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Abstract: Immune checkpoint genes (ICGs) have recently been proven to perform instrumental 
functions in the maintenance of immune homeostasis and represent a promising therapeutic strategy; 
however, their expression patterns and prognostic values are not fully elucidated in hepatocellular 
carcinoma (HCC). In this investigation, we focused on establishing and validating a prognostic gene 
signature to facilitate decision-making in clinical practice. Clinical information, as well as 
transcriptome data, was obtained from the Cancer Genome Atlas (TCGA) and International Cancer 
Genome Consortium (ICGC) database. Univariate Cox regression and least absolute shrinkage and 
selection operator (LASSO) Cox method were employed to build a multi-gene signature in the 
TCGA database, while the ICGC database was used for validation. Subsequently, utilizing the 
six-gene signature, we were able to categorize patients into high- and low-risk groups. In two cohorts, 
survival analysis findings revealed a dismal outlook for the high-risk group. The receiver operating 
characteristic curves were utilized to estimate the gene signature’s prediction ability. Moreover, 
correlation analysis showed high-risk group was linked to advanced pathological stage, 



4720 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4719–4736. 

infiltration of immune cells and therapeutic response. In summary, this unique gene profile might 
serve not only as a useful prognostic indicator but also as a marker of therapy responsiveness in 
HCC. 
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1. Introduction 

Hepatocellular carcinoma (HCC) is amongst the most prevalent and deadly malignancies 
globally and has been ranked 6th in occurrence and 3rd in fatality rate [1]. Even though there has been 
some advancement in prevention, surveillance, early-HCC diagnosis and therapy over the past few 
decades [2–5], HCC is still a malignant tumor with a dismal prognosis as evidenced by a limited 
five-year survival probability of as low as 18% [6]. Most HCC patients receive their diagnosis at 
intermediate or advanced stages and lose the opportunity to benefit from surgery intervention [7]. 
Moreover, within the first five years following surgery, around 70 percent of patients experience 
recurrence or distant metastasis [8]. The traditional TNM stage acts as a common prognostic marker and 
determines treatment choices for HCC patients. However, HCC is a highly heterogeneous disease both at 
the molecular and clinical levels [9]. And genetic heterogeneity is closely related to prognosis and 
therapeutic reactivity [10]. In this sense, the traditional TNM staging system remains to be further 
improved. Therefore, it is important to construct an effective prognostic prediction model to identify 
patients with poor prognosis to optimize individualized and rational adjuvant treatments. 

Over the past few years, the advent of immune checkpoint blocking treatment has heralded in a new 
epoch of cancer treatment. So far, three immune checkpoint targeted agents have been approved by the 
Food and Drug Administration for treating HCC including nivolumab (anti-PD-1), pembrolizumab 
(anti-PD-1) and ipilimumab (anti-CTLA-4) [11]. Recently, the IMbrave150 trial, evaluating the efficacy 
of atezolizumab in combination with bevacizumab versus sorafenib in patients suffering from the 
advanced hepatocellular carcinoma, has demonstrated significant benefits of this combination on overall 
and progression-free survival [12]. Some studies showed that PD-L1 expression in HCC could regulate 
several pathways in hepatocellular carcinogenesis, such as inducing inactivation of CD8+ T cells adhered 
to liver sinusoid cells to promote immune tolerance, inducing the exhaustion of follicular helper T cells, 
impairing cytokine expression and B cell function [13–15]. Itoh et al. [16] reported that HCC patients 
having PD-L1 positive expression had a worse prognosis as opposed to the ones having negative PD-L1 
expression. Still other studies have pointed out that immune checkpoint-associated receptors and ligands, 
such as TIM-3 [17], TIGIT [15], LAG-3 [18] and GAL-9 [19] are involved in HCC progress and may 
serve as prognostic indicators. However, there are few research have systematically studied the 
expression profile of genes associated with immune checkpoints and the prognostic significance of 
these genes in HCC patients. Further, it is noteworthy that the predictive value of a single immune 
checkpoint gene in prognosis or treatment response seems to be limited. In a meta-analysis 
conducted by Shen et al. [20] to assess the effectiveness of PD-1 or PD-L1 inhibitors in patients with 
PD-L1 positive and PD-L1 negative cancers, it was discovered that the expression of PD-L1 was not a 
sufficient predictor of responsiveness to immunotherapy. 

In the present research, taking the advantage of genomic databases, we focused on identifying 
prognosis-related immune checkpoint genes and constructing an ICG-based gene signature, followed by 
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the validation of its robustness through an external patient cohort. Moreover, immune status and drug 
sensitivity were compared between the high- and low-risk cohorts. We expected this novel gene signature 
might help to refine risk assessment and promote the development of effective individualized therapy in 
clinical settings. 

2. Materials and methods 

2.1. Data sources and processing 

The original RNA-sequence data along with matching clinical data were downloaded from the 
Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/) database, including 374 HCC tissues 
and 50 adjacent non-cancerous tissues (There were 370 HCC patients who had comprehensive 
follow-up information), which were utilized to create a prognostic model. Meanwhile, level 3 mRNA 
expression data together with clinical features of additional 231 HCC samples were downloaded 
from the International Cancer Genome Consortium (ICGC; https://icgc.org/icgc) database and were 
employed for validation. All of the data that was utilized in this investigation was accessible to the 
public. The gene symbol was first transformed from the probe IDs by referring to the annotation files. 
From the related literature, an aggregate of 79 ICGs was identified, with the majority of the ICGs 
being receptors, ligands, or other key components in immune checkpoint pathways [21–24] (Table 
S1). A subsequent analysis was conducted using the expression matrix of the ICGs that had been 
identified. 

2.2. DE-ICG identification and enrichment analysis 

The “limma” R package was employed to search for differential expression of immune 
checkpoint-related genes (DE-ICGs) across tumor and surrounding tissues in TCGA database. The 
|log2 fold change| > 1 and P-value < 0.05 served as the screening threshold. The “ggplot2” and 
“pheatmap” packages were employed to create heatmap and volcano plots. Then, the DE-ICGs were 
subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses by means of the R package “clusterProfiler”. The GO terms included 3 
biological categories (MF: molecular functions, CC: cell components and BP: biological process). 
Utilizing the R package “ggplot2”, we built a representation of the 10 leading highly enriched GO 
terms and KEGG pathways. 

2.3. Creation and verification of a prognostic gene signature associated with ICG 

Firstly, univariate Cox analysis was undertaken to filter out ICGs substantially linked to overall 
survival (OS). To further narrow the candidate genes range, the LASSO-Cox regression analysis was 
applied to determine the independent OS predictors using the “glmnet” R package. The genes with 
independent prognostic values were incorporated into the gene signature. These hub genes were also 
validated in the Kaplan-Meier (K-M) Plotter database (www.kmplot.com). Next, these genes were 
employed to construct a prognostic gene signature. Each patient’s risk score was computed utilizing 
the equation below: Risk score = ∑ Coefi ∗ Xi  (where Coefi was coefficient calculated by 
multivariate Cox proportional hazard regression, while Xi represented the expression level for each 
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ICG). Following that, subjects were categorized into low- and high-risk cohorts depending on their 
median risk rating. Using the “survival” R package, a survival analysis was carried out to examine the 
variation in OS between the two cohorts. After generating the ROC curves, we computed the area under 
the curve (AUC) to measure the prediction ability. For external validation, the same methods were 
adopted to estimate the gene’s signature precision in the ICGC cohort. In addition, considering that 
disease-specific survival (DSS) and disease-free survival (DFS) could more specifically indicate the 
clinical benefit to patients, we additionally explored the prognostic significance of the established 
gene signature using DFS and DSS as clinical outcomes in the TCGA-LIHC cohort. 

2.4. Correlation analysis between gene signature, ICGs and clinical traits 

To thoroughly investigate the gene signature’s prognostic significance, we conducted subgroup 
analyses to clarify the clinicopathological features, gene expression patterns and OS of patients in distinct 
risk cohorts. In addition, survival analyses were also conducted according to patients’ clinical information 
like age, gender, tumor grade and clinical stage. 

2.5. Establishment and assessment of a predictive nomogram 

The gene signature, in conjunction with the other clinical parameters listed above, was 
subjected to univariate and multivariate Cox regression analysis in TCGA cohort in an attempt to 
discover independent prognostic markers. The “rms” R platform was utilized to create the nomogram 
from all independent predictors with a P-value < 0.05. In order to visualize the precision of the 
prediction nomogram, we generated calibration curves plus time-dependent ROC curves. Finally, 
when it comes to clinical applications, decision curve analysis (DCA) was utilized to indicate the 
nomogram’s potential value. 

2.6. Immune status and therapeutic response analysis 

To additionally examine the link between risk scores and immune status of patients, a 
single-sample genomic enrichment analysis (ssGSEA) was carried out to contrast the infiltration 
scores of 16 distinct immune cell subpopulations and 13 immune functional pathways among both 
risk cohorts utilizing “GSVA” package in the R software. To forecast the possible responsiveness to 
an immune checkpoint inhibitor, we applied an additional tool called Immunophenoscore (IPS). IPS 
is an extensively utilized machine learning-based algorithm, reflecting the tumor immunogenicity of 
patients [25]. It was computed on a scale ranging from 0 to 10, with higher scores being related to 
greater immunogenicity and improved immunotherapeutic responsiveness. The Cancer Immunome 
Atlas (TCIA, https://tcia.at/home) database was utilized to retrieve the IPS of patients, which were 
subsequently subjected to a comparison between the two risk cohorts. In addition, we also compared 
the sensitivity of five common chemotherapy drugs (sorafenib, doxorubicin, cisplatin, vinblastine 
and mitomycin. C) between the two groups, which were recommended by AJCC guidelines for the 
adjuvant therapy of liver cancer. The half-maximal inhibitory concentration (IC50) values were 
computed for drug resistance measurements. Results of high- and low-risk cohorts were visualized 
utilizing box plots created by using the R package “pRRophetic” and “ggplot2”. 
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3. Results 

3.1. Patient demographics and clinical characteristics 

A total of 374 HCC patients from the TCGA-LIHC cohort and 231 HCC patients from the 
ICGC (LIRI-JP) cohort were eventually included in the present research. Among the patients in the 
TCGA cohort, four patients were excluded from survival analysis due to incomplete follow-up 
information. Table 1 summarizes the comprehensive clinical parameters of the patients in more depth. 
The study’s workflow is outlined in Figure 1. 

Table 1. The clinical characteristics of the patients in the TCGA and ICGC cohorts. 

Characteristics TCGA cohort (N = 370) ICGC cohort (N = 231) 

Age at diagnosis (years)   

  ＞65 138 (37.3%) 142 (61.5%) 

  ≤65 232 (62.7%) 89 (38.5%） 

Sex   

  Male 249 (67.3%) 170 (72.6%) 

  Female 121 (32.7%) 61 (26.4%) 

Stage   

  Ⅰ 171 (46.2%) 36 (15.6%) 

  Ⅱ 85 (23.0%) 105 (45.5%) 

  Ⅲ 85 (23.0%) 71 (30.7%) 

  Ⅳ 5 (1.3%) 19 (8.2%) 

  Unknown 24 (6.5%) 0 (0.0%) 

T classfication   

  T1 181 (48.9%) NA 

  T2 93 (25.2%) NA 

  T3 80 (21.6%) NA 

  T4 13 (3.5%) NA 

  Unknown 3 (0.8%) NA 

N classfication   

  N0 252 (68.1%) NA 

  N1 4 (1.1%) NA 

  Unknown 114 (30.8%) NA 

M classfication   

  M0 266 (71.9%) NA 

  M1 4 (1.1%) NA 

  Unknown 100 (27.0%) NA 

Tumor grade   

  Grade 1 55 (14.9%) NA 

  Grade 2 177 (47.8%) NA 

  Grade 3 121 (32.7%) NA 

  Grade 4 12 (3.2%) NA 

  Unknown 5 (1.4%) NA 
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Figure 1. The schematic illustration of the study’s overall design. 

3.2. Differentially expressed genes and functional enrichment analysis 

Among the 79 ICGs, 68 genes were identified from the TCGA dataset. From these genes, we 
extracted the expression profiles and collated them into the expression matrix. Based on the 
screening criteria, a total of 21 genes showed significant alteration in the levels of expression in 
HCC as opposed to the adjoining non-cancerous tissues, including 18 up-regulated and 3 
down-regulated. Heatmap (Figure 2A) and volcano plot (Figure 2B) showed the distribution of 
DE-ICGs. Furthermore, in order to better understand the biological role of DE-ICGs, a functional 
enrichment analysis was performed. As shown in Figure 2C, the bar plot showed the top 10 
enriched GO terms, including: “MHC protein complex binding”, “external side of plasma 
membrane” and “T-cell activation”. Premised on the findings of the KEGG pathway analysis, the 
identified DE-ICGs were related to “Cytokine-cytokine receptor interaction” and “Antigen 
processing and presentation” (Figure 2D,E). 

3.3. Construction of an ICG-based prognostic gene signature 

We firstly conducted a univariate Cox regression analysis and discovered eight genes of 
significant correlation with OS, among which six genes were protective factors and two genes were 
risk factors (Figure 3A). Of note, not all OS-related ICGs were DE-ICGs. Figure 3B depicts the 
relationship between these genes and their expression. Considering these genes may interact with 
each other, we employed Lasso Cox regression analysis to lower the dimensionality of data in order 
to find the real OS-affecting factors (Figure 3C,D). Six genes were selected as hub genes including 
LGALS9, CD209, CD40LG, SIRPA, BTNL9 and TNFSF4. The coefficients of these hub genes were 
depicted in Figure 3E. Detailed information was summarized in Table 2. Besides, the prognostic 
values of these six hub genes were also confirmed by the Kaplan-Meier plotter database (Figure S1). 



4725 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4719–4736. 

Subsequently, the following equation was established for this six-gene signature: Risk score = 0.002 
* ExpLGALS9 + 0.089 * ExpCD209 - 0.381 * ExpCD40LG + 0.019 * ExpSIRPA - 0.07 * ExpBTNL9 - 0.046 
* ExpTNFSF4. Finally, we were able to determine each patient’s risk score utilizing the equation 
provided above. 

 

Figure 2. Results of enrichment analysis of differentially expressed immune checkpoint 
genes (DE-ICGs) (A) The heatmap of DE-ICGs in the TCGA cohort; N normal T tumor. 
(B) The volcano-plot of DE-ICGs; red denotes up-modulated genes and blue denotes 
down-modulated genes. (C) GO enrichment analysis of DE-ICGs; BP biological processes, 
CC cellular components, MF molecular functions. (D) KEGG pathway analysis of 
DE-ICGs. (E) The chord plot showing the top 10 significant KEGG signaling pathways. 

Table 2. Hub immune checkpoint genes included in the prognostic gene signature. 

Gene symbol Description Risk coefficient 

LGALS9 Galectin 9 0.002263861 

CD209 CD209 Molecule 0.089413494 

CD40LG CD40 Ligand -0.381133418 

SIRPA Signal Regulatory Protein Alpha 0.019462250 

BTNL9 Butyrophilin Like 9 -0.069846262 

TNFSF4 TNF Superfamily Member 4 0.046198837 
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Figure 3. Identification of the candidate immune checkpoint genes (ICGs) associated 
with the prognosis of HCC patients in the TCGA database. (A) The univariate Cox 
regression analysis to identify ICGs related to overall survival (OS). (B) The correlation 
of candidate ICGs; correlation coefficients are represented by different colors. *P < 0.05, 
**P < 0.01. (C) The Least Absolute Shrinkage and Selector Operation (LASSO) 
coefficient profiles. (D) Selecting the best parameters (λ) in the LASSO model. (E) The 
coefficient of selected hub genes in the gene signature. 

3.4. The performance of gene signature 

In the TCGA cohort, the median risk value of all HCC patients was utilized to separate them 
into high- and low-risk cohorts, with a cutoff value of 0.1 to distinguish between the two. First, we 
charted the survival curves to probe into whether there was a substantial difference in survival 
between the two cohorts. As illustrated in Figure 4A, patients at high risk demonstrated a 
considerably reduced OS as opposed to the ones at low risk. Figure 4B illustrated the risk score 
distribution as well as the survival status of patients. Next, in order to assess the gene signature’s 
predictive ability even further, ROC curves for survival over one, two and three years were created 
and the AUC was determined for each of these outcomes. The AUC values as depicted in Figure 4C 
were 0.679, 0.649 and 0.662, correspondingly. Moreover, an external dataset retrieved from the ICGC 
database was employed to validate this gene signature. In the validation cohort, high-risk patients 
exhibited a substantially unfavorable outcome as opposed to the ones at low risk (Figure 4D,E). 
Similar findings were achieved in the ICGC cohort, whereby, high predictive values of AUC were 
observed in the time-dependent ROC curves (Figure 4F). 

Compared with OS, DFS and DSS are more precise indicators reflecting clinical benefits of 
patients. This study employed DSS and DFS as clinical endpoints in order to determine if the 
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prognostic model was also associated with these 2 prognostic markers. As illustrated in Figure S2, 
this prognostic model still could be used to distinguish patients with different survival statuses and 
held good stability. The results described above suggested that the novel gene signature was a robust 
index, which might be applied to anticipate clinical outcomes of HCC patients. 

 

Figure 4. Development and validation of an immune checkpoint-related gene signature. 
Survival curves for the high- and low-risk groups in the TCGA cohort (A) and ICGC 
cohort (D). Patients’ survival status and risk score in the TCGA cohort (B) and ICGC 
cohort (E). ROC curve analysis for predicting the overall survival of HCC patients 
according to the risk score in the TCGA cohort (C) and ICGC cohort (F). 

3.5. Clinical relevance investigation and subgroup analysis 

To study the link between risk cohorts and clinical parameters such as grade, TNM stage, 
gender and age, we plotted a heat map to display the correlation among these indexes. Figure 5A 
depicts the distribution of expression patterns of six genes, clinical parameters and survival status. 
On the basis of these data, it is evident that higher risk scores had a high likelihood of being detected 
in those patients with advanced TNM stages or higher pathological grade (Figure 5B,C), hinting at 
the risk signature’s precision. Furthermore, survival analysis among distinct clinical subgroups was 
carried out according to the above different parameters. The results showed that this gene signature 
could effectively distinguish samples into low- or high-risk cohorts between age, gender, stage as 
well as grade (Figure 5D–K). 
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Figure 5. Clinical relevance assessment and subgroup survival analysis. (A) The 
heatmap showing the correlations between clinical traits, gene expression and risk 
groups. (B,C) Correlation analysis between the risk groups and pathological parameters. 
(D–K) Survival curves for different subgroups categorized by age, sex, stage and grade. 

3.6. Development of a nomogram for clinical application 

The findings from a univariate Cox regression analysis indicated that risk score (P < 0.001) and 
stage (P < 0.001) were substantially linked to unfavorable clinical outcomes (Figure 6A). 
Subsequently, we examined whether the risk score independently served as a reliable prognostic 
indicator. As shown in Figure 6B, risk score (P < 0.001) and stage (P < 0.001) independently acted 
as prognostic markers revealed by the multivariate analysis. We included these variables and 
constructed a nomogram (Figure 6C), aiming at providing individualized survival estimation for 
HCC patients. The calibration curves (Figure 6D–F) illustrated that the established model has an 
extremely high consistency with the ideal model. Besides, compared with the pathologic stage, 
higher prediction accuracy was found in the integration nomogram, exhibiting the largest AUC value 
(Figure 6G–I). More importantly, the DCA curves demonstrated that the nomogram exhibited larger 
net benefits, suggesting that it had more therapeutic value for clinical application (Figure 6J–L). 
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Figure 6. Development of a nomogram for overall survival (OS) prediction for HCC 
patients. (A,B) Univariate and multivariate Cox regression analyses revealed that risk score 
was an independent prognostic predictor in the TCGA datasets. (C) The nomogram to 
predict 1-year, 3-year and 5-year OS of HCC patients. (D–F) Calibrations curves for 
predicting OS at 1, 3 and 5-year; diagonal line: ideal model, vertical bars: 95% confidence 
interval. (G–I) Comparison of the time-dependent ROC curves for nomogram, pathologic 
stage and risk score. (J–L) Decision curves analysis of the nomogram and stage for OS 
prediction at 1, 3 and 5-year. 
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3.7. Assessment of tumor immune microenvironment 

To examine the indicative roles of the gene signature on the tumor immune microenvironment, 
we applied the ssGSEA algorithm to measure the enrichment scores of a variety of immune cell 
subpopulations, associated pathways, or functions. As anticipated, highly infiltrated immune cells, 
including NK cells, CD8+ T cells and B cells, were found in the low-risk cohort (Figure 7A). 
Meanwhile, immune signaling pathways such as cytolytic activity, IFN response had an elevated 
score in the low-risk cohort (Figure 7B). Lollipop plot (Figure 7C) further showed that risk scores 
were negatively related to immune effectors cells including NK cells, CD8+ T cells, B cells and 
tumor-infiltrating lymphocytes. This result was in accordance with the conclusion that patients at 
high risk might exhibit unfavorable responsiveness to immunotherapy. Additionally, we examined 
the prognostic significance of these immune effector cells, among which higher infiltration levels of 
CD8+ T cells, B cells, NK cells and TIL were correlated with the better OS (Figure 7D–G). 

 

Figure 7. Evaluation of tumor immune microenvironment. (A, B) Comparison of the 
ssGSEA score of immune infiltrating cells and immune-related functions in different risk 
groups. (C) The lollipop plot depicting the link between immune infiltrating cells and 
risk scores; node size represents correlation coefficient; node color represents P-value. 
(D–G) Kaplan-Meier curves for HCC patients of different immune infiltration subgroups. 



4731 

Mathematical Biosciences and Engineering  Volume 19, Issue 5, 4719–4736. 

3.8. Potential of the risk score as an indicator reflecting therapeutic response 

In previous studies, IPS has been proved to be reliable for predicting immunotherapy 
response [26,27]. We found that the scores of IPS, IPS-CTLA4, IPS-PD1/PD-L1/PD-L2, 
IPS-PD1/PDL1/PD-L2 + CTLA4 were elevated among low-risk patients (Figure 8A–D), suggesting 
these patients had a high likelihood of responding to inhibitors of immune checkpoint. In addition to 
the immunotherapy, we next sought to explore the link between risk scores and the effectiveness of 
chemotherapy. The IC50 of five common chemotherapeutic drugs was computed via the pRRophetic 
algorithm. Figure 8E–I illustrated that higher risk scores were linked to a greater IC50 for 
doxorubicin (P = 0.015) and mitomycin c (P < 0.001). 

 

Figure 8. Analysis of therapeutic response. (A–D) The relationship between the 
immunophenoscore (IPS) and risk groups. (E–I) Comparison of the IC50 of different 
chemotherapeutics in different risk groups. 

4. Discussion 

HCC is troublesome for having a high risk of relapse and a dismal prognosis. Thus, biomarkers 
correlated with HCC incidence, progression and prognosis must be unraveled to improve the clinical 
outcomes of patients. Although a variety of tumor markers have been widely used in clinical practice, 
only one biomarker might not be reliable enough to anticipate long-term outcomes or treatment responses. 
In contrast, the gene signatures could achieve better predictive performance, facilitating clinicians to 
judge the prognosis of patients accurately and distinguish subgroups to select appropriate treatments. 

In recent years, immunotherapies that target programmed cell-death-1 receptor (PD-1) or its 
ligand (PD-L1) have gained substantial interest in the HCC treatment. The CheckMate-040 [28] and 
Keynote-224 [29] studies showed that OS of advanced HCC patients receiving nivolumab and 
pembrolizumab as second-line treatment was 15.6 months and 12.9 months, respectively. Compared with 
the regorafenib treatment (OS, 10.6 months), there was a significant increase. Growing evidence 
suggested that immune checkpoint blockade is one of the most promising approaches in HCC treatment. 
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However, it was also worth noting that the overall response rate of ICIs was only 10%–20% [28]. Hence, 
there is an unmet need to identify biomarkers guiding personalized treatment to effectively utilize 
medical resources and prevent adverse events caused by overtreatment. Several other immune checkpoint 
molecules in addition to PD-L1, which encompass TIGIT, TIM-3, LAG-3 and CTLA-4, have been 
proposed to participate in the immunomodulation of tumor microenvironment [30]. However, their exact 
prognostic value is controversial and remains to be further explored. Meanwhile, ICG-based prognostic 
models are still lacking in clinical practice. 

So, in the current study, we conducted a literature review from which we collected 79 immune 
checkpoint genes and extracted the gene expression profiles in the TCGA database. OS-related ICGs 
were firstly identified in the univariate Cox regression analysis. Subsequently, we utilized Lasso Cox 
regression to minimize overfitting and constructed an optimal six-gene prognostic model. The prognostic 
model enabled us to classify all patients into two prognostic cohorts based on their risk ratings. The 
high-risk cohort exhibited a significant worse prognosis. Furthermore, the model’s predictive capacity 
was demonstrated by ROC curve analysis, which was satisfactory. Meanwhile, the above results were 
also externally validated in the ICGC cohort. Interestingly, we found that Zhao et al. [31]. developed a 
similar predictive model based on PD-L1 and CTLA-4 signaling pathways genes. We plotted a 
time-dependent ROC curve to contrast the precision of the two models and the findings illustrated that 
our model exhibited a higher AUC index, reflecting its better prediction efficiency (Figure S3). Besides, 
our model is suitable for different clinical endpoints, like DSS and DFS, facilitating clinicians to make 
more comprehensive evaluations of patients’ prognosis. Eventually, we created a nomogram 
incorporating risk signature and TNM stage to enhance clinical application values. 

Our risk signature is composed of six genes, including LGALS9, CD209, CD40LG, SIRPA, BTNL9 
and TNFSF4. The results showed that CD40LG and BTNL9 were protective factors, while the others 
were risk factors for HCC. Galectin 9, encoded by LGALS9 gene, is a ligand for TIM-3 and participates 
in immune tolerance [32]. The galectin-9 expression level was correlated with cancer progression and 
aggressiveness in diverse types of cancers [33,34], such as HCC [35]. Similar to our findings, 
Sideras et al. [19] found that the galectin-9 was associated with poor HCC-specific survival. CD40LG 
affiliated to the tumor necrosis factor gene superfamily, performs a pivotal function in T cell-dependent 
humoral responses through an interface with its classical receptor CD40 [36]. It has been suggested 
that CD40LG-expressing dendritic cells could suppress HCC progression by activating immune system 
in vivo [37]. SIRPA was related to the phenotype switch of tumor-polarized macrophages and served 
important functions in HCC progression [38]. Regrettably, the remaining three genes were identified and 
reported to be associated with the progression as well as the prognosis of the other tumors [39–41], but 
have never been reported in HCC. This remains to be explored in further studies. 

Previous studies have confirmed that immune infiltration is a key factor affecting the clinical 
benefits of immunotherapy [42]. Our findings suggested that the immune cells infiltration levels 
were strongly associated with the gene signature as well as the prognosis of patients. Highly 
infiltrated CD8+ T cells, NK cells and B cells were found in the low-risk cohort and linked to 
improved prognosis. Kesh et al. [43] pointed out that elevated infiltration of CD8+ T cells may sensitive 
tumors to respond to immunotherapy. It was also reported that NK cells could cooperate with CD8+ T 
cells to improve therapeutic response in patients receiving CTLA-4 blockade therapy [44]. Furthermore, 
based on infiltrated immune subsets and immunomodulatory molecules, Charoentong et al. [25] applied 
the machine learning algorithm to develop the Immunophenoscore. It could be used to predict the 
therapeutic response to anti-CTLA-4 and anti-PD-1 therapy. In our study, low risk patients had a higher 
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IPS, suggesting that they were more likely to have higher immunogenicity. Thus, the current findings 
may have important implications for the identification of patients with a high likelihood of benefiting 
from immunotherapy. 

Nonetheless, our study had some limitations. Firstly, some important clinical parameters, 
determining the prognosis, are not available in the TCGA database, such as the history of hepatitis or 
liver cirrhosis. Secondly, although we performed an external validation in the ICGC cohort, the 
conclusion would be more convincing with validation in a prospective, large-sample cohort. 
Furthermore, the biological activities of these hub genes in the prognostic signature remain to be 
further explored in experiments. 

5. Conclusions 

In conclusion, we established and verified a new ICG-related gene signature for HCC based on 
six hub genes, which could possibly function as a prognostic marker for clinical outcomes and 
therapeutic response. 
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