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Abstract: We investigate a novel model of coupled stochastic differential equations modeling the
interaction of mussel and algae in a random environment, in which combined effect of white noises and
telegraph noises formulated under regime switching are incorporated. We derive sufficient condition of
extinction for mussel species. Then with the help of stochastic Lyapunov functions, a well-grounded
understanding of the existence of ergodic stationary distribution is obtained. Meticulous numerical
examples are also employed to visualize our theoretical results in detail. Our analytical results indicate
that dynamic behaviors of the stochastic mussel-algae model are intimately associated with two kinds
of random perturbations.
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1. Introduction

The invasion of alien species has caused significant economic and ecological problems in a diverse
array of ecosystems. One of the most instructive examples was the zebra mussel, a highly invasive
bivalve in the Great Lakes in 1986, which has high fecundity and strong ability, not only causing
ecological modifications and economic damages, but also bringing great inconvenience to human life
[1, 2], such as blocking pipes, polluting water sources and crowding out native species. In recent
years, governments in many countries have invested lots of capital in mussel control and damage
repair [3], and an increasing number of scholars have begun to study this hot issue. Many significant
existing literatures indicate that the growth and survival of mussel are mainly dependent on algae,
which means that the food supply of algae will limit the intake of mussel (see [4–7]). To date, quite
a few ecologists and applied mathematical researchers have paid close attention to the development
of mussel with various types of mathematical mussel-algae models, and numerous results have been
presented about mussel-algae models on account of their extensive applications [8–12]. For example,
Turing pattern [8], Turing-Hopf bifurcation [9, 10], wavetrain solution [11] and so on.
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Reviewing many of the above investigations, we can see that deterministic model can simplify
complex system, which is conducive to theoretical research and analysis. However, when the external
disturbance is large, the population number may be significantly reduced, the law of large numbers is
not on trial, and the deterministic model is not objective. If the noises are ignored, the model will be
inaccurate. So in order to describe the species in the real world more objectively, the environmental
fluctuations should be taken into account [13–16]. It has been found that environmental stress, salinity
and so on have a remarkable effect on the microbiota associated with zebra mussel, therefore influence
the survival analysis of mussel [17]. Usually, one of the most common and indispensable environmental
fluctuations in an ecosystem, white noises, which can be used to describe these continuous and small
fluctuations, have recently become quite attractive (see [18–22]).

However, there are several moderate fluctuations which can not be characterised by white
noises [23], let alone some sudden environmental abrupt fluctuations. Take temperature as an
example, organisms have a certain average range of optimal growth temperature, and the change of
temperature during individuals of the same species or different physiological periods of the same
species, may have an effect on population separation and behaviour differences [24]. With the
exception of birds and mammals, which are thermostats, all other animals are poikilotherms, namely,
their body temperature always varies in response to the changes in external temperature [25]. When
the effect of temperature change exceeds the threshold of environment or ecosystem, results can range
from mild individual death to species turnover or ecosystem change [25]. There is one vivid example
in Finland during the 1950s, the pikeperch population crumbled just because of a trifling cooling
together with the grown fishing mortality [26], manifesting that even a slight change of mean
temperature, like 0.5 − 1.0◦C, may appreciably affect populations living nearby [27]. Although the
temperature in annual specific season is relatively constant in general, the stochastic effects on
temperature still may lead to tremendous variations in larval fish survival [28], and hence none of the
white noises or the period describing form may be applicable for this fluctuation. Coincidentally, it
has been observed that temporal patterns in the life cycle of the zebra mussel vary on increasing
temperature in experiment [29]. Thus, when the system jumps back and forth caused by moderate
fluctuations or sudden environmental distributions, a further step to investigate telephone noises,
another common noises type, can be used to elucidate a switching between different (two or more)
environmental regimes, is noteworthy [30]. Because this switching is memoryless and the waiting
time of two different switches obeys an exponential distribution [31], using state switching of a
continuous-time Markov chain to drive the changes in the main parameters of system can satisfy our
needs. Numerous literatures focus on these issues, for example [32–34] and the reference therein.

The necessary environmental fluctuations exist everywhere in various forms. In recent years, as
two most common and representative noises, white noises and telephone noises are widely used in
stochastic population systems, which has been studied with the efforts of many researchers,
see [35–39]. Especially, a stochastic phytoplankton allelopathy model formulated by Zhao et al. [35],
which derives the stationary distribution and its statistical characteristics (i.e., the mean and variance).
Considering a Holling-II stochastic predator-prey model, Jiang et al. [36] established a set of
sufficient criteria for the strong persistence in the mean, extinction as well as stationary distribution.
Very recently, Cai et al. [37] dealt with the long-time properties of a stochastic delay foraging arena
predator-prey model, including stochastic ultimate boundedness, pathwise estimation and extinction.

As is well known, there are few papers related to stochastic mussel models with white noises and
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telephone noises. There is a doubt whether or not we can derive that the extinction and the existence
of unique stationary distribution of such regime-switching differential system. Fortunately, the answer
is affirmative and the related detailed proofs will be given later.

Focusing on two essentials, the extinction of mussel species and ergodic stationary distribution, the
paper is bent on exploring the long-time properties of model (2.4). The present paper has the following
structure: in Section 2 we introduce a stochastic mussel-algae model simultaneously affected by white
noises and telephone noises. Section 3 ensures the existence and positivity of global solution. Some
dynamic behaviors about extinction are carried out in Section 4 and ergodic stationary distribution are
proved in Section 5, respectively. Several numerical examples are set to demonstrate our mathematical
results in Section 6. Section 7 ends with some conclusions and future directions. A necessary theory
listed in Appendix. Last but not least, several literatures inspired the present work are listed.

2. Model and preliminaries

For the final export of the model we will discuss, let us first introduce the following nondiffusive
mussel-algae model which corresponds to a nondiffusive version proposed by Koppel et al. [12].

dX(t) =
[
abX(t)Y(t) −

cβ
β + X(t)

X(t)
]
dt,

dY(t) =
[
(Yup − Y(t))l −

b
p

X(t)Y(t)
]
dt.

(2.1)

The biological meanings of all variables and parameters concerned model (2.1) are explained as
below.

Table 1. The biological significance of all variables and parameters

Natations Biological meanings
X(t) The size of the mussel on time t
Y(t) The size of the algae on time t
a The conversion rate of ingested algae to mussel production
b The rate of consumption of the algae by a mussel
c The maximal per capita mussel death rate
Yup The concentration of algae in the upper water layer
l The rate of exchange between the lower and upper water layers
p The height of the lower water layer
β The value of X(t) at which mortality is half maximal

With the idea of the influence of intraspecific competition, the above model (2.1) is recently
extended by Zhou et al. [40] to the following deterministic version

dX(t) =
[
abX(t)Y(t) − gX2(t) −

cβ
β + X(t)

X(t)
]
dt,

dY(t) =
[
(Yup − Y(t))l −

b
p

X(t)Y(t)
]
dt,

(2.2)

where g represents the intraspecific competition strength of mussel.
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The white noises are taken into account model (2.2) by Zhou et al. [40] and a following stochastic
version is derived

dX(t) =
[
abX(t)Y(t) − gX2(t) −

cβ
β + X(t)

X(t)
]
dt + σ1X(t)dB1(t),

dY(t) =
[
(Yup − Y(t))l −

b
p

X(t)Y(t)
]
dt + σ2Y(t)dB2(t),

(2.3)

where B1(t) and B2(t) are the standard independent Brownian motions, σ2
1 and σ2

2 represent their
intensities. Thanks to the analysis of the dynamical behaviors of model (2.3), not only the survival of
mussel as well as ESD (ergodic stationary distribution) are obtained, but an interesting result is
discovered, namely the lower amplitude noises could cause mussel species outbreak, while the higher
amplitude noises could make mussel species become extinct.

As an extension of model (2.3), motivated by the above studies we further introduce the telephone
noises into model (2.3), and suppose that Markov chain r(t) take values in state space S = {1, 2, ...,N}
controlling the switching between the environmental regimes [41]. Then the resulting stochastic
mussel-algae model simultaneously affected by white noises and telephone noises can be expressed as

dX(t) =
[
ab

(
r(t)

)
X(t)Y(t) − g

(
r(t)

)
X2(t) −

c
(
r(t)

)
β
(
r(t)

)
β
(
r(t)

)
+ X(t)

X(t)
]
dt

+ σ1
(
r(t)

)
X(t)dB1(t),

dY(t) =
[(

Yup
(
r(t)

)
− Y(t)

)
l
(
r(t)

)
−

b
(
r(t)

)
p

X(t)Y(t)
]
dt + σ2

(
r(t)

)
Y(t)dB2(t),

(2.4)

r(0) ∈ S, X(0) > 0, Y(0) > 0. Here, suppose that Markov chain r(t) is independent of the Brownian
Motions B1(t) and B2(t). The coefficients f (k) are all nonnegative constants for any k ∈ S, where f = g,
b, c, β, l, σ1, σ2, Yup.

For the convenience of subsequent sections, we list the following preliminaries. Define probability
space by (Ω,F , {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions. Assign Rn

+ = {z ∈
Rn|zi > 0, 1 ≤ i ≤ n}. Denote right-continuous Markov chain r(t) (t ≥ 0) on the complete probability
space whose domain is a finite state space S. Let ĥ = mink∈S{h(k)} and ȟ = maxk∈S{h(k)}, where
h = (h(1), ..., h(N)). The generator Γ̃ = (µi j)N×N is given, for △ > 0, µi j ≥ 0, by

P(r(t + ∆) = j|r(t) = i) =
{
µi j∆ + o(∆), if i , j,
1 + µi j∆ + o(∆), if i = j,

where µi j implies the transition rate from state i to state j, and keeps nonnegative if i , j satisfying∑N
i=1 µi j = 0. When r(t) is irreducible, then it admits a unique stationary distribution π = {π1, π2, ..., πN}

such that πΓ̃ = 0 satisfying
∑N

k=1 πk = 1 (πk > 0) for any k ∈ S.
By the help of r(·), define the diffusion process (q(t), r(t)) as below:{

dq(t) = ς(q(t), r(t))dt + G(q(t), r(t))dB(t),
q(0) = q0, r(0) = r,

(2.5)

where B(·) signifies Brownian motion. Assign ς(·, ·) : Rn × S → Rn,G(·, ·) : Rn × S → Rn×n such
that G(q, k)GT (q, k) = (di j(q, k)). For each k ∈ S, letW(q, k) be twice continuously differentiable with
respect to q, and define the operator L as:

LW(q, k) =
n∑

i=1

ςi(q, k)
∂W(q, k)
∂qi

+
1
2

n∑
i, j=1

di j(q, k)
∂2W(q, k)
∂qi∂q j

+

N∑
ι=1

µkιW(q, k).
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3. Global positive solution

We here dedicate to proving an essential property of model (2.4).

Lemma 3.1. Given arbitrary initial data (X(0),Y(0), r(0)) ∈ R2
+×S, model (2.4) owns a unique global

positive solution with probability one.

Proof. Notice the following model
dX̃(t) =

[
ab(r(t))Y(t) −

σ2
1(r(t))

2
− g(r(t))eX̃(t) −

c(r(t))β(r(t))

β(r(t)) + eX̃(t)

]
dt

+ σ1(r(t))dB1(t),

dY(t) =
[
(Yup(r(t)) − Y(t))l(r(t)) −

b(r(t))
p

Y(t)eX̃(t)
]
dt + σ2(r(t))Y(t)dB2(t),

(3.1)

(X̃(0),Y(0)) = (ln X(0),Y(0)). It’s clear that the coefficients of model (3.1) obey locally Lipschitz
continuous conditions. Thus, a unique solution (X̃(t),Y(t)) on [0, τe) to model (3.1) which belongs to
τe ≤ +∞ exists. In other words, the presence of a unique local positive solution of model (2.4) is
guaranteed on [0, τe), denoted by (X(t),Y(t)) = (eX̃(t),Y(t)). The only thing we need to do is to verify
τe = +∞ a.s. Denote n0 > 0 be enough large such that 1/n0 ≤ X(0),Y(0) ≤ n0. For each n ≥ n0, assign

τn = inf{t ∈ [0, τe] : min{X(t),Y(t)} ≤ 1/n or max{X(t),Y(t)} ≥ n}.

Set τ∞ = limn→+∞ τn, then τ∞ ≤ τe. Testify τ∞ = +∞ can finish this proof. If this assertion is false,
then assume that τe < ∞. There are two constants T > 0 and ϵ ∈ (0, 1) such that P{τ∞ ≤ T } > ϵ.
Consequently there exists an integer n1 ≥ n0 satisfying

P{τn ≤ T } ≥ ϵ. (3.2)

Define
U(X,Y, k) = (X − 1 − ln X) + ap(Y − 1 − ln Y),

from which we conclude, together with Itô’s formula, that

dU(X,Y, k) = LU(X,Y, k)dt + Xσ1(r(t))dB1(t) − σ1(r(t))dB1(t) + apYσ2(r(t))dB2(t) − apσ2(r(t))dB2(t),

where

LU(X,Y, k) = ab(k)XY − g(k)X2 −
c(k)β(k)
β(k) + X

X − ab(k)Y + g(k)X +
c(k)β(k)
β(k) + X

+ pa(Yup(k) − Y)l(k)

− ab(k)XY −
apl(k)

Y
(Yup(k) − Y) + ab(k)X

≤ −g(k)X2 + g(k)X + ab(k)X + c(k) + apl(k)Yup(k) + apl(k) + ab(k)X

≤
ǧ2 + 2ǧab + a2b2

4ĝ
+ č + apY̌upľ + apľ = H.

Integrating the above inequation on [0, τn ∧ T ] and taking expectation lead to

EU(X(τn ∧ T ),Y(τn ∧ T )) ≤ U(X(0),Y(0), r(0)) + HE(τn ∧ T )
≤ U(X(0),Y(0), r(0)) + HT.

(3.3)
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Set Ωn = {τn ≤ T } for n ≥ n1, which together with Eq (3.2) leads to, P(Ωn) ≥ ϵ. For any θ ∈ Ωn, at
least one of X(τn, θ),Y(τn, θ) equals to n or 1/n. Thereby,

U(X(τn, θ),Y(τn, θ)) ≥ (n − 1 − ln n) ∧
(1
n
− 1 − ln

1
n

)
.

Recalling Eq (3.3) and one has

U(X(0),Y(0)) + HT ≥ E[1Ωn(θ)U(X(τn, θ),Y(τn, θ))]

≥ ϵ
[
(n − 1 − ln n) ∧

(1
n
− 1 − ln

1
n

)]
,

where 1Ωn representatives the indicator function of Ωn. Letting n→ +∞ gives that

U(X(0),Y(0), r(0)) + HT > +∞,

which causes a contradiction. So we get τ∞ = +∞ which completes this proof. □

4. Extinction

We now concern with the extinction of mussel species.

Theorem 4.1. Given initial value (X(0),Y(0), r(0)) ∈ R2
+ × S, the solution (X(t),Y(t), r(t)) to model

(2.4) satisfy

lim
t→+∞

ln X(t)
t
≤

N∑
k=1

πk

(ab̌

l̂
l(k)Yup(k) −

1
2
σ2

1(k)
)

a.s.

Particularly, if
∑N

k=1 πk
(ab̌

l̂
l(k)Yup(k) − 1

2σ
2
1(k)

)
< 0 holds, then

lim
t→+∞

X(t) = 0 a.s.

Proof. Define

V(X,Y, k) =
1
p

X + aY. (4.1)

Utilizing the Itô’s formula to Eq (4.1), one obtains

dV =
1
p

(
ab(r(t))XY − g(r(t))X2 −

c(r(t))β(r(t))
β(r(t)) + X

X
)
dt +

σ1(r(t))
p

XdB1(t)

+ a
(
(Yup(r(t)) − Y)l(r(t)) −

b(r(t))
p

XY
)
dt + aσ2(r(t))YdB2(t)

≤

(
al(r(t))Yup(r(t)) − al(r(t))Y

)
dt

+
σ1(r(t))

p
XdB1(t) + aσ2(r(t))YdB2(t).

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4794–4811.



4800

Integrating both sides of dV(X,Y, k) on the interval [0, t] and dividing it by t yields

1
t
(V(t) − V(0)) ≤

1
t

∫ t

0
al(r(s))Yup(r(s))ds −

1
t

∫ t

0
al(r(s))Y(s)ds

+
1
t

∫ t

0

1
p
σ1(r(s))X(s)dB1(s) +

1
t

∫ t

0
aσ2(r(s))Y(s)dB2(s)

≤
1
t

∫ t

0
al(r(s))Yup(r(s))ds −

1
t
l̂
∫ t

0
aY(s)ds

+
1
t

∫ t

0

1
p
σ1(r(s))X(s)dB1(s) +

1
t

∫ t

0
aσ2(r(s))Y(s)dB2(s).

Reordering the above equation, we have

1
t

∫ t

0
Y(s)ds ≤

1

al̂t

( ∫ t

0

1
p
σ1(r(s))X(s)dB1(s) +

∫ t

0
aσ2(r(s))Y(s)dB2(s)

+

∫ t

0
al(r(s))Yup(r(s))ds − V(t) + V(0)

)
.

(4.2)

After integrating the first equation of model (2.4) from 0 to t, we divide it by t, then

t−1 ln
X(t)
X(0)

≤
ab̌
t

∫ t

0
Y(s)ds −

1
t

∫ t

0
g(r(s))X(s)ds −

1
t

∫ t

0

c(r(s))β(r(s))
β(r(s)) + X(s)

ds

−
1
2t

∫ t

0
σ2

1(r(s))ds +
1
t

∫ t

0
σ1(r(s))dB1(s).

Substituting Eq (4.2) into the above inequality, we further have that

t−1 ln
X(t)
X(0)

≤
b̌

l̂t

(
− V(t) + V(0) +

∫ t

0
al(r(s))Yup(r(s))ds

+

∫ t

0

1
p
σ1(r(s))X(s)dB1(s) +

∫ t

0
aσ2(r(s))Y(s)dB2(s)

)
+

1
t

( ∫ t

0
σ2

1(r(s))dB1(s) −
∫ t

0
g(r(s))X(s)ds

−

∫ t

0

c(r(s))β(r(s))
β(r(s)) + X(s)

ds −
1
2

∫ t

0
σ2

1(r(s))ds
)

≤
b̌

l̂t

∫ t

0
al(r(s))Yup(r(s))ds −

1
2t

∫ t

0
σ2

1(r(s))ds + φ(t),

where

φ(t) =
b̌

l̂t

( ∫ t

0

1
p
σ1(r(s))X(s)dB1(s) − V(t) + V(0)

+

∫ t

0
aσ2(r(s))Y(s)dB2(s)

)
+

1
t

∫ t

0
σ2

1(r(s))dB1(s).

Note that limt→+∞ t−1φ(t) = 0 in the light of the strong law of large numbers. Then, letting t → +∞
gives

lim
t→+∞

ln X(t)
t
≤

N∑
k=1

πk

(ab̌

l̂
l(k)Yup(k) −

1
2
σ2

1(k)
)
< 0,

which implies the required assertion. □
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5. Ergodic stationary distribution

To investigate the ESD of model (2.4) with Markov switching, we recall an important lemma
(Hasminskii’s Theory [42]) in Lemma A.1.

Define

R0 =

∑N
k=1 ab(k)l(k)Yup(k)∑N

k=1(c(k) + 1
2σ

2
1(k))

∑N
k=1(l(k) + 1

2σ
2
2(k))
.

Theorem 5.1. If R0 > 1 and l̂ > σ̌2
2, then model (2.4) admits a unique ESD.

Proof. Above all, the condition µi j > 0 for i , j (see Appendix) guarantees the condition (i) of Lemma
A.1.

Next, the diffusion matrix of model (2.4) has the following form

I(X,Y) =
(
σ2

1(k)X2 0
0 σ2

2(k)Y2

)
.

Choose Λ = min(X,Y)∈Dc×S{σ
2
1(k)X2, σ2

2(k)Y2} > 0, whereD = [ε, 1
ε
] × [ε, 1

ε
], we have

2∑
i, j=1

ρi j(X,Y)ξiξ j = σ
2
1(k)ξ2

1X2 + σ2
2(k)ξ2

2Y2 ≥ Λ ∥ξ∥2 , ξ = (ξ1, ξ2) ∈ R2
+,

which ensures that the condition (ii) of Lemma A.1 is valid.
At last, we prove that the condition (iii) holds. Consider the function

W1 = −m1 ln X − m2 ln Y, (5.1)

where
m1 =

1∑N
k=1(c(k) + 1

2σ
2
1(k))
, m2 =

1∑N
k=1(l(k) + 1

2σ
2
2(k))
.

Using the Itô’s formula to Eq (5.1) and element inequality a + b ≥ 2
√

ab, one computes

LW1 = −m1ab(k)Y −
m2l(k)Yup(k)

Y
+ m1g(k)X +

m1c(k)β(k)
β(k) + X

+
m2b(k)

p
X

+ m2l(k) +
m1

2
σ2

1(k) +
m2

2
σ2

2(k)

≤ −m1ab(k)Y −
m2l(k)Yup(k)

Y
+ m1g(k)X + m1c(k) +

m2b(k)
p

X

+ m2l(k) +
m1

2
σ2

1(k) +
m2

2
σ2

2(k)

≤ −2
√

m1m2ab(k)l(k)Yup(k) +
(
m1g(k) +

m2b(k)
p

)
X

+ (c(k) + σ2
1(k)/2)m1 + (l(k) + σ2

2(k)/2)m2

≤ R0(k) +
(
m1ǧ +

m2b̌
p

)
X,
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where

R0(k) = −2
√

m1m2a(k)b(k)l(k)Yup(k) + (c(k) + σ2
1(k)/2)m1 + (l(k) + σ2

2(k)/2)m2.

Now, we define R0 =
(
R0(1),R0(2), . . . ,R0(N)

)T . Due to the generator matrix is Γ, there is a solution
of the Poisson system can be expressed as

λ =
(
λ(1), λ(2), . . . , λ(N)

)T

such that

Γλ =

N∑
k=1

πkR0(k) − R0.

Then we have

∑
ι∈S

µkιλ(ι) + R0(k) =
N∑

k=1

πkR(k),

which combines with the definitions of m1 and m2 leads to

L(W1 + λ(k)) ≤ R0(k) +
(
m1ǧ +

m2b̌
p

)
X +

∑
ι∈S

µkιλ(ι)

=

N∑
k=1

πkR(k) +
(
m1ǧ +

m2b̌
p

)
X

= −2(
√

R0 − 1) +
(
m1ǧ +

m2b̌
p

)
X

= −D1 +

(
m1ǧ +

m2b̌
p

)
X,

(5.2)

where D1 = 2(
√

R0 − 1).

We further define

W2 =
1
2

(X + paY)2 − ln Y.
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The application of Itô’s formula to V2 yields

LW2 = (X + paY)
[
ab(k)XY + pa

(
(Yup(k) − Y)l(k) −

b(k)
p

XY
)
−

c(k)β(k)
β(k) + X

X

− g(k)X2
]
−

1
Y

[
(Yup(k) − Y)l(k) −

b(k)
p

XY
]
+
σ2

1(k)
2

X2 +
p2a2σ2

2(k)
2

Y2 +
σ2

2(k)
2

≤ (X + paY)
(
pal(k)Yup(k) − pal(k)Y − g(k)X2

)
−

l(k)Yup(k)
Y

+ l(k)

+
b(k)

p
X +
σ2

2(k)
2
+
σ2

1(k)
2

X2 +
p2a2σ2

2(k)
2

Y2

= −g(k)X3 − g(k)paX2Y − pal(k)XY − p2a2l(k)Y2 + pal(k)Yup(k)X +
b(k)

p
X

+ p2a2l(k)Yup(k)Y −
l(k)Yup(k)

Y
+ l(k) +

σ2
2(k)
2
+
σ2

1(k)
2

X2 +
p2a2σ2

2(k)
2

Y2

≤ −ĝX3 − p2a2l̂Y2 + paľY̌upX +
b̌
p

X + p2a2 ľY̌upY −
l̂Ŷup

Y

+
σ̌2

1

2
X2 +

paσ̌2
2

2
Y2 + D2

≤ −
ĝ
2

X3 −
p2a2 l̂

2
Y2 +

b̌
p

X −
l̂Ŷup

Y
+ D2 + D3,

(5.3)

where D2 = ľ + σ̌2
2/2 and

D3 = max
(X,Y)∈R2

+

{
−

ĝ
2

X3 +
σ̌2

1

2
X2 + paľY̌upX −

p2a2(l̂ − σ̌2
2)

2
Y2 + p2a2ľY̌upY

}
.

Since l̂ > σ̌2
2, we have D3 < +∞.

Now assign
W = λ1(W1 + λ(k)) +W2,

where λ1 > 0 is sufficiently large. According to Eqs (5.2)–(5.3), we know that

lim inf
ℓ1→+∞,(X,Y,k)∈(R2

+\Uℓ1 )×S
W(X,Y, k) = +∞,

where Uℓ1 = ( 1
ℓ1
, ℓ1) × ( 1

ℓ1
, ℓ1), ℓ1 > 1 is a sufficiently large number. Continuous function W(X,Y, k)

guarantees that it has a minimum point (X0,Y0, k) in R2
+×S, we further define the following C2-function

W̃(X,Y, k) = W(X,Y, k) −W(X0,Y0, k).

Therefore, we can naturally get

LW̃ ≤ λ1

[(
m1ǧ +

m2b̌
p

)
X − D1

]
+

(
−

ĝ
2

X3 −
p2a2l̂

2
Y2 +

b̌
p

X −
l̂Ŷup

Y
+ D2 + D3

)
≤ −

ĝ
2

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X −

p2a2l̂
2

Y2 −
l̂Ŷup

Y
− λ1D1 + D2 + D3.
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Let 0 < ε < 1 is sufficient small and define a bounded close set

U = {ε ≤ X ≤ 1/ε, ε ≤ Y ≤ 1/ε}.

We can split R2
+ \ U into the following four ranges:

U1 = {(X,Y) ∈ R2
+|X < ε}, U2 = {(X,Y) ∈ R2

+|Y < ε},
U3 = {(X,Y) ∈ R2

+|X > 1/ε}, U4 = {(X,Y) ∈ R2
+|Y > 1/ε}.

Case 1 If (X,Y, k) ∈ U1, then we derive that

LW̃ ≤ −
ĝ
2

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
ε −

p2a2l̂
2

Y2 −
l̂Ŷup

Y
− λ1D1 + D2 + D3

≤

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
ε − λ1D1 + D2 + D3.

(5.4)

Case 2 If (X,Y, k) ∈ U2, then one can see that

LW̃ ≤ −
l̂Ŷup

Y
−

ĝ
2

X3 +

[
λ
(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X + D2 + D3

≤ −
l̂Ŷup

ε
+ F1 + D2 + D3,

(5.5)

where

F1 = sup
X∈R+

{
−

ĝ
2

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X
}
.

Case 3 If (X,Y, k) ∈ U3, then

LW̃ ≤ −
ĝ
4

X3 −
ĝ
4

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X + D2 + D3

≤ −
ĝ

4ε3 + F2 + D2 + D3,

(5.6)

where

F2 = sup
X∈R+

{
−

ĝ
4

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X
}
.

Case 4 If (X,Y, k) ∈ U4, then we obtain

LW̃ ≤ −
p2a2l̂

2
Y2 −

ĝ
2

X3 +

[
λ1

(
m1ǧ +

m2b̌
p

)
+

b̌
p

]
X + D2 + D3

≤ −
p2a2l̂
2ε2 + F1 + D2 + D3.

(5.7)

In R2
+ \ U, let ε be sufficiently small which satisfies[

λ1

(
ǧm1 +

b̌
p

m2

)
+

b̌
p

]
ε − λ1D1 + D2 + D3 ≤ −1,

−
l̂Ŷup

ε
+ F1 + D2 + D3 ≤ −1,

−
ĝ

4ε3 + F2 + D2 + D3 ≤ −1,

−
p2a2l̂
2ε2 + F1 + D2 + D3 ≤ −1.

(5.8)
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According to Eqs (5.4)–(5.8), we have

sup
(X,Y)∈R2

+\U

LW̃(X,Y, k) ≤ −1.

Summarizing the above discussions, the conditions (i)-(iii) of Lemma A.1 have been checked, which
means that model (2.4) has a ESD. The proof is completed. □

6. Numerical simulations

Here, it’s time to verify our analytical results by some numerical simulations. Give the initial values
of model (2.4) by (X(0),Y(0)) = (0.3, 0.2). Suppose that r(t) ranges in state space S = {1, 2} with the
generator

Γ =

(
−6 6
4 −4

)
,

and the corresponding stationary distribution π = (π1, π2) = (0.4, 0.6).
Example 6.1 We fix a = 0.2, p = 0.1. When r(t) = 1, we choose a set of parameters with c(1) = 0.02,
g(1) = 0.01, b(1) = 0.1, Yup(1) = 1, l(1) = 0.4, β(1) = 150, σ1(1) = 0.3, σ2(1) = 0.3. When r(t) = 2,
we select the other group parameters with c(2) = 0.3, g(2) = 0.02, b(2) = 0.2, Yup(2) = 1.5, l(2) = 0.6,
β(2) = 200, σ1(2) = 0.4, σ2(2) = 0.4. By calculating, we get

∑N
k=1 πk

(ab̌
l̂

l(k)Yup(k) − 1
2σ

2
1(k)

)
=

−0.005 < 0, which together with Theorem 4.1 shows that mussel X(t) of model (2.4) tends to be
extinct, depicted in Figure 1.
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Figure 1. a. The sample paths of the Markov chain r(t). b. The mussel population
density X(t).

Example 6.2 Fix a = 0.7, p = 0.1. When r(t) = 1, select a set of parameters with c(1) = 0.03, g(1) =
0.02, b(1) = 0.1, Yup(1) = 1.2, l(1) = 0.6, β(1) = 150, σ1(1) = 0.05, σ2(1) = 0.05. And choose the
other set of parameters with c(2) = 0.04, g(2) = 0.01, b(2) = 0.2, Yup(2) = 2.2, l(2) = 0.7, β(2) = 200,
σ1(2) = 0.1, σ2(2) = 0.1 when r(t) = 2. We then compute R0 ≈ 6.18 > 1 and σ̌2

2 − l̂ = −0.59 < 0. As a
result, we know from Theorem 5.1 that model (2.4) has a unique ESD. Simulations shown in Figure 2
can confirm this clearly.
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Figure 2. a. The sample paths of the Markov chain r(t), the mussel population density
X(t) and algae population density Y(t), respectively. b. The probability density function
of r(t), X(t) and Y(t), respectively.

7. Discussion and conclusions

Based on the previous work [40], this article focuses on the long-time behaviors of a stochastic
mussel-algae model incorporating both white noises and telephone noises. To the best of our
knowledge, it is the first attempt to analyze the above stochastic mussel-algae model with two types of
environmental noises. We establish two sets of sufficient criteria to verify the extinction and the
existence of a unique ESD. And some crucial influences of environmental noises on mussel evolution
are revealed. Based on the above theoretical analysis, this paper draws the followings conclusions.

Mathematical Biosciences and Engineering Volume 19, Issue 5, 4794–4811.
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•We can conclude, by Theorem 4.1, that the mussel will be extinct if

lim
t→+∞

ln X(t)
t
≤

N∑
k=1

πk

(ab̌

l̂
l(k)Yup(k) −

1
2
σ2

1(k)
)
< 0.

After further observation, if the conversion rate of ingested algae to mussel production a and the
rate of consumption of the algae by a mussel b(k) are suitably small while the amplitude noises σ1(k) is
relatively large, then the mussel species die out (see Figure 1), which means environmental fluctuations
can be used as a strategy to control the growth of mussel.
• We have demonstrated, according to Theorem 5.1, that model (2.4) has a unique ESD if R0 > 1

and l̂ > σ̌2
2 which can be used to estimate the probability of mussel outbreaks. This fact implies that

large conversion rate of ingested algae to mussel production a, large rate of consumption of the algae
by a mussel b(k), while small maximal per capita mussel death rate c(k) and small noises amplitude
σi(k)(i = 1, 2) are advantage for the persistence of species mussel (see Figure 2).

Looking forward, some challenging topics deserve further research studies. We may investigate
more complex model by introducing different noises perturbations into mussel-algae model (2.4),
such as Ornstein-Uhlebeck process, seim-Markov, Lévy jump [43]. Taking into account the long-term
memory of population systems, further consideration of fractional-order modeling methods has
important theoretical and practical implications [44–48]. We will leave these tasks in future.
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Appendix

The necessary theory listed as below, which is fundamental for our analysis result.
Lemma A.1 System (1.5) is ergodic and positive recurrent if the following assumptions hold ( [42])

(i) µi j > 0 for any i , j;
(ii) given k ∈ S, P(z, k) = (pi j(z, k)) is symmetric satisfying

ϱ|ξ|2 ≤ ξT P(q, i)ξ ≤ ϱ−1|ξ|2, ξ ∈ Rn,

with some constant ϱ ∈ (0, 1];
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(iii) there exists a non-negative function W(·, k) : Dc → R, for each k ∈ S, such that W(·, k) is
twice continuously differentable and for some α > 0,

LW(q, k) ≤ −α, for any (q, k) ∈ Dc × S,

whereDc is the complement of a bounded open subsetD ∈ Rn with a smooth boundary. Moreover, for
any Borel measurable function ς(·, ·) : Rn ×S→ R, there is a unique stationary density π(·, ·) such that∑

k∈S

∫
Rn
|ς(q, k)|π(q, k)dq < ∞,

which implies

P
(

lim
t→∞

1
t

∫ t

0
ς(q(s), r(s))ds =

∑
k∈S

∫
Rn
ς(q, k)π(q, k)dq

)
= 1.
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