25),
R3 = −(−mUb11b12b13b20b25 − gmb11b12b16b20b25),Q1 = −(b11b12b13),
Q2 = −(−Fb11b12b13 + mb11b12b13 + γb11b12b13 + Ub11b12b13 + gb11b12b16

+b14b18b19b25 − b14b17b20b25),
Q3 = −(−Fmb11b12b13 − Fγb11b12b13 + mγb11b12b13 − FUb11b12b13

+mUb11b12b13 + γUb11b12b13 − Fgb11b12b16 + gmb11b12b16

+gγb11b12b16 + ab14b18b19b25 + bb14b18b19b25 + Ub14b18b19b25

−ab14b17b20b25 − bb14b17b20b25 − Ub14b17b20b25

−b16b18b19b23b25 + b16b17b20b23b25),
Q4 = −(−Fmγb11b12b13 − FmUb11b12b13 − FγUb11b12b13 + mγUb11b12b13

−Fgmb11b12b16 − Fgγb11b12b16 + gmγb11b12b16 + abb14b18b19b25

+aUb14b18b19b25 + bUb14b18b19b25 − abb14b17b20b25 − aUb14b17b20b25

−bUb14b17b20b25 − ab16b18b19b23b25 − bb14b18b19b25 + bb14b18b19b25

+Ub14b18b19b25 − ab14b17b20b25 − bb16b18b19b23b25 + ab16b17b20b23b25

+bb16b17b20b23b25),
Q5 = −(−FmγUb11b12b13 − Fgmγb11b12b16 + abUb14b18b19b25

−abUb14b17b20b25 − abUb14b17b20b25 − abb16b18b19b23b25 + bb16b17b20b23b25),
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H1 = −(b14b17 + b15b19),H2 = −(ab14b17 + bb14b17 − Fb14b17 + γb14b17 + Ub14b17

+ab15b19 + bb15b19 − Fb15b19 + mb15b19 + Ub15b19 − b16b17b23 + b16b19b24),
H3 = −(abb14b17 − aFb14b17 − bFb14b17 + arb14b17 + brb14b17 − Frb14b17

+aUb14b17 + bUb14b17 − FUb14b17 + rUb14b17 + abb15b19 − aFb15b19

−bFb15b19 + amb15b19 + bmb15b19 − Fmb15b19 + aUb15b19 + bUb15b19

−FUb15b19 + mUb15b19 − ab16b17b23 − bb16b17b23 + Fb16b17b23

−rb16b17b23 + ab16b19b24 + bb16b19b24 − Fb16b19b24 + mb16b19b24),
H4 = −(−abFb14b17 + abrb14b17 − aFrb14b17 − bFrb14b17 + abUb14b17

−aFUb14b17 − bFUb14b17 + arUb14b17 + brUb14b17 − FrUb14b17

−abFb15b19 + abmb15b19 − aFmb15b19 − bFmb15b19 + abUb15b19

−aFUb15b19 − bFUb15b19 + amUb15b19 + bmUb15b19 − FmUb15b19

−abb16b17b23 + aFb16b17b23 + bFb16b17b23 − arb16b17b23 − brb16b17b23

+Frb16b17b23 + abb16b19b24 − aFb16b19b24 − bFb16b19b24

+amb16b19b24 + bmb16b19b24 − Fmb16b19b24),
H5 = −(−abFrb14b17 − abFUb14b17 + abrUb14b17 − aFrUb14b17 − bFrUb14b17

−abFmb15b19 − abFUb15b19 + abmUb15b19 − aFmUb15b19 − bFmUb15b19

+abFb16b17b23 − abrb16b17b23 + aFrb16b17b23 + bFrb16b17b23 − abFb16b19b24

+abmb16b19b24 − aFmb16b19b24 − bFmb16b19b24),
H6 = −(−abFrUb14b17 − abFmUb15b19 + abFrb16b17b23 − abFmb16b19b24),
L1 = −(b20b25), L2 = −(ab20b25 + bb20b25 + cb20b25 + mb20b25 + Ub20b25),
L3 = −(abb20b25 + acb20b25 + bcb20b25 + amb20b25 + bmb20b25 + cmb20b25

+aUb20b25 + bUb20b25 + cUb20b25 + mUb20b25),
L4 = −(abcb20b25 + abmb20b25 + acmb20b25 + bcmb20b25 + abUb20b25 + acUb20b25

+bcUb20b25 + amUb20b25 + bmUb20b25 + cmUb20b25), L6 = −(abcmUb20b25),
L5 = −(abcmb20b25 + abcUb20b25 + abmUb20b25 + acmUb20b25 + bcmUb20b25),

It is known that E∗ = (X∗,Y∗,Z∗,W∗,V∗, P∗, S ∗) is locally asymptotically stable if and only if all
roots of Eq (3.4) have strictly negative real parts. But the equilibrium will lose its stability if a pair
of purely imaginary roots appear. To study the roots of Eq (3.4) with the time delay, we consider two
cases, i.e., the system with and without the time delay.

Case I : In the absence of the delay, i.e., τ = 0, Eq (3.4) can be simplified into the form

λ7 + a1λ
6 + a2λ

5 + a3λ
4 + a4λ

3 + a5λ
2 + a6λ + a7 = 0, (3.5)

where

a1 = P1, a2 = (P2 + H1 + L1), a3 = (P3 + H2 + L2 + Q1),
a4 = (P4 + Q2 + H3 + L3), a5 = (P5 + Q3 + H4 + L4 + R1),
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a6 = (P6 + H5 + Q4 + L5 + R2), a7 = (R3 + P7 + H6 + L6 + Q5).

By the well-known Routh-Hurwitz criterion, a set of necessary and sufficient conditions for all roots
of Eq (3.5) having negative real parts can be expressed as:

(H1)∆1 = a1 > 0,∆2 =

∣∣∣∣∣∣a1 1
a3 a2

∣∣∣∣∣∣ > 0,∆3 =

∣∣∣∣∣∣∣∣∣
a1 1 0
a3 a2 a1

a5 a4 a3

∣∣∣∣∣∣∣∣∣ > 0,∆4 =

∣∣∣∣∣∣∣∣∣∣∣
a1 1 0 0
a3 a2 a1 1
a5 a4 a3 a2

a7 a6 a5 a4

∣∣∣∣∣∣∣∣∣∣∣ > 0,

∆5 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0
a3 a2 a1 1 0
a5 a4 a3 a2 a1

a7 a6 a5 a4 a3

0 0 a7 a6 a5

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,∆6 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0 0
a3 a2 a1 1 0 0
a5 a4 a3 a2 a1 1
a7 a6 a5 a4 a3 a2

0 0 a7 a6 a5 a4

0 0 0 0 a7 a6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0,

∆7 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 0 0 0
a3 a2 a1 1 0 0 0
a5 a4 a3 a2 a1 1 0
a7 a6 a5 a4 a3 a2 a1

0 0 a7 a6 a5 a4 a3

0 0 0 0 a7 a6 a5

0 0 0 0 0 0 a7

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
> 0.

The equilibrium point E∗ = (X∗,Y∗,Z∗,W∗,V∗, P∗, S ∗) is locally asymptotically stable if and only
if (H1) ∆i > 0 (i = 1, · · · , 7) holds. In order to verify whether the above inequality holds under
the parameter values of Table 1, we substitute them into the above formulas. We get ∆1 = 10.2466,
∆2 = 43.2115, ∆3 = 114.8, ∆4 = 140.696, ∆5 = 157.22, ∆6 = 3.47169, ∆7 = 0.026455. Therefore,
when τ = 0, the system (2.1) is asymptotically stable under the parameters in Table 1. The theoretical
analysis is consistent with the numerical simulation in Figure 2.

As mentioned earlier, the quorum-sensing oscillatory behavior can start the bacterial population to
lyse the drug and release it. This means that when other conditions are fixed and all protein synthesis
does not require a specific time, the phenomenon of bacteria carrying drugs to the target cannot be
initiated. In addition, the protein synthesis time is regarded as instantaneous, which violates the actual
biological meaning.

Case II : In the presence of the delay with τ > 0, Eq (3.4) has the form

−λ7 + P1λ
6 + P2λ

5 + P3λ
4 + P4λ

3 + P5λ
2 + P6λ + P7

+(R1λ
2 + R2λ + R3)e−4λτ + (Q1λ

4 + Q2λ
3 + Q3λ

2

+Q4λ + Q5)e−3λτ + (H1λ
5 + H2λ

4 + H3λ
3 + H4λ

2

+H5λ + H6)e−2λτ + (L1λ
5 + L2λ

4 + L3λ
3 + L4λ

2

+L5λ + L6)e−λτ = 0,

(3.6)

It is assumed that ±iω (ω > 0) are a pair of pure imaginary roots of Eq (3.6), which implies that ω
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must satisfy the following equation

P7 + iP6ω − P5ω
2 − iP4ω

3 + P3ω
4 + iP2ω

5 − P1ω
6 + iω7

+(R3 + iR2ω − R1ω
2)(cos(4ωτ) − i sin(4ωτ)) + (Q5

+iQ4ω − Q3ω
2 − iQ2ω

3 + Q1ω
4)(cos(3ωτ) − i sin(3ωτ))

+(H6 + iH5ω − H4ω
2 − iH3ω

3 + H2ω
4 + iH1ω

5)∗
(cos(2ωτ) − i sin(2ωτ)) + (L6 + iL5ω − L4ω

2 − iL3ω
3

+L2ω
4x + iL1ω

5)(cos(ωτ) − i sin(ωτ)) = 0.

(3.7)

Separating real and imaginary parts, we get
(L6 − L4ω

2 + L2ω
4) cos(ωτ) + (L5ω − L3ω

3 + L1ω
5) sin(ωτ)

= S 1ω + S 2ω
2 + S 3ω

3 + S 4ω
4 + S 5ω

5 + P1ω
6 + J1,

(L5ω − L3ω
3 + L1ω

5) cos(ωτ) + (−L6 + L4ω
2 − L2ω

4) sin(ωτ)
= S 6ω + S 7ω

2 + S 8ω
3 + S 9ω

4 + S 10ω
5 + J2,

(3.8)

where

S 1 = −[R2 sin(4ωτ) + Q4 sin(3ωτ) + H5 sin(2ωτ)],
S 2 = −[−R1 cos(4ωτ) − Q3 cos(3ωτ) − H4 cos(2ωτ) − P5],
S 3 = −[−Q2 sin(3ωτ) − H3 sin(2ωτ)], S 4 = −[Q1 cos(3ωτ) + H2 cos(2ωτ) + P3],
S 5 = [H1 sin(2ωτ)], J1 = −[R3 cos(4ωτ) + Q5 cos(3ωτ) + H6 cos(2ωτ) + P7],
S 6 = −[R2 cos(4ωτ) + Q4 cos(3ωτ) + H5 cos(2ωτ) + P6],
S 7 = −[R1 sin(4ωτ) + Q3 sin(3ωτ) + H4 sin(2ωτ)],
S 8 = −[−Q2 cos(3ωτ) − H3 cos(2ωτ) − P4], S 9 = −[−Q1 sin(3ωτ) − H2 sin(2ωτ)],
S 10 = −[H1 cos(2ωτ) + P2], J2 = −[−R3 sin(4ωτ) − Q5 sin(3ωτ) − H6 sin(2ωτ).

By simple calculation, the following equations are obtained

cos(ωτ) =
L6J1 + T1ω + T2ω

2 + T3ω
3 + T4ω

4 + T5ω
5

(L6)2 + E1ω2 + E2ω4 + E3ω6 + E4ω8 + (L1)2ω10

+
T6ω

6 + T7ω
7 + T8ω

8 + T9ω
9 + T10ω

10

(L6)2 + E1ω2 + E2ω4 + E3ω6 + E4ω8 + (L1)2ω10 ,

sin(ωτ) =
−L6J2 + T11ω + T12ω

2 + T13ω
3 + T14ω

4 + T15ω
5

(L6)2 + E1ω2 + E2ω4 + E3ω6 + E4ω8 + (L1)2ω10

+
T16ω

6 + T17ω
7 + T18ω

8 + T19ω
9 + T20ω

10 + T21ω
11

(L6)2 + E1ω2 + E2ω4 + E3ω6 + E4ω8 + (L1)2ω10 ,

(3.9)

where

E1 = L2
5 − 2L4L6, E2 = L2

4 − 2L3L5 + 2L2L6,

E3 = L2
3 − 2L2L4 + 2L1L5, E4 = L2

2 − 2L1L3,

T1 = J2L5 + L6S 1,T2 = −J1L4 + L6S 2 + L5S 6,

T3 = −J2L3 − L4S 1 + L6S 3 + L5S 7,

T4 = J1L2 − L4S 2 + L6S 4 − L3S 6 + L5S 8,
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T5 = J2L1 + L2S 1 − L4S 3 + L6S 5 − L3S 7 + L5S 9,

T6 = L6P1 + L5S 10 + L2S 2 − L4S 4 + L1S 6 − L3S 8,

T7 = L2S 3 − L4S 5 + L1S 7 − L3S 9,

T8 = −L4P1 − L3S 10 + L2S 4 + L1S 8,

T9 = L2S 5 + L1S 9,T10 = L2P1 + L1S 10,T11 = J1L5 − L6S 6,

T12 = J2L4 + L5S 1 − L6S 7,T13 = −J1L3 + L5S 2 + L4S 6 − L6S 8,

T14 = −J2L2 − L3S 1 + L5S 3 + L4S 7 − L6S 9,

T15 = J1L1 − L6S 10 − L3S 2 + L5S 4 − L2S 6 + L4S 8,

T16 = L1S 1 − L3S 3 + L5S 5 − L2S 7 + L4S 9,

T17 = L5P1 + L4S 10 + L1S 2 − L3S 4 − L2S 8,

T18 = L1S 3 − L3S 5 − L2S 9,T19 = −L3P1 − L2S 10 + L1S 4,

T20 = L1S 5,T21 = L1P1.

Employing cos2(ωτ) + sin2(ωτ) = 1, one can obtain the following equation

N1 + N2ω + N3ω
2 + N4ω

3 + N5ω
4 + N6ω

5 + N7ω
6

+N8ω
7 + N9ω

8 + N10ω
9 + N11ω

10 + N12ω
11 + N13ω

12

+N14ω
13 + N15ω

14 + N16ω
15 + N17ω

16 + N18ω
17 + N19ω

18

+N20ω
19 + N21ω

20 + N22ω
21 + N23ω

22 = 0,

(3.10)

where

N1 = J2
1 L2

6 + J2
2 L2

6 − L4
6,N2 = 2J1L6T1 − 2J2L6T11,

N3 = −2E1L2
1 − 2E1E4 − 2E1L2

6 + T 2
1 + T 2

11 − 2J2L6T12 + 2J1L6T2,

N4 = 2T11T12 − 2J2L6T13 + 2T1T2 + 2J1L6T3,

N5 = −E1 − 2E2L2
6 + T 2

12 + 2T11T13 − 2J2L6T14 + T 2
2 + 2T1T3 + 2J1L6T4,

N6 = 2T12T13 + 2T11T14 − 2J2L6T15 + 2T2T3 + 2T1T4 + 2J1L6T5,

N7 = −2E1E2 − 2E3L2
6 + T 2

13 + 2T12T14 + 2T11T15 − 2J2L6T16 + T 2
3

+2T2T4 + 2T1T5 + 2J1L6T6,

N8 = 2T13T14 + 2T12T15 + 2T11T16 − 2J2L6T17 + 2T3T4 + 2T2T5 + 2T1T6

+2J1L6T7,

N9 = −2E1E3 − E2
2 − 2E4L2

6 + T 2
14 + 2T13T15 + 2T12T16 + 2T11T17

−2J2L6T18 + T 2
4 + 2T3T5 + 2T2T6 + 2T1T7 + 2J1L6T8,

N10 = 2T14T15 + 2T13T16 + 2T12T17 + 2T11T18 − 2J2L6T19 + 2T4T5

+2T3T6 + 2T2T7 + 2T1T8 + 2J1L6T9,

N11 = −2E2E3 − 2E1L2
1 − 2L2

1L2
6 + 2J1L6T10 + T 2

15 + 2T14T16

+2T13T17 + 2T12T18 + 2T11T19 − 2J2L6T20 + T 2
5 + 2T4T6 + 2T3T7

+2T2T8 + 2T1T9,

N12 = 2T1T10 + 2T15T16 + 2T14T17 + 2T13T18 + 2T12T19 + 2T11T20
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−2J2L6T21 + 2T5T6 + 2T4T7 + 2T3T8 + 2T2T9,

N13 = −E2
3 − 2E2E4 + T 2

16 + 2T15T17 + 2T14T18 + 2T13T19 + 2T10T2

+2T12T20 + 2T11T21 + T 2
6 + 2T5T7 + 2T4T8 + 2T3T9,

N14 = 2T16T17 + 2T15T18 + 2T14T19 + 2T13T20 + 2T12T21 + 2T10T3

+2T6T7 + 2T5T8 + 2T4T9,

N15 = −2E3E4 − 2E2L2
1 + T 2

17 + 2T16T18 + 2T15T19 + 2T14T20 + 2T13T21

+2T10T4 + T 2
7 + 2T6T8 + 2T5T9,

N16 = 2T17T18 + 2T16T19 + 2T15T20 + 2T14T21 + 2T10T5 + 2T7T8 + 2T6T9,

N17 = −E2
4 − 2E3L2

1 + T 2
18 + 2T17T19 + 2T16T20 + 2T15T21 + 2T10T6 + T 2

8

+2T7T9,

N18 = 2T18T19 + 2T17T20 + 2T16T21 + 2T10T7 + 2T8T9,

N19 = −2E4L2
1 + T 2

19 + 2T18T20 + 2T17T21 + 2T10T8 + T 2
9 ,

N20 = 2T19T20 + 2T18T21 + 2T10T9,N21 = −L4
1 + T 2

10 + T 2
20 + 2T19T21,

N22 = 2T20T21,N23 = T 2
21.

If Eq (3.10) has a positive real root ω0, the Eq (3.6) has an imaginary root λ = iω0. Therefore, then
we obtain the following critical value of the time delay

τ0 =
1
ω0

[arccos( L6 J1+T1ω0+T2ω
2
0+T3ω

3
0+T4ω

4
0+T5ω

5
0+T6ω

6
0+T7ω

7
0+T8ω

8
0+T9ω

9
0+T10ω

10
0

(L6)2+E1ω
2
0+E2ω

4
0+E3ω

6
0+E4ω

8
0+(L1)2ω10

0
)]. (3.11)

At τ = τ0, the characteristic equation (3.7) has a pair of purely imaginary roots ±iω0. Obviously,
the system (2.1) undergoes a Hopf bifurcation at τ = τ0. The critical value τ0 is essential to determine
if an oscillation can occur. Under the given parameter values in Table 1, we can figure out the critical
value τ0 = 4.4378.

By taking derivative with respect to τ in Eq (3.4), we obtain

(∂λ
∂τ

)−1 = eλτD1+e3λτD2+e4λτD3+2R1λ+R2
λ(eλτD4+e3λτD5+4R2λ+4R1λ2+4R3) −

τ
λ
, (3.12)

where

D1 = (Q4 + 2Q3λ + 3Q2λ
2 + 4Q1λ

3),
D2 = (B1λ + B2λ

2 + B3λ
3 + B4λ

4 + B5),
D3 = (P6 + 2P5λ + 3P4λ

2 + 4P3λ
3 + 5P2λ

4 + 6P1λ
5 − 7λ6),

D4 = (3Q5 + 3Q4λ + 3Q3λ2 + 3Q2λ
3 + 3Q1λ

4),
D5 = (B6λ + B7λ

2 + B8λ
3 + B9λ

4 + B10λ
5 + B11),

and

B1 = (2H4 + 2L4), B2 = (3H3 + 3L3),
B3 = (4H2 + 4L2), B4 = (5H1 + 5L1),
B5 = H5 + L5, B6 = (H5 + L5), B7 = (H4 + L4),
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B8 = (H3 + L3), B9 = (H2 + L2),
B10 = (H1 + L1), B11 = H6 + L6.

Then we can easily find

Re
{(
∂λ(τ)
∂τ

)−1
|τ=τ0

}
= GM+VK

M2+K2 , (3.13)

where

G = R2 + Q4 cos(ω0τ0) + H5 cos(3ω0τ0) + P6 cos(4ω0τ0) + 7ω6
0 cos(4ω0τ0)

+6P1ω
5
0 sin(4ω0τ0) + ω4

0[5H1 cos(3ω0τ0) + 5L1 cos(3ω0τ0) + 5P2 cos(4ω0τ0)]
+ω3

0[−4Q1 sin(ω0τ0) − 4H2 sin(3ω0τ0) − 4L2 sin(3ω0τ0) − 4P3 sin(4ω0τ0)]
+ω2

0[−3Q2 cos(ω0τ0) − 3H3 cos(3ω0τ0) − 3L3 cos(3ω0τ0) − 3P4 cos(4ω0τ0)]
+ω0[2Q3 sin(ω0τ0) + 2H4 sin(3ω0τ0) + 2L4 sin(3ω0τ0) + 2P5 sin(4ω0τ0)],

V = −Q4 sin(ω0τ0) − H5 sin(3ω0τ0) − L5 sin(3ω0τ0) − P6 sin(4ω0τ0)
−7ω6

0 sin(4ω0τ0) + 6P1ω
5
0 cos(4ω0τ0) + ω4

0[−5H1 sin(3ω0τ0)
−5L1 sin(3ω0τ0) − 5P2 sin(4ω0τ0)] + ω3

0[−4Q1 cos(ω0τ0)
−4H2 cos(3ω0τ0) − 4L2 cos(3ω0τ0) − 4P3 cos(4ω0τ0)]
+ω2

0[3Q2 sin(ω0τ0) + 3H3 sin(3ω0τ0) − 3L3 sin(3ω0τ0)
+3P4 sin(4ω0τ0)] + ω0[2R1 + 2Q3 cos(ω0τ0) + 2H4 cos(3ω0τ0)
+2L4 cos(3ω0τ0) + 2P5 cos(4ω0τ0)],

M = ω6
0[−H1 cos(3ω0τ0) − L1 cos(3ω0τ0)] + ω5

0[3Q1 sin(ω0τ0) + H2 sin(3ω0τ0)
+L2 sin(3ω0τ0)] + ω4

0[3Q2 cos(ω0τ0) + H3 cos(3ω0τ0) + L3 cos(3ω0τ0)]
+ω3

0[−3Q3 sin(ω0τ0) − H4 sin(3ω0τ0) − L4 sin(3ω0τ0)] + ω2
0[−4R2

−3Q4 cos(ω0τ0) − H5 cos(3ω0τ0) − L5 cos(3ω0τ0)] + ω0[3Q5 sin(ω0τ0)
+H6 sin(3ω0τ0) + L6 sin(3ω0τ0)],

K = ω6
0[H1 sin(3ω0τ0) + L1 sin(3ω0τ0)] + ω5

0[3Q1 cos(ω0τ0) + H2 cos(3ω0τ0)
+L2 cos(3ω0τ0)] + ω4

0[−3Q2 sin(ω0τ0) − H3 sin(3ω0τ0) − L3 sin(3ω0τ0)]
+ω3

0[−4R1 − 3Q3 cos(ω0τ0) − H4 cos(3ω0τ0) − L4 cos(3ω0τ0)]
+ω2

0[3Q4 sin(ω0τ0) + H5 sin(3ω0τ0) + L5 sin(3ω0τ0)] + ω0[4R3

+3Q5 cos(ω0τ0) + H6 cos(3ω0τ0) + L6 cos(3ω0τ0)].

Obviously, according to the data in Table 1, Eqs (3.10) and (3.11), we obtain GM > 0 and VK > 0,
and thus

sign
{[
∂(Reλ(τ))
∂τ

]
τ=τ0

}
= sign

{
Re
[
∂((λ(τ)))
∂τ

]−1

τ=τ0

}
> 0.

These results demonstrate that the roots of characteristic Eq (3.4) cross the imaginary axis at λ(τ0) =
±iω0 from left to right. Clearly, when τ = τ0, the system (2.1) loses its stability and undergoes a
supercritical Hopf bifurcation at the equilibrium point E∗ = (X∗,Y∗,Z∗,W∗,V∗, P∗, S ∗), according to
Hopf bifurcation theorem. This indicates that when the protein synthesis time reaches a certain critical
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value, the bacterial population will initiate lysis and release the drug. In addition, the quantitative
control of drugs will be given in the next section. How to actually regulate protein synthesis time is
also considered below.

3.2. Numerical results

3.2.1. The Individual perturbation of time delay
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Figure 2. The system converges toward an equilibrium without the delay, i.e., τ = 0 min.
This indicates that the system is in a stable state. (a–c) Time evolution diagram. (d) Three-
dimensional phase diagram of TetR, CI and LacI.

To determine the important mechanism of time delay in the QS system, it is crucial to detect the
dynamic behavior without time delay. Figure 2 shows the dynamics of QS network without the delay,
i.e., τ = 0, evolves toward an equilibrium and asymptotically stable. Conversely, when the time delay
is introduced into the QS circuit, the critical value of the time delay that induces the oscillation of the
QS system can be calculated, i.e., τ0 = 4.4378 min. When τ < τ0, the system still converges to an
equilibrium and asymptotically stable, as shown in Figure 3. As τ increases and passes through the
critical value τ0, the system will reach a regime of sustained oscillations. The corresponding periodic
oscillation at τ = 5.5 min is shown in Figure 4. The results show that the QS system changes from
asymptotic stability to continuous periodic oscillation with the increase of delay τ.

To more specifically study the effectiveness of the delay on oscillations, we next further study how
the variation of τ affects the amplitudes and periods of the oscillations. The time evolution diagrams of
various time delays are presented in Figure 5. Obviously, with the increase of the τ, the amplitudes and
periods of the oscillations increase significantly. In general, these results suggest that the amplitudes
and periods of these oscillations are sensitive to the variation of τ. In other words, the time delay
leads to Hopf bifurcation, which drives the QS oscillation and controls its amplitude and period. These
results indicate that the time delay is necessary for the oscillation behavior of the QS system, and the
critical value of the time delay is a prerequisite for oscillation. As noted above, the amplitude and
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Figure 3. When τ = 4 < τ0 = 4.4378 min, the system converges toward an equilibrium.
This means that the system is still in a stable state. (a–c) Time evolution diagram. (d) Three-
dimensional phase diagram of TetR, CI and LacI.

period of the QS oscillations are crucial in terms of the dose and time of the bacterial synthesis and
release of drugs [18,19]. These results indicate that perhaps the amount and timing of drug release can
be controlled by individually regulating the delay time in the QS network.
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Figure 4. When τ = 5.5 > τ0 = 4.4378 min, the system is in an oscillating state. (a–c) Time
evolution diagram. (d) Three-dimensional phase diagram of TetR, CI and LacI.
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Figure 5. The impact of the delay on amplitudes and periods of oscillations. The different
colored lines represent the time evolution diagram corresponding to different time delays.
Both the amplitudes and periods increase with the increase of the delay τ.

3.2.2. The influence of parameters related to AiiA, LuxI and H2O2 on QS dynamics

The interaction principle of AiiA, LuxI, H2O2 to the QS system has been widely involved. However,
the impact of the changes of these three substances on the dynamics and actual biology of the QS
system is still an unsolved mystery. Therefore, in this part, the effects of parameters related to AiiA,
LuxI, and H2O2 on dynamics of system (2.1) is studied by perturbing single parameter and fixing all
other parameters.
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Figure 6. The effect of AiiA on the dynamical behavior of different substances. (a) Pro-
duction rate of LacI by AiiA, o; (b) Production rate of autoinducer AHL, r; (c) Production
rate of AiiA by LacI, u. The red and black curves refer to stable and unstable steady states,
respectively. While the green dots refer to the minimum and maximum of oscillations.
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First, the impact of the parameters related to protein AiiA, i.e., o, r, and u, on the dynamics be-
haviors is studied. The bifurcation diagram of the system (2.1) regard the parameter o as a control
parameter is shown in Figure 6(a). It can exhibit four distinct dynamical regimes with the variation
of o. When AiiA has a low induction rate to LacI, a subcritical Hopf bifurcation occurs, i.e., oHB

= 0.3545. When the induction rate of AiiA to LacI is low, i.e., o < oHB, the system maintains a
continuous period oscillation, and the amplitudes of these oscillations decrease with the increasing of
o. Studies have shown that the amplitude and period of oscillations in the QS system determine the
dose and time interval of the bacteria released drugs. Therefore, perhaps the dose and time interval
for the bacteria to release the drug can be reduced by increasing the production rate of AiiA to LacI.
When the induction rate of LacI by AiiA reaches 0.9858, i.e., oHB < o < oLP2 = 0.9858, the system is
monostable with a higher TetR level. When the induction of LacI by AiiA is at an intermediate level,
oLP2 < o < oLP1 = 1.425, the system becomes bistable. When the induction of LacI by AiiA is at
a high level, i.e., o > oLP1, the system is also monostable with a lower TetR level. This means that
as the induction of LacI is increased by AiiA, the QS system will switch from oscillation to bistable.
Figure 6(b),(c) shows the similar dynamical properties of the other two parameters r, u related to AiiA,
which are opposite to the parameter o. Particularly, r and u occur supercritical Hopf bifurcation occurs
at rHB, uHB and two saddle-node bifurcations occur at rLP2, uLP2 and rLP1, uLP1. When r, u < rLP1, uLP1

or rLP2, uLP2 < r, u < rHB, uHB, the system is monostable. The system becomes bistable at the region
rLP1, uLP1 < r, u < rLP2, uLP2. While oscillations occur when r, u > rHB, uHB. Furthermore, the ampli-
tudes of these oscillations increase with the increasing of r, u in a wide range. Therefore, maybe the
dose and time interval of the drug released by the bacteria in QS can be increased by increasing r or u.
These dynamics and applications are exactly opposite to effects of increasing o.
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Figure 7. The effect of LuxI on the dynamical behavior of different substances. (a) Produc-
tion rate of LacI by LuxI, Q; (b) Production rate of LuxI by LacI, d; (c) AHL production
rate induced by LuxI, β. The red and black curves refer to stable and unstable steady states,
respectively. While the green dots refer to the minimum and maximum of oscillations.

Second, the regulation of parameters related to LuxI, i.e., Q, d, β, on the on dynamics behavior is
analyzed. From the results of Figure 7(a)–(c), it can be seen that the induction rate of LuxI to LacI
Q, the induction rate of LacI to LuxI d and the induction rate of LuxI to AiiA β have similar kinetic
characteristics. As Q, d, β increases, the level of TetR shows a downward trend. Specifically, as
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the three parameters increase, TetR initially undergoes a Hopf bifurcation and maintains a continuous
oscillation. However, both the amplitude and period of the oscillation are reduced. Therefore, the
dose and time interval of the bacteria releasing the drug can be reduced by controlling the production
rate of LacI induced by LuxI, LuxI induced by LacI, or AHL induced by LuxI. As they continue to
increase, TetR jumps from a high-level monostable state to LP2, then continues to increase and jumps
to LP1, which reflects bistable switch, and finally returns to a low-level monostable state. Therefore,
perhaps changing the parameters related to LuxI can also induce changes in the PH of plants and
microorganisms.
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Figure 8. The effect of H2O2 on the dynamical behavior of AiiA and LuxI. (a) Production
rate of AiiA by H2O2, ξ; (b) Production rate of LuxI by H2O2, µ. The red and black curves
refer to stable and unstable steady states, respectively. While the green dots refer to the
minimum and maximum of oscillations.

Finally, the bifurcation diagrams that regard H2O2 related parameters ξ and µ as control parameters
are shown in Figure 8(a),(b), respectively. In Figure 8(a), the entire evolution process goes through
from the low-level stationary state to the bistable to the high-level stationary state, and finally produces
continuous oscillations. However, it can be seen from Figure 8(b) that the induction rate of LuxI
induced by H2O2 is similar to the qualitative properties of several other parameters. In this case, when
LuxI is adjusted by H2O2 appropriately, the system is in an oscillating state. Therefore, the production
rate of LuxI induced by H2O2 (µ) and other parameters have similar roles in the release of drugs from
bacteria and the regulation of PH in plants and microorganisms.

3.2.3. The combinatorial interference of parameters related to AiiA, LuxI and H2O2 on QS dynamics

In this section, two-parameter bifurcation diagrams are drawn to address the dynamics mechanism
of the interaction of AiiA, LuxI, H2O2 by simultaneously perturbing two parameters. Regions of
different dynamical behaviors in u and o parameter plane is shown in Figure 9(a), which indicates the
effects of combinatorial perturbations of AiiA and LacI on system (2.1). The plane is divided into
three regions at which monostability, bistability, and oscillations may occur. It can be seen that when
the induction rate of LacI to AiiA, u, and the induction rate of AiiA to LacI, o, are high, the system
maintains an oscillating state. When the induction rate of LacI to AiiA, u, are low, and induction
rate of AiiA to LacI, o, increases appropriately, the system is in bistable state. However, when the
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Figure 9. Bifurcation properties by simultaneously perturbing two different parameters. (a)
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Figure 10. Bifurcation properties by simultaneously perturbing two different parameters. (a)
H2O2 promotes LuxI and LuxI continues to promote LacI, µ, Q; (b) H2O2 promotes AiiA and
AiiA continues to promote LacI, ξ, o. The red and blue lines correspond to saddle-node and
Hopf bifurcation curves, respectively.

induction rate of LacI to AiiA, u, and the induction rate of AiiA to LacI, o, are higher level or lower
level, and the system is transformed into monostable state. Especially, different stable states may
coexist, i.e., coexistence of equilibrium and periodic oscillations, the state to which the system evolves
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depends on initial conditions. As shown in Figure 9(b), when the induction rate of LuxI to LacI, d,
and the induction rate of LacI to LuxI, Q, are within a certain range, the system appears a coexistence
of monostability and oscillation. The main reason for this phenomenon is that when d and Q are
in (Monostability, oscillation), the LP2 point is located on the left side of the HB point, so there is a
coexistence of the oscillation and monostable. Similar dynamic simulations appear, as shown in Figure
10(a),(b), which shows the combinatorial effects of LuxI and H2O2, AiiA and H2O2, respectively.
Figure 11(a),(b) both show the combinatorial effect of LuxI and LacI, LacI and AiiA, respectively.
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Figure 11. Bifurcation properties by simultaneously perturbing two different parameters. (a)
AiiA promotes LacI and LacI continues to promote LuxI, o, d; (b) LuxI promotes LacI and
LacI continues to promote AiiA, Q, u. The red and blue lines correspond to saddle-node and
Hopf bifurcation curves, respectively.

These results show that the simultaneous perturbation of any two parameters related to AiiA, LuxI,
or H2O2 can induce occurrence of oscillations and bistability, and even the coexistence of monosta-
bility and oscillation. In short, the combinatorial perturbations of AiiA, LuxI and H2O2 are needed
to control the dynamics of the QS system. As mentioned earlier, theoretical studies have shown that
the dynamical behaviors induced of the QS system are essential for controlling the PH value of mi-
croorganisms and plants and bacterial delivery of drugs. Therefore, this means that the simultaneous
changes of important molecules in the QS system may be used to control these biological functions.

3.2.4. The influence of parameters related to AiiA, LuxI, H2O2 on the critical value of delay

The effects of combinatorial regulation of AiiA, LuxI, H2O2, and the delay are reflected by the
sensibility of the critical value τ0 to the parameters. It is clearly elucidated that the delay is critical to
induce oscillations, which indicates that the critical value τ0 is one of prerequisites for the oscillations.
In addition, the size of the time delay has great flexibility in adjusting the amplitude and period of these
oscillations. However, the sensibility of the critical value τ0 to the parameters related to AiiA, LuxI,
H2O2 is not fully understood, which is reflected by the effect of combinatorial perturbations. Next, the
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Figure 12. The relationship between the critical value τ0 and parameters related to AiiA.
The blue bar represents the numerical height of τ0, and the red line segment represents the
trend of τ0 for parameters. The values near the red cubic rhombuses are the critical values τ0

with respect to each parameter value.

influence of important parameters related to AiiA, LuxI, H2O2 on the critical value τ0 is studied.
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Figure 13. The relationship between the critical value τ0 and parameters related to LuxI. The
blue bar represents the numerical height of τ0, and the red broken line represents the trend
of τ0 for parameters. The values near the red cubic rhombuses are the critical values τ0 with
respect to each parameter value.

First, how the critical value τ0 depends on the parameters o, r, u related to AiiA has been carefully
probed. The relationship between τ0 and o is shown in Figure 12(a). It can be observed that with
slightly increase of o, the trend and degree of the critical value τ0 keeps increasing and the rate rises
rapidly, which indicates that the critical value τ0 is sensitive to the variation of o. Similarly, Figure
12(b),(c) show the sensitivity of the critical value τ0 to r and u. It can be seen that as r and u increase,
the critical value τ0 value continues to decrease, but the change is extremely imperceptible, which
indicates that τ0 is insensitive to the increase of r and u. Next, the sensitivity of τ0 to the parameters
Q, d, β related to LuxI is analyzed. The Figure 13(a) shows the sensitivity analysis of Q and τ0, which
is similar to the relationship between o and τ0, which shows that τ0 is sensitive to Q. Instead, τ0 is
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insensitive to the variation of d, β parameters, as shown in Figure 13(b),(c). Finally, the sensitivity of τ0

to the parameters ξ and µ related to H2O2 is considered. The Figure 14(a) shows that τ0 monotonically
decreases and the speed is very slow with the variation of the parameters ξ. While with variation of
µ, τ0 also increases but the rate is also very slow, as shown in Figure 14(b). In summary, these results
means that the critical value τ0 is insensitive to ξ, µ and β. The critical value τ0 is the most sensitive to
o and Q.

As mentioned earlier, the threshold τ0 is a critical condition for initiating oscillations. When the time
delay τ exceeds the critical value τ0, a larger delay induces a larger amplitude and period. In addition,
when τ is less than the critical value τ0, we can change the value of o and Q so as to compensate the
inefficiency of τ and induce the occurrence of oscillations. In other words, by fine-tuning the most
sensitive parameters, the QS system can quickly realize the transition from steady state to oscillating
state.

4. Discussion and conclusions

In this paper, a computational model is constructed by incorporating existing biological knowledge
and biochemical reaction modeling methods, with the aim of capturing the dynamics mechanism of
QS system. To this end, first, by considering the delay required for protein synthesis as a bifurcation
parameter, its individual effect on the oscillatory behavior of the QS system is investigated. The re-
search results find that τ0 is the critical indicator to start the oscillation of the QS system. In addition,
the amplitudes and periods are sensitive to the slight variation of the delay. Therefore, this reveals that
the size of the time delay is an advantageous condition for controlling the period and amplitude of QS
circuit. Second, the influence of combinatorial perturbation of AiiA, LuxI and H2O2 on the oscillatory
behavior of QS system is studied. It is indicated that the dynamics region of the QS system is generated
by simultaneously perturbing any two parameters related to AiiA, LuxI, H2O2. Third, the dependence
of the dynamic properties of QS system on AiiA, LuxI and H2O2 is analyzed. The result indicates
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that concentration change of AiiA, LuxI and H2O2 can induce the bistability and oscillatory behavior
of QS system. Finally, the influence of the combinatorial perturbation of AiiA, LuxI, H2O2 and delay
on the QS system is analyzed. It is explained by the sensitivity analysis of the critical value τ0 to the
parameters related to AiiA, LuxI, and H2O2. The results show that when the induction rate of AiiA to
LacI, o, and the induction rate of LuxI to LacI, Q, are increased, the change of critical value (τ0) of
delay is extremely obvious. Therefore, the critical value τ0 is the most sensitive to the parameters o
and Q.

Extensive experimental research conclusions indicate that the dynamical behaviors of the QS system
will have an important impact on certain bacterial populations. For instance, the bistable switching of
the QS system in plants and microorganisms can be used to control the conversion of PH value [17].
In addition, the fine adjustment of the period and amplitude of the QS system also has important
applications in the dosage and time of the scattered medicine [20]. However, the amplitude and period
of these stability and oscillations may be interrupted through minor change of certain components in
the QS system. Interestingly, we find that changing the length of the time delay and adjusting the
concentration of AiiA, LuxI, and H2O2 have become important issues to provide verifiable predictions
for experiments. In addition, how to interfere with the protein synthesis time and these important
substances through actual external means are also considered. The length of time delay may be changed
by transcription inhibitors (Rif) and translation inhibitors (Cam, Ksg) [41–44]. Moreover, AiiA and
LuxI can be cloned from certain bacteria by PCR [45–47]. Finally, H2O2 in the QS system can be
produced by adjusting the concentration of SOD [48]. Therefore, focus on the dynamic characteristics
of the QS system and its important components will help to further understand some mechanisms of
QS, and provide better ideas for practical biological applications.

However, our study also has some restrictive assumptions and unresolved issues. The choice of
model parameters is always a top priority for dynamics. Therefore, it is more interesting to determine
the kinetic properties through statistical random parameter selection within a certain range. In addition,
although the cell density has an important effect on the cell fate, due to the complexity of the regulatory
network, we only consider the single cell dynamics which is the first step toward the multicellular
dynamics. It would be an interesting topic to further analyze the dynamical effects induced by cell
density. Finally, in the QS system, the diffusion of the signal molecule AHL is very important. In
future, the diffusion term of AHL can be considered in partial differential equations, and the dynamical
effects of time delay and diffusion terms on the system can also be analyzed by referring to the modeling
and theoretical methods of Li et al. [49]. Additionally, it is expected that the spatial diffusion kinetics
of these AHLs can guide rational therapeutic strategies and improve agricultural practices [50, 51].
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28. Ž. Pušnik, M. Mraz, N. Zimic, M. Moškon, Computational analysis of viable parame-
ter regions in models of synthetic biological systems, J. Biol. Eng., 13 (2019), 1–21.
https://doi.org/10.1186/s13036-019-0205-0

29. R. L. Ulrich, D. DeShazer, E. E. Brueggemann, H. B. Hines, P. C. Oyston, J. A. Jeddeloh, Role of
quorum sensing in the pathogenicity of burkholderia pseudomallei, J. Med. Microbiol., 53 (2004),
1053–1064. https://doi.org/10.1099/jmm.0.45661-0

30. S. J. Park, S. Y. Park, C. M. Ryu, S. H. Park, J. K. Lee, The role of aiia, a quorum-quenching
enzyme from bacillus thuringiensis, on the rhizosphere competence, J. Microbiol. Biotechnol., 18
(2008), 1518–1521.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4812–4840.

http://dx.doi.org/https://doi.org/10.1142/S0218127420501278
http://dx.doi.org/https://doi.org/10.1049/iet-syb.2019.0079
http://dx.doi.org/https://doi.org/10.1098/rsif.2017.0945
http://dx.doi.org/https://doi.org/10.1021/acsami.7b03518
http://dx.doi.org/https://doi.org/10.1016/S0016-5085(00)70288-5
http://dx.doi.org/https://doi.org/10.1038/nature18930
http://dx.doi.org/https://doi.org/10.1038/35002125
http://dx.doi.org/https://doi.org/10.1073/pnas.0307095101
http://dx.doi.org/https://doi.org/10.1103/PhysRevE.83.031901
http://dx.doi.org/https://doi.org/10.1063/1.4705085
http://dx.doi.org/https://doi.org/10.1016/j.physleta.2014.02.015
http://dx.doi.org/https://doi.org/10.1007/s11538-016-0187-8
http://dx.doi.org/https://doi.org/10.1007/s11071-013-0769-z
http://dx.doi.org/https://doi.org/10.1186/s13036-019-0205-0
http://dx.doi.org/https://doi.org/10.1099/jmm.0.45661-0


4839

31. J. Wang, J. Zhang, Z. Yuan, T. Zhou, Noise-induced switches in network systems of the genetic
toggle switch, BMC Syst. Biol., 1 (2007), 1–14. https://doi.org/10.1186/1752-0509-1-50

32. A. Prindle, J. Selimkhanov, H. Li, I. Razinkov, L. S. Tsimring, J. Hasty, Rapid
and tunable post-translational coupling of genetic circuits, Nature, 508 (2014), 387–391.
https://doi.org/10.1038/nature13238

33. N. A. Monk, Oscillatory expression of hes1, p53, and nf-b driven by transcriptional time delays,
Curr. Biol., 13 (2003), 1409–1413. https://doi.org/10.1016/S0960-9822(03)00494-9

34. Y. Zhang, H. Liu, F. Yan, J. Zhou, Oscillatory dynamics of p38 activity with transcriptional and
translational time delays, Sci. Rep., 7 (2017), 11495. https://doi.org/10.1038/s41598-017-11149-5

35. C. Wang, H. Liu, J. Zhou, Oscillatory dynamics of p53 genetic network induced
by feedback loops and time delays, IEEE Trans. Nanobiosci., 18 (2019), 611–621.
https://doi.org/10.1109/TNB.2019.2924079

36. E. Batchelor, C. S. Mock, I. Bhan, A. Loewer, G. Lahav, Recurrent initiation: A mecha-
nism for triggering p53 pulses in response to dna damage, Mol. Cell, 30 (2008), 277–289.
https://doi.org/10.1016/j.molcel.2008.03.016

37. T. Danino, O. Mondragnpalomino, L. Tsimring, J. Hasty, A synchronized quorum of genetic
clocks, Nature, 463 (2010), 326–30. https://doi.org/10.1038/nature08753

38. B. Borek, J. Hasty, L. Tsimring, Turing patterning using gene circuits with gas-
induced degradation of quorum sensing molecules, PloS one, 11 (2016), e0153679.
https://doi.org/10.1371/journal.pone.0160272 https://doi.org/10.1371/journal.pone.0153679

39. B. Huang, M. Lu, D. Jia, E. Ben-Jacob, H. Levine, J. N. Onuchic, Interrogating the topological
robustness of gene regulatory circuits by randomization, PloS Comput. Biol., 13 (2017), e1005456.
https://doi.org/10.1371/journal.pcbi.1005456

40. C. Gao, J. Ji, F. Yan, H. Liu, Oscillation induced by Hopf bifurcation in the p53–Mdm2 feedback
module, IET Syst. Biol., 13 (2019), 251–259. https://doi.org/10.1049/iet-syb.2018.5092

41. S. Bakshi, H. Choi, J. Mondal, J. C. Weisshaar, Time-dependent effects of transcription-and
translation-halting drugs on the spatial distributions of the e scherichia coli chromosome and ribo-
somes, Mol. Microbiol., 94 (2014), 871–887. https://doi.org/10.1111/mmi.12805

42. E. A. Campbell, N. Korzheva, A. Mustaev, K. Murakami, S. Nair, A. Goldfarb, et al., Structural
mechanism for rifampicin inhibition of bacterial RNA polymerase, Cell, 104 (2001), 901–912.
https://doi.org/10.1016/S0092-8674(01)00286-0

43. F. Schluenzen, C. Takemoto, D. N. Wilson, T. Kaminishi, J. M. Harms, K. Hanawasuet-
sugu, et al., The antibiotic kasugamycin mimics mrna nucleotides to destabilize tRNA bind-
ing and inhibit canonical translation initiation, Nat. Struct. Mol. Biol., 13 (2006), 871.
https://doi.org/10.1038/nsmb1145 https://doi.org/10.1038/nsmb1106-1033

44. J. L. Hansen, P. B. Moore, T. A. Steitz, Structures of five antibiotics bound at the pep-
tidyl transferase center of the large ribosomal subunit, J. Mol. Biol., 330 (2003), 1061–1075.
https://doi.org/10.1142/11705

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4812–4840.

http://dx.doi.org/https://doi.org/10.1186/1752-0509-1-50
http://dx.doi.org/https://doi.org/10.1038/nature13238
http://dx.doi.org/https://doi.org/10.1016/S0960-9822(03)00494-9
http://dx.doi.org/https://doi.org/10.1038/s41598-017-11149-5
http://dx.doi.org/https://doi.org/10.1109/TNB.2019.2924079
http://dx.doi.org/https://doi.org/10.1016/j.molcel.2008.03.016
http://dx.doi.org/https://doi.org/10.1038/nature08753
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0160272
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0153679
http://dx.doi.org/https://doi.org/10.1371/journal.pcbi.1005456
http://dx.doi.org/https://doi.org/10.1049/iet-syb.2018.5092
http://dx.doi.org/https://doi.org/10.1111/mmi.12805
http://dx.doi.org/https://doi.org/10.1016/S0092-8674(01)00286-0
http://dx.doi.org/https://doi.org/10.1038/nsmb1145
http://dx.doi.org/https://doi.org/10.1038/nsmb1106-1033
http://dx.doi.org/https://doi.org/10.1142/11705


4840

45. L. Ouyang, L. Li, Effects of an inducible aiia gene on disease resistance in eucalyptus urophylla×
eucalyptus grandis, Transgenic. Res., 25 (2016), 441–452. https://doi.org/10.1007/s11248-016-
9940-x

46. J. Pan, T. Huang, F. Yao, Z. Huang, C. A. Powell, S. Qiu, et al., Expression and char-
acterization of aiia gene from bacillus subtilis bs-1, Microbiol. Res., 163 (2008), 711–716.
https://doi.org/10.1016/j.micres.2007.12.002

47. F. Modarresi, O. Azizi, M. R. Shakibaie, M. Motamedifar, S. Mansouri, Cloning and expression
of quorum sensing n-acyl-homoserine synthase (luxi) gene detected in acinetobacter baumannii,
Iran. J. Microbiol., 8 (2016), 139.

48. A. Prindle, P. Samayoa, I. Razinkov, T. Danino, L. S. Tsimring, J. Hasty, A sensing array of radi-
cally coupled genetic ‘biopixels’, Nature, 481 (2012), 39–44. https://doi.org/10.1038/nature10722

49. C. Li, L. Liu, T. Zhang, F. Yan, Hopf bifurcation analysis of a gene regulatory network mediated
by small noncoding RNA with time delays and diffusion, Int. J. Bifurcation Chaos, 27 (2017),
1750194. https://doi.org/10.1142/S0218127417501942

50. J. Müller, C. Kuttler, B. Hense, M. Rothballer, A. Hartmann, Cell–cell communication by quorum
sensing and dimension-reduction Journal of mathematical biology, J. Math. Biol., 53 (2006), 672–
702. https://doi.org/10.1007/s00285-006-0024-z

51. B. Hense, C. Kuttler, J. Müller, M. Rothballer, A. Hartmann, J. U. Kreft, Does efficiency
sensing unify diffusion and quorum sensing?, Nature Rev. Microbiol., 5 (2007), 230–239.
https://doi.org/10.1038/nrmicro1600

© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4812–4840.

http://dx.doi.org/https://doi.org/10.1007/s11248-016-9940-x
http://dx.doi.org/https://doi.org/10.1007/s11248-016-9940-x
http://dx.doi.org/https://doi.org/10.1016/j.micres.2007.12.002
http://dx.doi.org/https://doi.org/10.1038/nature10722
http://dx.doi.org/https://doi.org/10.1142/S0218127417501942
http://dx.doi.org/https://doi.org/10.1007/s00285-006-0024-z
http://dx.doi.org/https://doi.org/10.1038/nrmicro1600
http://creativecommons.org/licenses/by/4.0

	Introduction
	Dynamic modelling
	Theoretical and numerical results
	Theoretical analysis
	Numerical results
	The Individual perturbation of time delay
	The influence of parameters related to AiiA, LuxI and H2O2 on QS dynamics
	The combinatorial interference of parameters related to AiiA, LuxI and H2O2 on QS dynamics
	The influence of parameters related to AiiA, LuxI, H2O2 on the critical value of delay


	Discussion and conclusions

