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1. Introduction

In this paper, we study the oscillation for the a second-order half-linear delay difference equation of
the type

∆(φ(ψ)(∆x(ψ))ν) + ρ(ψ)xν(ψ − η) = 0; n ≥ ψ0, (1.1)

where the forward difference operator ∆ is defined by ∆x(ψ) = x(ψ + 1) − x(ψ).
The following conditions are assumed throughout the paper:

(A1) η is a non-negative integer;
(A2) {φ(ψ)}∞ψ=ψ0

is a positive real sequence;
(A3) {ρ(ψ)}∞ψ=ψ0

is a sequence of non-negative real numbers and ρ(ψ) ≡ 0 for infinitely many values of
ψ;

(A4) ν ∈ {ab : a and b are odd integers};
(A5) the equation (1.1) is called non-canonical form as

θ(ψ) :=
∞∑

s=ψ

1

φ
1
ν (s)

< ∞. (1.2)

A solution of (1.1) is a real sequence {x(ψ)} which is defined for ψ ≥ −η and satisfies (1.1) for
ψ ≥ ψ0. A solution {x(ψ)} is said to be oscillatory, if the terms {x(ψ)} of the solution are not eventually
positive or eventually negative. Otherwise the solution is called non-oscillatory.

The oscillation theory of delay differential equations has been significantly developed in recent
decades. In recent years, the oscillation theory of discrete analogues of delay differential equations
has received much interest. For the second-order difference equations, oscillation and non-oscillation
problems have recently received considerable attention. This is likely due to the similarity of such
phenomena to equivalent differential equations. Furthermore, these equations have a wide range of ap-
plications in physics and other domains. In [1] and [2], the authors have discussed the oscillation the-
orems for nonlinear fractional difference equations. The oscillation results for nonlinear second-order
difference equations gives in [3–5] and difference equations with mixed neutral terms are discussed
in [6–8].

Agarwal et al. [9–12] investigate discrete oscillatory theory, advanced topics in difference equations
and oscillation theory for difference equations. In [13, 14], the authors gives the theory of difference
equations and oscillation theory of delay difference equations. The stability and periodic solutions of
neutral difference equations are discussed in [15, 16]. Park et al. [17–19] gives the results of stability
analysis, neutral dynamic systems with delay in control input and design of dynamic controller for
neutral differential systems. Also, stability criteria for uncertain neutral systems are discussed in [20].
In 2019, Thandapani and Selvarangam [21] gives oscillation results for third-order half-linear neutral
difference equations. In [22–25], S. S. Santra et al. and in [26, 27] M. Ruggieri et al. investigate
various oscillation results of linear and non-linear differential systems. Oscillatory properties of even-
order ordinary differential equations with variable coefficients is discussed in O. Bazighifan [28].

In [29], Murugesan et al. have established the result that the second-order non-canonical advanced
difference equation

∆(φ(ψ)(∆x(ψ))ν) + ρ(ψ)xν(ψ + η) = 0; ψ ≥ ψ0 (1.3)
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is oscillatory if
∞∑

ψ=ψ0

 1
φ(ψ)

ψ−1∑
s=ψ0

θν(s + η)ρ(s)


1
ν

= ∞.

In [30], authors have studied the linear equations

∆(φ(ψ)∆x(ψ)) + ρ(ψ)x(ψ − η) = 0; ψ ≥ ψ0 (1.4)

and established the oscillation criteria for (1.4).
Motivated by the above results, we derive new sufficient condition for the oscillation of all solutions

to (1.1). Even in the linear situation, this sharp conclusion is unique. Our results are improved all
previous results in the literature. Moreover, in the linear case, we can express comparable results for
canonical equations.

We divided the paper in the following structure: We proved some auxiliary lemmas in section 2.
Section 3 deals with the main results of the paper. Finally, two examples are offered in section 4 to
demonstrate our results.

2. Auxiliary lemmas

Let us define
δ∗ = lim inf

ψ→∞

1
ν
φ

1
ν (ψ)θν+1(ψ + 1)ρ(ψ) (2.1)

and
µ∗ = lim inf

ψ→∞

θ(ψ − η)
θ(ψ)

< ∞. (2.2)

The proofs rely on the existence of positivity δ∗, which is also required for Theorems 3.1 and 3.4 to be
valid. Then there is a ψ1 ≥ ψ0 for every arbitrary fixed δ ∈ (0, δ∗) and µ ∈ [1, µ∗) such that

1
ν
ρ(ψ)φ

1
ν (ψ)θν+1(ψ + 1) ≥ δ

and
θ(ψ − η)
θ(ψ)

≥ µ, ψ ≥ ψ0. (2.3)

In the following section, we presume that all functional inequalities are satisfied; eventually, that is,
for all ψ large enough.

Using the procedure used in [8, Theorem 2], one can prove the following result.

Lemma 2.1. Suppose that
∞∑

ψ=ψ0

1

r
1
ν (ψ)

 ψ−1∑
s=ψ0

ρ(s)


1
ν

= ∞. (2.4)

If {x(ψ)} is eventually positive solution of (1.1), then ∆x(ψ) < 0 and limψ→∞ x(ψ) = 0.

Lemma 2.2. Let δ∗ > 0. If (1.1) has an eventually positive solution {x(ψ)}, then

(i) {x(ψ)} is eventually decreasing with limψ→∞ x(ψ) = 0;
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(ii) { x(ψ)
θ(ψ) } is eventually non-decreasing.

Proof. (i) By using (1.2), (2.3) and the decreasing nature of {θ(ψ)}, we have

ψ−1∑
u=ψ1

1

r
1
ν (u)

 u−1∑
s=ψ1

ρ(s)


1
ν

≥
ν
√
δ

ψ−1∑
u=ψ1

1

r
1
ν (u)

 u−1∑
s=ψ1

ν

r
1
ν (s)θν+1(s + 1)


1
ν

≥
ν
√
δ

ψ−1∑
u=ψ1

1

r
1
ν (u)

−ν u−1∑
s=ψ1

θ(s)
θν+1(s + 1)


1
ν

≥
ν
√
δ

ψ−1∑
u=ψ1

1

r
1
ν (u)

(
1

θν(u)
−

1
θν(n1)

) 1
ν

.

Since θ−ν(ψ)→ ∞ as ψ→ ∞, for any l ∈ (0, 1) and ψ large enough, we have θ−ν(ψ)−θ−ν(ψ1) ≥ lνθ−ν(ψ)
and hence

ψ−1∑
u=ψ1

1

r
1
ν (u)

 u−1∑
s=ψ1

ρ(s)


1
ν

≥ l
ν
√
δ

ψ−1∑
u=ψ1

1

r
1
ν (u)θ(u)

≥ l
ν
√
δ ln

θ(ψ1)
θ(ψ)

≥ 0.

By Lemma 2.1, the conclusion follows.
(ii) Using the fact that {r

1
ν (n)∆x(n)} is non-increasing, we obtain

x(ψ) ≥ −
∞∑

s=ψ

1

r
1
ν (s)

r
1
ν (s)∆x(ψ)

≥ −r
1
ν (ψ)∆x(ψ)

∞∑
s=ψ

1

r
1
ν (s)

= −r
1
ν (ψ)∆x(ψ)θ(ψ),

i.e.,

∆

(
x(ψ)
θ(ψ)

)
=

r
1
ν (ψ)∆x(ψ)θ(ψ) + x(ψ)

r
1
ν (ψ)θ(ψ)θ(ψ + 1)

≥ 0.

The proof is complete. �

To develop the (i) - part of Lemma 2.2, let us define a sequence {δk} by

δ0 =
ν
√
δ∗, k = 0

δk =
δ0µ

δk−1
∗

ν
√

1 − δk−1
, k ∈ N. (2.5)
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We can easily show by induction that if for any k ∈ N, δi < 1, i = 0, 1, 2, . . . , k, . then δk+1 exists and

δk+1 = ξkδk > δk, (2.6)

where ξk is defined by

ξ0 =
µδ0
∗

ν
√

1 − δ0
, k = 0 (2.7)

ξk+1 = µδ0(ξk−1)
∗

ν

√
1 − δk

1 − ξkδk
, k ∈ N0. (2.8)

Lemma 2.3. Let δ∗ > 0 and µ∗ < ∞. If (1.1) has an eventually positive solution {x(ψ)}, then for
any k ∈ N, { x(ψ)

θδk (ψ) } is eventually decreasing.

Proof. Let {x(ψ)} be an eventually positive solution of (1.1). Then there exists a ψ1 ≥ ψ0 such that
x(ψ − η) > 0 for ψ ≥ ψ1. Summing (1.1) from ψ1 to ψ − 1, we have

− φ(ψ)(∆x(ψ))ν = −φ(ψ1)(∆x(ψ1))ν +

ψ−1∑
s=ψ1

ρ(s)xν(s − η). (2.9)

By (i) of Lemma 2.2, {x(ψ)} is decreasing and x(ψ − η) ≥ x(ψ) for ψ ≥ ψ1. Therefore,

−φ(ψ)(∆x(ψ))ν ≥ −φ(ψ1)(∆x(ψ1))ν +

ψ−1∑
s=ψ1

ρ(s)xν(s − η)

≥ −φ(ψ1)(∆x(ψ1))ν + xν(ψ)
ψ−1∑
s=ψ1

ρ(s).

Using (2.3) in the above inequality, we get

−φ(ψ)(∆x(ψ))ν ≥ −φ(ψ1)(∆x(ψ1))ν + δxν(ψ)
ψ−1∑
s=ψ1

c

φ
1
ν (s)θν+1(s + 1)

≥ −φ(ψ1)(∆x(ψ1))ν + δ
xν(ψ)
θν(ψ)

− δ
xν(ψ)
θν(ψ1)

. (2.10)

From (i)-part of Lemma 2.2, we have that limψ→∞ x(ψ) = 0. Hence, there is a ψ2 ≥ ψ1 such that

−φ(ψ1)(∆x(ψ1))ν − δ
xν(ψ)
θν(ψ1)

> 0, ψ ≥ ψ2.

Thus,

− φ(ψ)(∆x(ψ))ν > δ
xν(ψ)
θν(ψ)

(2.11)

or
−φ

1
ν (ψ)∆x(ψ)θ(ψ) >

ν
√
δx(ψ) = ε0δ0x(ψ),
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where ε0 =
ν√
δ

δ0
is an arbitrary constant from (0, 1). Therefore,

∆

(
x(ψ)

θ
ν√
δ(ψ)

)
=
φ

1
ν (ψ)∆x(ψ)θ

ν√
δ(ψ) +

ν
√
δθ

ν√
δ−1(ψ)x(ψ)

φ
1
ν (ψ)θ

ν√
δ(ψ)θ

ν√
δ(ψ + 1)

=
θ

ν√
δ−1(ψ)( ν

√
δx(ψ) + θ(ψ)φ

1
ν (ψ)∆x(ψ))

φ
1
ν (ψ)θ

ν√
δ(ψ)θ

ν√
δ(ψ + 1)

≤ 0, ψ ≥ ψ2. (2.12)

Summing (1.1) from ψ2 to ψ − 1 and using that { x(ψ)
θ
ν√
δ(ψ)
} is decreasing, we have

−φ(ψ)(∆x(ψ))ν ≥ −φ(ψ2)(∆x(ψ2))ν +

(
x(ψ − η)

θ
ν√
δ(ψ − η)

)ν ψ−1∑
s=ψ2

ρ(s)θ
ν√
δ(s − η)

≥ −φ(ψ2)(∆x(ψ2))ν +

(
x(ψ)

θ
ν√
δ(ψ)

)ν ψ−1∑
s=ψ2

ρ(s)
(
θ(s − η)
θ(s)

) ν√
δ

θ
ν√
δ(s).

By virtue of (2.3), we see that

− φ(ψ)(∆x(ψ))ν ≥ −φ(ψ2)(∆x(ψ2))ν + δ

(
x(ψ)

θ
ν√
δ(ψ)

)ν ψ−1∑
s=ψ2

ν
(
θ(s−η)
θ(s)

) ν√
δ

φ
1
ν (s)θν+1−ν ν√

δ(s + 1)

− φ(ψ)(∆x(ψ))ν ≥ −φ(ψ2)(∆x(ψ2))ν

+
δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)

θ
ν√
δ(ψ)

)ν ψ−1∑
s=ψ2

ν(1 − ν
√
δ)

φ
1
ν (s)θν+1−ν ν√

δ(s + 1)
(2.13)

− φ(ψ)(∆x(ψ))ν ≥ −φ(ψ2)(∆x(ψ2))ν

+
δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)

θν
ν√
δ(ψ)

)ν ( 1

θν(1−
ν√
δ)(ψ)

−
1

θν(1−
ν√
δ)(ψ2)

)
. (2.14)

Now, we claim that limψ→∞
x(ψ)
θ
ν√
δ(ψ)

= 0. It sufficies to show that there is ε > 0 such that
{

x(ψ)
θ
ν√
δ+ε (ψ)

}
is

eventually decreasing sequence. Since {θ(ψ)} tends to zero, there exists is a constant.

ξ ∈


ν

√
1 − ν
√
δ

µ
ν√
δ

, 1


and a ψ3 ≥ ψ2 such that

1

θν(1−
ν√
δ)(ψ)

−
1

θν(1−
ν√
δ)(ψ2)

> ξν
1

θν(1−
ν√
δ)(ψ)

, ψ ≥ ψ3.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3879–3891.



3885

Using the above inequality in (2.14) yields

−φ(ψ)(∆x(ψ))ν ≥
ξνδ

1 − ν
√
δ)
µν

ν√
δ

(
x(ψ)
θ(ψ)

)ν
,

i.e.,

− φ
1
ν (ψ)∆x(ψ) ≥

(
ν
√
δ + ε

) x(ψ)
θ(ψ)

, (2.15)

where

ε =
ν
√
δ

 ξµ
ν√
δ

ν

√
1 − ν
√
δ

− 1

 > 0.

Then, from (2.15),

∆

(
x(ψ)

θ
ν√
δ+∈(ψ)

)
≤ 0, ψ ≥ ψ3,

and hence the claim holds. Therefore, for ψ4 ≥ ψ3,

−φ(ψ2)(∆x(ψ2))ν −
δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)

θ
ν√
δ(ψ)

)ν 1

θν−ν
ν√
δ(ψ2)

> 0, ψ ≥ ψ4.

Returning to (2.14) and applying the above inequality,

− φ(ψ)(∆x(ψ))ν ≥ −φ(ψ2)(∆x(ψ2))ν

+
δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)
θ(ψ)

)ν
−

δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)

θ
ν√
δ(ψ)

)ν 1

θν−ν
ν√
δ(ψ2)

>
δ

1 − ν
√
δ
µν

ν√
δ

(
x(ψ)
θ(ψ)

)ν
,

or

−φ
1
ν (ψ)∆x(ψ)θ(ψ) >

ν
√
δ

ν

√
1 − ν
√
δ

µν
ν√
δx(ψ) = ε1δ1x(ψ), ψ ≥ ψ4,

where

ε1 =
ν

√
δ(1 − ν

√
δ∗)

δ∗(1 −
ν
√
δ)

µ
ν√
δ

µ
ν√δ∗
∗

is an arbitrary constant from (0, 1) tends to 1 if δ→ δ∗ and µ→ µ∗. Hence,

∆

(
x(ψ)

θε1δ1(ψ)

)
< 0, ψ ≥ ψ4.
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By induction, one can show that for any k ∈ N0 and ψ large enough,

∆

(
x(ψ)
θεkδk(ψ)

)
< 0,

where εk given by ε0 = ν

√
δ
δ∗

εk+1 = ε0
ν

√
1 − δk

1 − εkδk

µεkδk

µδk
∗

, k ∈ N0

is an arbitrary constant from (0, 1) tends to 1 if δ → δ∗ and µ → µ∗. Now, we assert that from any

k ∈ N0,
{

x(ψ)
θεk+1δk+1 (ψ)

}
decreasing implies that { x(ψ)

θδk
} is a decreasing sequence as well. Using (2.6) and the

fact that εk+1 is arbitrarly closed to 1, we see that

εk+1δk+1 > δk.

Then, for ψ sufficiently large enough,

−φ
1
ν (ψ)∆x(ψ)θ(ψ) > εk+1δk+1x(ψ) > δkx(ψ)

and so for any ψ ∈ N0 and ψ large enough,

∆

(
x(ψ)
θδk(ψ)

)
< 0.

The proof is complete. �

3. Main results

Theorem 3.1. Let
µ∗ := lim inf

ψ→∞

θ(ψ − η)
θ(ψ)

< ∞. (3.1)

If
lim inf
ψ→∞

φ
1
ν (ψ)θν+1(ψ + 1)ρ(ψ) > max{c(ω) : νων(1 − ω)µ−νω∗ : 0 < ω < 1}, (3.2)

then (1.1) is oscillatory.

Proof. Assume that {x(ψ)} is an eventually positive solution of (1.1). Lemma 2.2 and 2.3 ensure that
∆{

x(ψ)
θ(ψ) } ≥ 0 and ∆{

x(ψ)
θδk (ψ) } < 0 for any k ∈ N0 and ψ sufficiently large enough. This case occurs when

δk < 1 for any k ∈ N0.
Thus, the sequence {δk} given by (2.5) is increasing and bounded sequence from above which im-

plies that there exists a finite limit lim infk→∞ δk = ω, where ω is the smallest positive root of the
equation

c(ω) = lim inf
ψ→∞

φ
1
ν (ψ)θν+1(ψ + 1)ρ(ψ). (3.3)

Because of (3.2), equation (3.3) cannot have a positive solution.
This contradiction completes the proof. �
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Corollary 3.1. By simple computations, we obtain

max{c(ω) : 0 < ω < 1} = c(max),

where

ωmax =


ν
ν+1 , for µ∗ = 1
−
√

(νφ+ν+1)2−4ν2φ+νφ+ν+1
2νφ , for µ∗ , 1 and φ = ln µ∗,

and c(ω) is defined by (3.2).
We get the following result when (3.1) is failed.

Theorem 3.2. Let

lim
ψ→∞

θ(ψ − η)
θ(ψ)

= ∞. (3.4)

If
lim inf
ψ→∞

φ
1
ν (ψ)θν+1(ψ + 1)ρ(ψ) > 0 (3.5)

then (1.1) is oscillatory.

Proof. Let {x(ψ)} be an eventually positive solution of (1.1). Then there exists a ψ1 ≥ ψ0 such that
x(ψ− η) > 0 for ψ ≥ ψ1. By virtue of (3.4), we see that for any M > 0 there exists a ψ sufficiently large
enough such that

θ(ψ − η)
θ(ψ)

≥

(
M
ν
√
δ

) 1
ν√
δ

. (3.6)

As in the proof of Lemma 2.3, we can show that
{

x(ψ)
θ
ν√
δ(ψ)

}
is decreasing eventually, say for ψ ≥ ψ2 ≥ ψ1.

Using this monotonicity in (2.9), we have

−φ(ψ)(∆x(ψ))ν = −φ(ψ2)(∆x(ψ2))ν +

ψ−1∑
s=ψ2

ρ(s)xν(s − η)

≥ −φ(ψ2)(∆x(ψ2))ν + Mνxν(ψ)
ψ−1∑
s=ψ2

ν

φ
1
ν (s)θν+1(s + 1)

> Mν

(
x(ψ)
θ(ψ)

)ν
,

from which we derive that { x(ψ)
θM(ψ) } is decreasing sequence. From the fact that M is a arbitrary, we have

{
x(ψ)
θ(ψ) } is non-decreasing sequence.This is a contradiction with (ii)-part of Lemma 2.2 and this completes

the proof. �

Below, we study the oscillation behaviour of (1.1) to the canonical equations in linear case when
ν = 1, that is, we consider the equation

∆(φ̃(ψ)∆u(ψ)) + ρ̃(ψ)u(ψ − η) = 0, ψ ≥ ψ0, (3.7)
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where {φ̃(ψ)} is a positive real sequence and {̃ρ(ψ)} is a nonnegative real sequence with ρ(ψ) ≡ 0 for
infinitely many values of ψ, and

R(ψ) =

ψ−1∑
s=ψ0

1

φ̃(s)
→ ∞ as ψ→ ∞.

Theorem 3.3. Let
δ∗ := lim inf

ψ→∞

R(ψ)
R(ψ − η)

< ∞.

If
lim inf
ψ→∞

(
φ̃(ψ)ρ̃(ψ)R(ψ)R(ψ − η)

)
> max{ω(1 − ω)δ−ω∗ : 0 < ω < 1},

then (3.7) is oscillatory.

Proof. we can readily check that the canonical equation (3.7) is equivalent to a non-canonical equation
(1.1) with ν = 1,

φ(ψ) = φ̃(ψ)R(ψ)R(ψ + 1)
ρ(ψ) = ρ̃(ψ)R(ψ + 1)R(ψ − η)

and
x(ψ) =

u(ψ)
R(ψ)

> 0.

Now,

θ(ψ) =

∞∑
s=ψ

1
φ(s)

=

∞∑
s=ψ

∆R(s)
R(s)R(s + 1)

=
1

R(ψ)
.

The result derives from Theorem 3.1 immediately. �

Theorem 3.4. Let
lim
ψ→∞

R(ψ)
R(ψ − η)

= ∞.

If
lim inf
ψ→∞

{φ̃(ψ)̃ρ(ψ)R(ψ)R(ψ − η)} > 0,

then (3.7) is oscillatory.

Proof. By applying the equivalent non-canonical representation of (3.7) as in the proof of Theorem
3.3, the claim follows from Theorem 3.2. �

4. Examples

Example 4.1. Let us consider the second-order difference equation

∆((ψ(ψ + 1))
1
3 (∆x(ψ))

1
3 ) + λ0

(ψ + 1)
1
3

ψ
x

1
5 (ψ − 1) = 0; ψ = 1, 2, 3, . . . (4.1)
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Here, we have φ(ψ) = (ψ(ψ + 1))
1
3 , ρ(ψ) = λ0

(ψ+1)
1
3

ψ
, ν = 1

3 and η = 1.
By simple computation, we obtain

θ(ψ) =
1
ψ
,

λ∗ = lim inf
ψ→∞

θ(ψ − 1)
θ(ψ)

= 1,

lim inf
ψ→∞

φ
1
ν (ψ)θν+1(ψ + 1)ρ(ψ) = λ0,

and
max{c(ω) : νων(1 − ω) : 0 < ω < 1} =

1

4 3√4
.

Thus, by Theorem 3.1, every solution of (4.1) is oscillatory if λ0 >
1

4 3√4

Example 4.2. Let us investigate the oscillatory behaviour of the second-order linear difference
equation

∆

(
1
ψ

∆x(ψ)
)

+
4λ0

(ψ − 2)(ψ − 1)2 x(ψ − 1) = 0; ψ = 1, 2, 3, . . . (4.2)

We have φ̃(ψ) = 1
ψ

, ρ̃(ψ) = 4λ0
(ψ−2)(ψ−1)2 and η = 1. We can easily show that

R(ψ) =
ψ(ψ − 1)

2
, δ∗ = 1,

lim inf
ψ→∞

φ̃(ψ)ρ̃(ψ)R(ψ)R(ψ − 1) = λ0,

and
max{ω(1 − ω) : 0 < ω < 1} =

1
4
.

Hence, by Theorem 3.3, the equation (4.2) is oscillatory for λ0 >
1
4 .
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