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Abstract: In the paper, under the stress of aggregation and reproduction mechanism of algae, we
proposed a modified algae and fish model with aggregation and Allee effect, its main purpose was
to further ascertain the dynamic relationship between algae and fish. Several critical conditions were
investigated to guarantee the existence and stabilization of all possible equilibrium points, and ensure
that the model could undergo transcritical bifurcation, saddle-node bifurcation, Hopf bifurcation and
B-T bifurcation. Numerical simulation results of related bifurcation dynamics were provided to verify
the feasibility of theoretical derivation, and visually demonstrate the changing trend of the dynamic re-
lationship. Our results generalized and improved some known results, and showed that the aggregation
and Allee effect played a vital role in the dynamic relationship between algae and fish.
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1. Introduction

Nowadays, great quantities of rivers and lakes around the world are more or less affected by algal
bloom, which phenomenon has received more and more attention from aquatic ecologists and envi-
ronmentalists [1, 2]. Algae are the simplest vegetative organisms capable of photosynthesis, they have
various kinds and are widely distributed. The outbreak of algal bloom will bring a lot of troubles to
our life and environment. For examples, some algaes can secrete toxic substances, which can not be
easily removed by conventional water treatment processes, then directly affect the quality and safety of
water supply. A large number of algae populations will also consume too much oxygen, causing fish
and other aquatic organisms to die due to the lackness of oxygen, which also further deteriorates water
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quality [3, 4]. However, until now, the outbreak and control of algal bloom is still one of the world’s
difficult problems. Therefore, it is urgent for scientists to choose new ideas and methods to explore this
world problem.

Since the 1950s, as system models and mathematical methods have penetrated into the field of
ecological research, a research method combining mathematical model and numerical simulation is
formed, which can not only dynamically reflect the internal essential characteristics of real ecological
problems, but also analyze their causality and find out the laws reflecting the internal mechanism ac-
cording to their deep understanding [5–7]. Consequently, more and more scholars use mathematical
models to describe ecological phenomena and use numerical simulation to predict the future trend,
and then some excellent research results were obtained in these papers [8, 9]. The papers [9–14] in-
troduced refuge effect into predator-prey model to explore its impact on dynamic behaviors, and gave
some meaningful results, such as: refuge effect has a crucial role in the evolution of dynamic behav-
iors [9–11], prey refuge can balance the relationship of predator-prey under the presence of habitat
complexity [12], prey refuge can affect spatiotemporal patterns [13], Both nonlinear harvesting and
refuge will influence the Turing instability [14]. the papers [15–21] added Allee effect to predator-prey
model to explore its impact mechanism, and some good results were obtained, such as the system
without Allee effect will always take a shorter time to get a steady-state solution than that with Allee
effect [15], Allee effect can create or destroy the interior attractor [16], Allee effect in prey growth
can reduce the complex dynamics [17], Allee effect will cause strong impact on population dynam-
ics [18–21]. The papers [22–24] considered how harvest factors affect the dynamic relationship of
predator-prey model, and obtained some important results. The paper [25] pointed out that different
level of fear will induce differently, such as striped inhomogeneous distribution is induced under high
level of fear, spotted inhomogeneous distribution is induced under low level of fear, the mixture of spot-
ted and striped inhomogeneous distribution is induced under intermediate level of fear. The paper [8]
declared that cross-diffusion was able to create stationary patterns, which could enrich the findings
of pattern formation in an ecosystem. All in all, it is successful to explore the action mechanism of
eco-environmental factors in predator-prey model by using mathematical model and numerical sim-
ulation. Therefore, we believe that this method is particularly useful to study the outbreak and control
of algal bloom.

From the perspective of fish controlling cyanobacteria bloom, the most important aim
of the paper is to propose a modified algae and fish model based on an aquatic ecolog-
ical model, which can make the dynamic relationship between algae and fish represented
by the modified model closer to the dynamic relationship in the natural ecological environ-
ment. On this basis, the dynamic behavior of the modified aquatic ecological model is investigated
in detail especially bifurcations, and some practical results are obtained.

2. Modified ecological model formulation

The paper [26] proposed an ecological model of aquatic organisms to express the algal aggregation
based on 5 modeling assumptions, and revealed the dynamic relationship between algae and fish, which
can be described by the following differential equations:
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 Ẋ = r1X
(
1 − X

k

)
− Y α(X−m)

a+X−m ,

Ẏ = ηY α(X−m)
a+X−m + r2Y

(
1 − X

k

)
− dY ,

(2.1)

where X(t) and Y(t) represent the population densities of algae and fish respectively, the ecological
significance of all parameters are detailed in the paper [26].

However, the aquatic ecological model (2.1) has two shortcomings. One is that the Allee effect is
not considered in the growth function of algae. As far as we know, since the population size of micro-
bial species is often “huge” and most microorganisms reproduce asexually, there are few researches
on microorganisms with Allee effect. However, some scholars have found the existing evidences of
Allee effect in microbial population experiments. For example, Smith et al. [27] engineered Allee ef-
fects in Escherichia coli, and Qi et al. [28] detected Allee effect in experimental population of Vibrio
fischeri in a specific experimental environment. The causes of Allee effect are various and different for
different species. Compared with algae monomer, algal aggregation has some obvious survival advan-
tages [29–31]. There are gaps between algal aggregation, which will increase buoyancy then promote
photosynthesis better [29]. Algal aggregation is usually composed of thousands of cells, which is large
enough that can effectively prevent zooplankton from preying, and better avoid the invasion of viruses,
bacteria and algae phagocytes [30]. Algal aggregation can secrete more microcystins than monomer,
which reduces the risk of predation [31]. Thus algal aggregation can make algae to find a more suitable
niche, then promote the growth and reproduction. The individual reproduction of algae monomer with
low aggregation degree will be relatively reduced, which will result in Allee effect. The other is that the
function r2Y(1− X

k ) of algae monomer affecting the abundance of fish is not reasonable, this is because
that the function includes the influence of algal aggregation. Thus, relatively speaking, the function
r2Y(1 − X−M

K ) is more reasonable.
Based on the above analysis, we will construct a modified aquatic ecological model, which can be

described by the following differential equations: dX
dT = R1X

(
1 − X

K

) (
X
N − 1

)
− Y α1(X−M)

A+X−M ,
dY
dT = β1Y α1(X−M)

A+X−M + R2Y
(
1 − X−M

K

)
− DY ,

(2.2)

where N (0 < N < K) is Allee effect threshold, the prey population is doomed to extinction when the
prey population density or size is below the threshold. It is worth mentioning that the term of feeding
on the alternative prey R2Y

(
1 − X−M

K

)
in model (2.2) is more reasonable than it in model (2.1), this is

because the aggregated part of algae M is always composed by thousands of units, which is too big for
fish, hence fish can only turn to the monomer part of algae X − M for grazing.

There are too many parameters of model (2.2), which will bring inconvenience to our follow-up
research, in order to reduce the number of parameters, replacing it with the following variables

x =
X
A
, y =

α1Y
AR1

, t = R1T,

then model (2.2) can be rewritten as the following dimensionless form: dx
dt = x

(
1 − x

k

) (
x
n − 1

)
− x−m

1+x−my,
dy
dt = β x−m

1+x−my + ry
(
1 − x−m

k

)
− dy,

(2.3)
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where m = M
A , k = K

A , n = N
A , β =

α1β1
R1
, r = R2

R1
and d = D

R1
are positive constants and apparently

0 6 m 6 k. It is worth noting that the density of prey X must greater than the aggregation parameter
M, therefore x must satisfy m 6 x and m must be euqal to zero when x = 0. To illustrate how Allee
effect affects the per-capita growth rate of algae population, we numerically show the change trend
of per-capita growth rate under different values of Allee effect control parameter n. It can be seen
from Figure 1 that if the Allee effect is not considered, the per-capita growth rate of algae population
decreases monotonically with the increase of x value, if the Allee effect is considered, the per-capita
growth rate of algae population increases first and then decreases monotonically with the increase of x
value, and if the algae population density is lower than an Allee threshold, the per-capita growth rate is
negative, which implies that the algae population density can not support the large-scale reproduction
of algae population, and will lead to the extinction of algae population. At the same time, it is also
worth pointing out that the per-capita growth rate curve is concave, which can better describe the
proliferation stage of algae population. Thus, considering Allee effect in the construction of algae
ecological dynamics model is more in line with the actual ecological and environmental significance.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
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Figure 1. Per-capita growth rate of algae under the influence of different Allee effect param-
eters n without predator. Other parameters are as follows: k = 5, m = 0.5, β = 0.17, r = 0.15,
d = 0.21.

In this paper, firstly, we analyze the relevant dynamic properties of model (2.3), and obtain several
conditions of critical threshold to ensure that model (2.3) can undergo transcritical, saddle-node, Hopf
and B-T bifurcation. Secondly, we carry out numerical experiments on the dynamic behaviors of model
(2.3), which can confirm the effectiveness of theoretical derivation and visually display the dynamic
behavior evolution process. Finally, we reveal the quality of dynamic relationship between algae and
fish from the view of population dynamics evolution according to results of the numerical simulation.

3. Results of mathematical analysis

Equilibrium points are the special solutions, which will exhibit rich properties of model (2.3), there-
fore, the existence and stability of all possible equilibrium points of model (2.3) will be discussed in
this section, and we will also use the Poincare − Bendixson Theorem to confirm the existece of a
limit cycle.
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3.1. Existence and stability of equilibrium points

It is obvious that model (2.3) has at most five possible equilibrium points: trivial extinction equi-
librium point E0(0, 0), two predator-free equilibrium points E1 (k, 0) and E2 (n, 0), two coexistence
equilibrium points E∗1 (x1, y1) and E∗2 (x2, y2). The equilibrium points E1 and E2 exist unconditionally,
and E0 exists when m , 1 from the mathematical perspective, while from the biological perspective it
exists without condition. Where x1 and x2 are the roots of the equation:

−
r
k

x2 + Bx + C = 0,

with

B = β − d + r +
2mr

k
−

r
k
, C = dm − d − mβ + r − mr +

mr
k
−

m2r
k
,

then we can obtain the concrete expressions of x1 and x2 as

x1 =
kB − k

√
∆

2r
, x2 =

kB + k
√

∆

2r
,

where

∆ = B2 +
4r
k

C =
(d − r − β)2k2 − 2r (d − r + β) k + r2

k2 ,

corresponding, the concrete expressions of y1 and y2 are

y1 =
x1

(
1 − x1

k

) (
x1
n − 1

)
(1 + x1 − m)

x1 − m
, y2 =

x2

(
1 − x2

k

) (
x2
n − 1

)
(1 + x2 − m)

x2 − m
.

The existence of coexistence equilibrium points is conditional, and the condition m 6 xi 6 k, i =

1, 2 must be satisfied, this is out of the consideration of biological significance. It is obvious that
yi > 0 when xi > max {m, n}. The specific existence conditions of coexistence equilibrium points can
be viewed in the appendix. Coexistence equilibrium points have a decisive influence on the dynamic
behavior, for an example, the fish will finally die out and model (2.3) will not be persistent if there
exists no coexistence equilibrium point.

The stability of equilibrium points can be obtained through the signs of the eigenvalues of Jacobian
matrix, firstly we obtain the expression of Jacobian matrix about model (2.3) as

JE(x,y) =

 − 3
nk x2 +

(
2
n + 2

k

)
x − 1 − y

(1+x−m)2 − x−m
1+x−m

βy
(1+x−m)2 −

ry
k β x−m

1+x−m + r
(
1 − x−m

k

)
− d

 ,
then we have the following theorems about the stability of equilibrium points.

Theorem 3.1. E0 (0, 0) exists when m , 1 and it is stable when r < d, while E0 is a saddle when r > d.

Proof. When x = 0, m must be equal to zero, therefore the Jacobian matrix of E0 can be written as

JE0(0,0) =

(
−1 0
0 r − d

)
,

it is obvious that both the two eigenvalues of matrix JE0(0,0), λ1 = −1 and λ2 = r − d, are negative when
r < d, then E0 is stable. However the two eigenvalues of JE0(0,0) have opposite signs when r > d, then
E0 is an unstable saddle.
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Theorem 3.2. E1 (k, 0) exists unconditionally, and E1 is stable when d > β k−m
1+k−m + m

k r, but E1 is an
unstable saddle when d < β k−m

1+k−m + m
k r.

Proof. The Jacobian matrix of E1 can be written as

JE1(k,0) =

(
1 − k

n − k−m
1+k−m

0 β k−m
1+k−m + m

k r − d

)
,

the two characteristic roots of matrix JE1(k,0) are λ1 = 1 − k
n and λ2 = β k−m

1+k−m + m
k r − d, the former is

negative since the Allee effect threshold N is smaller than the maximum environmental capacity K,
then n < k is satisfied. Therefore, when d > β k−m

1+k−m + m
k r, the two eigenvalues of JE0(0,0) are both

negative, then E0 is stable, but E0 is an unstable saddle as d < β k−m
1+k−m + m

k r.

Theorem 3.3. E2 allways exists as an unstable equilibrium point. When d < β n−m
1+n−m + r

(
1 − n−m

k

)
, E2

is an unstable node or focus, otherwise E2 is an unstable saddle if d > β n−m
1+n−m + r

(
1 − n−m

k

)
.

Proof. The expression of the Jacobian matrix around the equilibrium point E2 is given by:

JE2(n,0) =

 1 − n
k − n−m

1+n−m

0 β n−m
1+n−m + r

(
1 − n−m

k

)
− d

 .
Obviously, JE2(n,0) has two characteristic roots λ1 = 1 − n

k and λ2 = β n−m
1+n−m + r

(
1 − n−m

k

)
− d. From

the previous content that n < k then the root λ1 is positive, which means E2 is always unstable.
Moreover, E2 is an unstable node or focus when d < β n−m

1+n−m + r
(
1 − n−m

k

)
, and a saddle when d >

β n−m
1+n−m + r

(
1 − n−m

k

)
.

Next we will focus on the stability of the internal equilibrium points E∗1 and E∗2, the Jacobian matrixs
of them can be written as

JE∗i (xi,yi) =

 − 3
nk xi

2 +
(

2
n + 2

k

)
xi − 1 − yi

(1+xi−m)2 −
xi−m

1+xi−m
βyi

(1+xi−m)2 −
ryi
k 0

 ,
the expression of characteristic equations of JE∗i (xi,yi) is

λ2 −

[
−

3
nk

xi
2 +

(
2
n

+
2
k

)
xi − 1 −

yi

(1 + xi − m)2

]
λ + yi

[
β

(1 + xi − m)2 −
r
k

]
xi − m

1 + xi − m
= 0,

where i = 1, 2, then we have the following two theorems, which are under the conditions of their
existence.

Theorem 3.4. Suppose E∗1 (x1, y1) exists, then E∗1 is an unstable saddle as long as r < k
k+1

(
d − β +

√
∆
)
.

As for r > k
k+1

(
d − β +

√
∆
)
, E∗1 is asymptotically stable in a small domain when Tr

(
JE∗1

)
< 0, while

E∗1 is an unstable node or focus when Tr
(
JE∗1

)
> 0.

Proof. It is not hard to get the following equation through calculation

S 1 =
β

(1 + x1 − m)2 −
r
k

=
−2r
√

∆
√

∆k + (d − r − β) k − r
,

then for the stability of equilibrium point E∗1, we have the following two situations
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(1) If 0 < r < k
k+1

(
d − β +

√
∆
)
, then S 1 < 0, which means Det

(
E∗1

)
< 0 i.e., the two eigenvalues of

JE∗1
have opposite signs, therefore E∗1 is an unstable saddle.

(2) If r > k
k+1

(
d − β +

√
∆
)
, then S 1 > 0, which means Det

(
E∗1

)
> 0. Under this condition, E∗1 is

asymptotically stable in a small domain when Tr
(
JE∗1

)
< 0 i.e., JE∗1

has two negative eigenvalues

or the real part of eigenvalues are negative, but E∗1 is an unstable focus or node when Tr
(
JE∗1

)
> 0

i.e., both the two eigenvalues of JE∗1
are positive or have positive real part.

Theorem 3.5. The equilibrium point E∗2 is an unstable saddle as long as it exists.

Proof. Similar to the above theorem, we can obtain the following equation

S 2 =
β

(1 + x2 − m)2 −
r
k

=
−2r
√

∆
√

∆k + (−d + r + β) k + r
.

It’s obvious that S 2 < 0 due to the existing condition of E∗2 including r > d, which means Det
(
E∗2

)
< 0,

then JE∗2
has a positive eigenvalue and a negative eigenvalue i.e., E∗2 is an unstable saddle under the

existing conditions.

3.2. Existence of limit cycle

In this subsection, we assume that E∗1 is the unique internal equilibrium point, which is unstable,
then as for model (2.3) we have the following main theorem about the existence of limit cycle.

Theorem 3.6. For model (2.3), there exists one limit cycle when m > n at least.

Proof. Consider the lines L1 : x − m = 0, L2 : x − k = 0, we have

dL1

dt
= x

(
1 −

x
k

) ( x
n
− 1

)
−

x − m
1 + x − m

y
∣∣∣∣∣
x=m

> 0,

dL2

dt
= x

(
1 −

x
k

) ( x
n
− 1

)
−

x − m
1 + x − m

y
∣∣∣∣∣
x=k

< 0.

Therefore the orbit of model (2.3) will across the lines L1 and L2 from left and right, respectively.
Moreover, we define the second line L3 : x +

y
β
− B = 0, then we have

dL3

dt
= x

(
1 −

x
k

) ( x
n
− 1

)
− rx

(
1 −

x − m
k

)
+ dx +

[
r −

r
k

(x − m) − d
]

B,

here B is a positive constant and large enough. According to the existence of E∗1 from appendix we
have r < d, then

[
r − r

k (x − m) − d
]

B is a quite small negative number for any specific x ∈ [m, k],

meanwhile x
(
1 − x

k

) (
x
n − 1

)
− rx

(
1 − x−m

k

)
+ dx is bounded. Thus dL3

dt < 0 for all x ∈ [m, k], which
means that model (2.3) has at least one limit cycle according to Poincare − Bendixson Theorem.
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Figure 2. The limit cycle of this model with k=5, n=0.2, r=0.15, d=0.21, m=0.4, β=0.25,
B=120, where E∗1 is the unique internal equilibrium point in the region and the lines L1–L3
are defined in the main text.

In order to make the results more visualized, we fix the parameters k = 5, n = 0.2, r = 0.15, d =

0.21,m = 0.4 and β = 0.25, then E∗1 is the unique equilibrium point of model (2.3), which is unstable.
At the same time, the condition dL3

dt < 0 is satisfied when B = 120, so it is obvious to find from
Figure 2 that there exists one limit cycle at least. The condition dL1

dt > 0 means that the density values
of the two populations will tend to the right side of the line L1 when the initial density values lie on
the line, dL2

dt < 0 and dL3
dt < 0 denote similar meanings. Furthermore, the limit cycle describes such

a phenomenon in biology that neither of algae and fish will be extinct, but reach a state of periodic
oscillation and dynamic coexistence.

4. Local bifurcation analysis

In this section, the local bifurcation of model (2.3) will be discussed in detail. We not only con-
sider the codimension one bifurcations, scuh as the transcritical, saddle-node and Hopf bifurcation but
also explore codimension two bifurcation as B-T bifurcation. Here the transversality conditions for
transcritical bifurcation and saddle-node bifurcation will be verified by the Sotomayor’s theorem [32].

4.1. Transcritical bifurcation

Usually, the boundary equilibrium points are the main research object of transcritical bifurcation.
In this subsection, the existence of transcritical bifurcation at the equilibrium point E1(k, 0) is studied.
From Theorem 2, we know that E1 is an unstable saddle when g (m) < 0, while E1 is stable when
g (m) > 0, where

g (m) = rm2 + (βk − dk − rk − r) m − βk2 + dk2 + dk,

letting m1 6 m2 be the two possible solutions of equition g (m) = 0, we have

m1 =
r + (d + r − β) k − k

√
∆

2r
,m2 =

r + (d + r − β) k + k
√

∆

2r
.

Thus, when m1 or m2 is in the set [0, k], the equilibrium point E1 will translate its stability as the
value of m passes through m1 or m2. Furthermore, it should be attention that when m = m1 or m = m2,
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the equilibrium point E1 coincides with E∗1 if βk − dk − rk + 2mr − r > 0, and coincides with E∗2 if
βk − dk − rk + 2mr − r < 0.

Theorem 4.1. Model (2.3) will undergo two transcritical bifurcations.
(a) Transcritical bifurcation takes place in model (2.3) at E1 when m = m1 with either of the following
two cases is satisfied.

case 1. ∆ > 0, (β − d) k < d, |r + dk − βk| < rk.
case 2. ∆ > 0, (β − d) k < d, r + dk − βk > rk, d < r.

(b) Transcritical bifurcation takes place in model (2.3) at E1 when m = m2 with either of the following
two cases is satisfied.

case 1. ∆ > 0, r < d, |r + dk − βk| < rk.
case 2. ∆ > 0, r < d < (β − d) k, r + dk − βk < −rk.

Proof. (a) m1 ∈ (0, k), when case 1 or case 2 is satisfied. And E1 shifts it’s stability from stable to
unstable with m passing through m1 from left to right. When m = m1, the Jacobion matrix at E1 can be
expressed as

J(E1;m) =

(
1 − k

n − k−m
1+k−m

0 0

)
,

we assume that V and W respectively are eigenvectors of J(E1;m) and JT
(E1;m) with respect to eigenvalue

zero, which means.
J(E1;m)V = 0, JT

(E1;m)W = 0,

we can set

V =

(
v1

v2

)
=

( k−m
1+k−m
1 − k

n

)
, W =

(
w1

w2

)
=

(
0
1

)
,

then

WT Fm(E1; m) =
(

0 1
)  y

(1+x−m)2

−βy
(1+x−m)2 +

ry
k


(E1,m)

=
(

0 1
) ( 0

0

)
= 0,

WT [DFm(E1; m)V] =
(

0 1
)  −2y

(1+x−m)3
1

(1+x−m)2

2βy
(1+x−m)3

−β

(1+x−m)2 + r
k


(E1,m)

( k−m1
1+k−m1

1 − k
n

)

=
2r (n − k)

[
k2∆ − ((d − r − β) k − r) k

√
∆
]

nk
[
(d − r − β) k − r − k

√
∆
]2 ,

WT
[
D2F(E1; m) (V,V)

]
=

(
0 1

) ( f 1
xx f 1

xy f 1
yx f 1

yy

f 2
xx f 2

xy f 2
yx f 2

yy

)
(E1;m)


v1v1

v1v2

v2v1

v2v2


=

4r (k − n)
[
(d − r − β) k + r − k

√
∆
] [

k2∆ − ((d − r − β) k − r) k
√

∆
]

nk
[
(d − r − β) k − r − k

√
∆
]3 ,
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where

f 1 = x
(
1 −

x
k

) ( x
n
− 1

)
−

x − m
1 + x − m

y, f 2 = β
x − m

1 + x − m
y + ry

(
1 −

x − m
k

)
− dy,

due to β , 0 and n , k, it’s obvious that

WT [DFm(E1; m)V] , 0,

WT
[
D2F(E1; m) (V,V)

]
, 0.

Therefore, by the S otomayor′s theorem, transcritical bifurcation takes place in model (2.3) at E1

when m = m1.
(b) We omitted the process since it is similiar to the proof of (a).

4.2. Saddle-node bifurcation

The existing conditions of the two internal equilibrium points E∗1 and E∗2 are given in the appendix.
When β is chosen as the bifurcation parameter, the collision of E∗1 and E∗2 may overlap as an equilibrium
point ES N (xS N , yS N) when ∆ = 0. With the change of the value of β, the value of ∆ will change, and
when ∆ < 0, there is no internal equilibrium point ES N . The change of equilibrium point number is
caused by the taking place of saddle-node bifurcation in model (2.3) when β = βS N , where

βS N =
dk − rk + r + 2

√
dkr − kr2

k
,

corresponding, we have

xS N =
mr +

√
rk (d − r)
r

,

yS N =
xS N

(
1 − xS N

k

) (
xS N

n − 1
)

(1 + xS N − m)

xS N − m
.

Theorem 4.2. Saddle-node bifurcation takes place in model (2.3) when β = βS N under the conditions
of

(1) d > r,
(2) (n − m) r <

√
rk (d − r) < (k − m) r.

Proof. The equilibrium point ES N exists under the above two conditions according to the Appendix.
The Jacobian matrix at ES N when β = βS N can be written as

JES N =

 − 3
nk x2

S N +
(

2
n + 2

k

)
xS N − 1 − yS N

(1+xS N−m)2 −
xS N−m

1+xS N−m

0 0

 .
Letting the eigenvectors of the zero eigenvalues of JES N and JT

ES N
are V and W respectively, where

V =

(
v1

v2

)
=

 xS N−m
1+xS N−m

− 3
nk x2

S N +
(

2
n + 2

k

)
xS N − 1 − yS N

(1+xS N−m)2

 ,W =

(
w1

w2

)
=

(
0
1

)
,
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then, we can get

WT Fβ (ES N; βS N) =
(

0 1
) ( 0

xS N−m
1+xS N−myS N

)
=

xS N − m
1 + xS N − m

yS N , 0,

WT
[
D2Fm(ES N; βS N) (V,V)

]
=

(
0 1

) ( f 1
xx f 1

xy f 1
yx f 1

yy

f 2
xx f 2

xy f 2
yx f 2

yy

)
(ES N ;βS N )


v1v1

v1v2

v2v1

v2v2


= −

2βS NyS N(m − xS N)2

(1 + xS N − m)5 , 0.

Clearly, the transversality condition for the taking place of saddle-node bifurcation at ES N is sat-
isfied when β = βS N . Therefore, it is obvious that the number of internal equilibrium point of model
(2.3) changes from zero to two when the value of parameter β passes through β = βS N .

4.3. Hopf bifurcation

From the analysis in the previous content, it’s easy to conclude that the equilibrium point E∗1 has
different stability under different restrictions of parameters, which may caused by Hopf bifurcation. In
order to figure out how algal aggregation and Allee effect influence the dynamic behavior of model
(2.3), m and n are chosen as the control parameter of Hopf bifurcation respectively, then we have the
following two Theorems.

Theorem 4.3. Hopf bifurcation takes place in model (2.3) around E∗1 at m = mHp when r >
k

k+1

(
d − β +

√
∆
)

based on Theorem 3.4.

Proof. As for matrix JE∗1
, the characteristic equation of it can be written as λ2−Tr

(
JE∗1

)
λ+ Det

(
JE∗1

)
=

0, then a Hopf bifurcation takes place when m = mHp such that
(1) Tr

(
JE∗1

)
= 0,

(2) Det
(
JE∗1

)
> 0,

(3) d
dm Tr

(
JE∗1

)∣∣∣∣
m=mHp

, 0.

When m = mHp, Tr
(
JE∗1

)
= 0 is set up, and Det

(
JE∗1

)
> 0 is satisfied when r > k

k+1

(
d − β +

√
∆
)

according to Theorem 3.4. Therefore we only need to certify the transersality condition (3) to guarantee
the changes of stability of E∗1 through Hopf bifurcation.

d
dm

Tr
(
JE∗1

)∣∣∣∣∣
m=mHp

=


6x1 − 2n − 2k

nk
+

x1

(
1 − x1

k

) (
x1
n − 1

)
+

[
x3

1
nk −

(
1
n + 1

k

)
x2

1 + x1

]
(2 + 4x1 − 4m)

(x1 − m)2(1 + x1 − m)2


∣∣∣∣∣∣∣∣∣∣
m=mHp

,
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The condition (3) is satisfied through our numerical simulation, then Hopf bifurcation takes place
in model (2.3) at m = mHp. To find out the stability of the limit cycle brought by Hopf bifurcation, the
first Lyapunov number l1 at the equilibrium point E∗1 is going to be computed following.

Firstly, translating the equilibrium point E∗1 to the origin by using the transformation x = xm + x1,
y = ym + y1, then model (2.3) can be rewritten as

ẋm = a10xm + a01ym + a20x2
m + a11xmym + a02y2

m + a30x3
m

+a21x2
mym + a12xmy2

m + a03y3
m + P1(xm, ym),

ẏm = b10xm + b01ym + b20x2
m + b11xmym + b02y2

m + b30x3
m

+b21x2
mym + b12xmy2

m + b03y3
m + P2(xm, ym),

where a10, a01, b10, b01 are the components of the Jacobian matrix at E∗1, we have a10 + b01 = 0 and
Det = a10b01 − a01b10 > 0. The coefficients ai j and bi j are determined by

a02 = a12 = a03 = b01 = b02 = b03 = b12 = 0,

a10 = −
3
nk

x2
1 + 2

(
1
n

+
1
k

)
x1 − 1 −

y1

(1 + x1 − m)2 , a01 = −
x1 − m

1 + x1 − m
,

a20 = −
3
nk

x1 +
1
n

+
1
k

+
y1

(1 + x1 − m)3 , a11 = −
1

(1 + x1 − m)2 ,

a30 = −
1
nk
−

y1

(1 + x1 − m)4 , a21 =
1

(1 + x1 − m)3 ,

b10 =
βy1

(1 + x1 − m)2 −
r
k

y1, b20 = −
βy1

(1 + x1 − m)3 ,

b11 =
β

(1 + x1 − m)2 −
r
k
, b30 =

βy1

(1 + x1 − m)4 ,

b21 = −
β

(1 + x1 − m)3 .

P1(xm, ym) and P2(xm, ym) are the power series in (xm, ym) with terms xi
my j

m satisfying i + j ≥ 4.
The expression of the first Lyapunov number can be expressed by the formula:

l1 =
−3π

2a01(Det)3/2

{[
a10b10(a2

11 + a11b02 + a02b11) + a10a01(b2
11 + a20b11 + a11b02)

− 2a10b10(b2
02 − a20a02) − 2a10a01(a2

20 − b20b02) − a2
01(2a20b20 + b11b20)

+(a01b10 − 2a2
10)(b11b02 − a11a20) + b2

10(a11a02 + 2a02b02)
]

−(a2
10 + a01b10) [3(b10b03 − a01a30) + 2a10(a21 + b12) + (b10a12 − a01b21)]

}
,

=
3πβy1

[
−

6x1
nk + 2

k + 2
n +

2y1

(1+x1−m)3 +
βy1

(1+x1−m)2 −
r
k

]
2(x1 − m)1/2

[
βy1

(1+x1−m)2 −
y1r
k

]3/2
(1 + x1 − m)5/2

−
3π

[
− 3

nk −
3y1

(1+x1−m)4 −
β

(1+x1−m)3

]
2(x1 − m)1/2

[
βy1

(1+x1−m)3 −
y1r

k(1+x1−m)

]1/2

−
3π

[
−

3x1
nk + 1

k + 1
n +

y1

(1+x1−m)3

]
2(x1 − m)3/2

[
βy1

(1+x1−m) −
y1r
k (1 + x1 − m)

]1/2 .
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The limit cycle around equilibrium point E∗1 caused by Hopf bifurcation is unstable if l1 > 0,
otherwise the limit cycle is stable if l1 < 0. For the expression of the first Lyapunov number l1 is too
cumbersome to tell the sign, the accuracy of this Theorem will be verified in the Section 5.

Theorem 4.4. Hopf bifurcation takes place in model (2.3) around E∗1 at n = nHp when r >
k

k+1

(
d − β +

√
∆
)
.

Proof. This Theorem is similar to the above one, we only need to prove the third condition
(3’) d

dn Tr
(
JE∗1

)∣∣∣∣
n=nHp

, 0.

Through calculation we can obtain

d
dn

Tr
(
JE∗1

)∣∣∣∣
n=nHp

=

 3
n2k

x2
1 −

2
n2 x1 +

x2
1

(
1 − x1

k

)
(1 + x1 − m) (x1 − m) n2


∣∣∣∣∣∣∣∣
n=nHp

, 0,

then we complete the proof.

4.4. Bogdanov-Takens bifurcation

Usually several main parameters will affect model (2.3) collectively, therefore it is significant
to focus on the dynamic behavior caused by the combined parameters. We study a bifurcation of
codimension two with parameters m and β in this section, we pay main attention to the B-T bifurcation,
which is caused by the simultaneous occurrence of saddle-node bifurcation and Hopf bifurcation.

Theorem 4.5. When choose two bifurcation parameters m and β, mBT and βBT are the bifurcation
threshold valves, which satisfy

Tr
(
JE∗1

)∣∣∣∣
(mBT ,βBT )

= 0, Det
(
JE∗1

)∣∣∣∣
(mBT ,βBT )

= 0,

then a B-T bifurcation takes place near the equilibrium point E∗1 with changing parameters (m, β) near
(mBT , βBT ).

Here we derive model (2.3) into a normal form of the B-T bifurcation to obtain the specific ex-
pressions of the saddle-node, Hopf and homoclinic bifurcation curve in a small domain near the
B-T point.

Substituting m = mBT + ξ1, β = βBT + ξ2 into model (2.3), where ξ1 and ξ2 stand for two small
perturbations. Then we can obtain the following model dx

dt = x
(
1 − x

k

) (
x
n − 1

)
−

x−mBT−ξ1
1+x−mBT−ξ1

y,
dy
dt = (βBT + ξ2) x−mBT−ξ1

1+x−mBT−ξ1
y + ry

(
1 − x−mBT−ξ1

k

)
− dy,

(4.1)

Through introducing new variables u = x − x1 and v = y − y1, the equilibrium point E∗1 is translated
to the origin, we have{ du

dt = a00 (ξ) + a10 (ξ) u + a01 (ξ) v + a20 (ξ) u2 + a11 (ξ) uv + a02 (ξ) v2,
dv
dt = b00 (ξ) + b10 (ξ) u + b01 (ξ) v + b20 (ξ) u2 + b11 (ξ) uv + b02 (ξ) v2 + P3 (u, v, ξ),

(4.2)
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where

a00 (ξ) = x1

(
1 −

x1

k

) ( x1

n
− 1

)
−

x1 − mBT − ξ1

1 + x1 − mBT − ξ1
y1, a01 (ξ) = −

x1 − mBT − ξ1

1 + x1 − mBT − ξ1
,

a10 (ξ) = −
3
nk

x2
1 + 2

(
1
n

+
1
k

)
x1 − 1 −

y1

(1 + x1 − mBT − ξ1)2 , a11 (ξ) = −
1

(1 + x1 − mBT − ξ1)2 ,

a20 (ξ) = −
3
nk

x1 +
1
n

+
1
k

+
y1

(1 + x1 − mBT − ξ1)3 , b10 (ξ) =
(βBT + ξ2) y1

(1 + x1 − mBT − ξ1)2 −
r
k

y1,

a02 (ξ) = b02 (ξ) = 0, b20 (ξ) = −
(βBT + ξ2) y1

(1 + x1 − mBT − ξ1)3 , b11 (ξ) =
βBT + ξ2

(1 + x1 − mBT − ξ1)2 −
r
k
.

b00 (ξ) = (βBT + ξ2)
x1 − mBT − ξ1

1 + x1 − mBT − ξ1
y1 + ry1

(
1 −

x1 − mBT − ξ1

k

)
− dy1,

b01 (ξ) = (βBT + ξ2)
x1 − mBT − ξ1

1 + x1 − mBT − ξ1
+ r

(
1 −

x1 − mBT − ξ1

k

)
− d,

and P3 (u, v, ξ) is power series in (u, v) with terms uiv j satisfying i + j > 4, whose coefficients are
depend on ξ1 and ξ2 smoothly.

Then, in a small domain of the origin (0, 0), we take the following C∞ change of coordinates:

n1 = u, n2 = a00 (ξ) + a10 (ξ) u + a01 (ξ) v + a20 (ξ) u2 + a11 (ξ) uv,

model (4.2) can be written as{ dn1
dt = n2,

dn2
dt = c00 (ξ) + c10 (ξ) n1 + c01 (ξ) n2 + c20 (ξ) n2

1 + c11 (ξ) n1n2 + c02 (ξ) n2
2 + P4 (n1, n2, ξ),

(4.3)

where

c10 (ξ) = a01 (ξ) b10 (ξ) − a10 (ξ) b01 (ξ) − a00 (ξ) b11 (ξ) + a11 (ξ) b00 (ξ) −
a00 (ξ) a11 (ξ) b01 (ξ)

a01 (ξ)
,

c00 (ξ) = a01 (ξ) b00 (ξ) − a00 (ξ) b01 (ξ) , c01 (ξ) = a10 (ξ) + b01 (ξ) −
a00 (ξ) a11 (ξ)

a01 (ξ)
,

c20 (ξ) = a01 (ξ) b20 (ξ) − a20 (ξ) b01 (ξ) − a10 (ξ) b11 (ξ) + a11 (ξ) b10 (ξ) + 2
a00 (ξ) a11

2 (ξ) b01 (ξ)
a01

2 (ξ)
,

c11 (ξ) = 2a20 (ξ) + b11 (ξ) −
a10 (ξ) a11 (ξ)

a01 (ξ)
+

a00 (ξ) a11
2 (ξ)

a01
2 (ξ)

, c02 (ξ) =
a11 (ξ)
a01 (ξ)

,

and P4 (n1, n2, ξ) is power series in (n1, n2) with terms ni
1n j

2 satisfying i + j > 4, whose coefficients are
depend on ξ1 and ξ2 smoothly.

In order to remove the term c02 (ξ) n2
2 from model (4.3), we take a new time variable τ, which

satisfies (1 − c02 (ξ) n1) dτ = dt. Then letting p1 = n1, p2 = n2 (1 − c02n1) and rewriting τ as t for the
seek of briefness, we obtain{ dp1

dt = p2,
dp2
dt = η00 (ξ) + η10 (ξ) p1 + η01 (ξ) p2 + η20 (ξ) p2

1 + η11 (ξ) p1 p2 + P5 (p1, p2, ξ),
(4.4)

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3673–3700.



3687

where

η00 (ξ) = c00 (ξ) , η10 (ξ) = c10 (ξ) − 2c00 (ξ) c02 (ξ) , η01 (ξ) = c01 (ξ) ,
η20 (ξ) = c20 (ξ) + c00 (ξ) c2

02 (ξ) − 2c02 (ξ) c10 (ξ) , η11 (ξ) = c11 (ξ) − 2c01 (ξ) c02 (ξ) ,

and P5 (p1, p2, ξ) is power series in (p1, p2) with terms pi
1 p j

2 satisfying i + j > 4, whose coefficients are
depend on ξ1 and ξ2 smoothly.

Let
q1 = p1 +

η10 (ξ)
2η20 (ξ)

, q2 = p2,

under which, model (4.4) can be translated into the following one{ dq1
dt = q2,

dq2
dt = $00 (ξ) +$01 (ξ) q2 +$20 (ξ) q2

1 +$11 (ξ) q1q2 + P6 (q1, q2, ξ),
(4.5)

where

$00 (ξ) = η00 (ξ) −
η2

10
(ξ)

4η20 (ξ)
, $01 (ξ) = η01 (ξ) −

η10 (ξ) η11 (ξ)
2η20 (ξ)

,

$20 (ξ) = η20 (ξ) , $11 (ξ) = η11 (ξ) ,

and P6 (q1, q2, ξ) is power series in (q1, q2) with terms qi
1q j

2 satisfying i + j > 4, whose coefficients are
depend on ξ1 and ξ2 smoothly.

Notice that the expression of $20 (ξ) is too complex to determine the sign, two cases are considered
follows.

case 1: $20 (ξ) > 0, when ξi (i = 1, 2) is small enough, then take the following new variables

ν1 = q1, ν2 =
q2√
$20 (ξ)

, τ = t
√
$20 (ξ),

retaining t to denote τ, then model (4.5) can be rewritten as{ dν1
dt = ν2,

dν2
dt = θ00 (ξ) + θ01 (ξ) ν2 + ν2

1 + θ11 (ξ) ν1ν2 + P7 (ν1, ν2, ξ),
(4.6)

where
θ00 (ξ) =

$00 (ξ)
$20 (ξ)

, θ01 (ξ) =
$01 (ξ)√
$20 (ξ)

, θ11 (ξ) =
$11 (ξ)√
$20 (ξ)

,

and P7 (ν1, ν2, ξ) is power series in (ν1, ν2) with terms νi
1ν

j
2 satisfying i + j > 4, whose coefficients are

depend on ξ1 and ξ2 smoothly.
Assume θ11 (ξ) , 0, then through introducing new variables

x = θ2
11 (ξ) ν1, y = θ3

11 (ξ) ν2, τ =
t

θ11 (ξ)
,

and retaining t to represent τ, then model (4.6) can be rewritten as{ dx
dt = y,
dy
dt = σ00 (ξ) + σ01 (ξ) y + x2 + xy + P8 (x, y, ξ),

(4.7)
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where
σ00 (ξ) = θ00 (ξ) θ4

11 (ξ) , σ01 (ξ) = θ01 (ξ) θ11 (ξ) ,

and P8 (x, y, ξ) is power series in (x, y) with terms xiy j satisfying i + j > 4, whose coefficients depend
on ξ1 and ξ2 smoothly.

case 2: $20 (ξ) < 0, when ξi (i = 1, 2) is small enough, then take the following new variables

ν′1 = q1, ν
′
2 =

q2√
−$20 (ξ)

, τ′ = t
√
−$20 (ξ),

retaining t to denote τ′, then model (4.5) can be rewritten as dν′1
dt = ν′2,

dν′2
dt = θ′00 (ξ) + θ′01 (ξ) ν′2 − ν

′2
1 + θ′11 (ξ) ν′1ν

′
2 + P′7

(
ν′1, ν

′
2, ξ

)
,

(4.6′)

where
θ′00 (ξ) = −

$00 (ξ)
$20 (ξ)

, θ′01 (ξ) =
$02 (ξ)√
−$20 (ξ)

, θ′11 (ξ) =
$11 (ξ)√
−$20 (ξ)

,

and P′7
(
ν′1, ν

′
2, ξ

)
is power series in

(
ν′1, ν

′
2

)
with terms ν′i1ν

′ j
2 satisfying i + j > 4, whose coefficients

depend on ξ1 and ξ2 smoothly.
Supposing θ′11 (ξ) , 0, then we make the following transformation:

x = −θ′211 (ξ) ν′1, y = θ′311 (ξ) ν′2, τ
′ = −

t
θ′11 (ξ)

,

retaining t to denote τ′, then model (4.6′) can be rewritten as{ dx
dt = y,
dy
dt = σ′00 (ξ) + σ′01 (ξ) y + x2 + xy + P′8 (x, y, ξ),

(4.7′)

where
σ′00 (ξ) = −θ′00 (ξ) θ′411 (ξ) , σ′01 (ξ) = −θ′01 (ξ) θ′11 (ξ) ,

and P′8 (x, y, ξ) is power series in (x, y) with terms xiy j satisfying i + j > 4, whose coefficients depend
on ξ1 and ξ2 smoothly.

We retain σ00 (ξ) and σ01 (ξ) to denote σ′00 (ξ) and σ′01 (ξ) in (4.7′) to reduce the number of situa-
tions to be discussed. In a small domain of (0, 0), the two transformations of models (4.7) and (4.7′)
are homeomorphisms, and σ00 (ξ), σ01 (ξ) are independent parameters when

∣∣∣∣∂(σ00,σ01)
∂(ξ1,ξ2)

∣∣∣∣
ξ1=ξ2=0

, 0. Ac-

cording to the results of [33, 34], model (2.3) undergoes a B-T bifurcation when ξ = (ξ1, ξ2) is in a
small doamin of the origin. The local expressions around the origin of the bifurcation curves can be
expressed as follows (“+” denotes $20 (ξ) > 0 and “−” denotes $20 (ξ) < 0) :
(1) The expression of saddle-node bifurcation curve:

S N = {(ξ1, ξ2) : σ00 (ξ1, ξ2) = 0, σ01 (ξ1, ξ2) , 0} ;
(2) The expression of Hopf bifurcation curve:

Hp =
{
(ξ1, ξ2) : σ01 (ξ1, ξ2) = ±

√
−σ00 (ξ1, ξ2), σ00 (ξ1, ξ2) < 0

}
;

(3) The expression of homoclinic bifurcation curve:
HL =

{
(ξ1, ξ2) : σ01 (ξ1, ξ2) = ±5

7

√
−σ00 (ξ1, ξ2), σ00 (ξ1, ξ2) < 0

}
.
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5. Results of simulation analysis

In real life, ecological control of cyanobacteria bloom is one of the most effective methods, espe-
cially, controlling algae bloom by fish. Although fish can effectively graze algae, algae can prevent
grazing through aggregation. Thus, to better understand the dynamic variation of fish and algae, some
numerical simulation work needs to be implemented. Since model (2.3) contains too many parameters,
we fix some of the parameters as follows for the seek of convenient: k = 5, n = 0.2, r = 0.15, d = 0.21.
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Figure 3. Bifurcation diagrams of model (2.3) with the previously fixed parameters. The red
and bule curves represent the internal equilibrium points E∗1 and E∗2, respectively. And three
horizontal lines stand for three other equilibrium points: E0(green), E1(cyan) and E2(pink).
Equilibrium points presented as solid curves are stable, dotted curves are unstable. Moreover,
the vertical lines with labels ‘SN’, ‘TC’ and ‘Hp’ indicate that model (2.3) undergoes saddle-
node, Transcritical and Hopf bifurcation here respectively. (a) fix m=1.5 then vary β. (b) fix
β = 0.17488281 then vary m.

On the premise of the fixed parameters previously, we fix the parameter m = 1.5 and let parameter β
vary within a certain range as Figure 3(a). It is can be find from Figure 3(a) obviously that model (2.3)
has abundant dynamic properties. When β = βS N = 0.1748528137 and β = βTC = 0.2121428571, there
takes place a saddle-node bifurcation and transcritical bifurcation in model (2.3) respectively. Firstly
the internal equilibrium points E∗1 (x1, y1) and E∗2 (x2, y2) are not exist when β < βS N . In the meantime,
E0 and E2 are unstable, but E1 is a stable node. With the value of β increasing and passing through
βS N , there appear two additional internal equilibrium points E∗1 (x1, y1) and E∗2 (x2, y2), the former is a
stable node while the latter is an unstable saddle, this process can be seen more clearly from Figure
4. Secondly, the internal equilibrium point E∗2 (x2, y2) will coincide with the boundary equilibrium
point E1 (5, 0) with the value of β increasing and passing through βTC. And this collision of the two
equilibrium points changes E1 (5, 0) from a stable node to an unstable saddle.

Similar to the above approach, now we fix an additional parameter β = 0.17488281, then let
parameter m vary within a certain range as Figure 3(b). At the beginning, that is to say when
m < mHp = 1.385035335, both two internal equilibrium points E∗1 and E∗2 are unstable, the former
is an unstable focus and the latter is an unstable saddle. Furthermore, it is worth mentioning that
there is a limit cycle in a small neighborhood containing E∗1, which is surrendered by one of the un-
stable trajectory of saddle E∗2. At the same time, we can calculate that the first Lyapunov number is
l1 = −770.954244π < 0, which means that the limit cycle is stable. Thus, the unstable focus will
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become a center when the value of m gets greater and reaches mHp. that is to say, E∗1 will turn into a
stable focus, as the value of m continues to increase and exceeds mHp. In a word, the detailed dynamic
evolution process of Hopf bifurcation can be seen in Figure 5. Furthermore, it is easy to see from
Figure 5(d) that if the value of m is less than mHp, model (2.3) has limit cycles around E∗1, which are
represented by the colorful circles in the diagram, if the value of m is larger than mHp, model (2.3) has
a stable equilibrium point. Moreover, it is also worth emphasizing that the amplitude of limit cycle is
increasing as the value of m is decreasing, which means that if the aggregation area of algae is smaller,
the area where algae and fish periodically oscillate and coexist is more wider. And with the passage of
time, fish and algae will eventually reach a state of coexistence within a small range of m > mHp.
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Figure 4. The process of saddle-node bifurcation of model (2.3) with parameters fixed as
mentioned in the main text. (a) Internal equilibrium points E∗1 and E∗2 are not exist when
0.1738 = β < βS N . (b) When β = βS N , there exists a special internal equilibrium point, which
is a saddle-node. (c) Exist two internal equilibrium points E∗1 and E∗2, the former is a stable
node and the latter is an unstable saddle, when 0.1758 = β > βS N . (d) Partical enlarged view
of the whole process of saddle-node bifurcation. The black point represents a saddle-node,
red for E∗1 and blue for E∗2.

In order to explore how Allee effect affect the dynamic behavior of model (2.3), we choose Allee
threshold n as the control parameter to simulate the Hopf bifurcation with k = 5, r = 0.15, d =

0.21, m = 1.385035335, β = 0.17488281, the detailed results are shown in Figure 6. It is can see
clearly that the equilibrium point E∗1 is a stable focus and E∗2 is an unstable saddle when 0.1998 = n <
nHp = 0.2. That is to say, when the population densities are within a certain range, the algae and fish
will coexist at equilibrium point E∗1. When the value of n is larger than nHp = 0.2, the equilibrium
point E∗1 will lose stability, and a stable limit cycle will appear, which implies that a supercritical Hopf
bifurcation takes place. Moreover, when the value of n increases, the amplitude of limit cycle will be
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larger and larger. Obviously, this situation represents that the periodic oscillation coexistence mode
between algae and fish will gradually take shape when n exceeds the Hopf bifurcation threshold value.
And in a certain small range, the larger the value of n, the more conducive it is for the coexistence of
periodic oscillation of algae and fish. At the same time, it is also worth mentioning that the value of
Allee threshold n seriously affects the dynamic behavior of model (2.3).
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Figure 5. The process of Hopf bifurcation according to the bifurcation parameter n, with k =

5, r = 0.15, d = 0.21, m = 1.385035335, β = 0.17488281. (a) E∗1 is locally asymptotically
stable when 0.1998 = n < nHp. (b) E∗1 is a center when n = nHp = 0.2. (c) Through Hopf
bifurcation with 0.2005 = n = nHp, there exists a stable periodic orbits around the unstable
focus E∗1. (d) Hopf bifurcation diagram repressenting stable E∗1 and stable limit cycles with
various values of n.

Now, it can be found from Figure 3(b) that model (2.3) can go through two transcritical bifurcations
as the value of m increase. When mHp < m < mTC1 = 3.547677046, the equilibrium points E1 and
E∗1 are stable node, the equilibrium point E∗2 is an unstable saddle. As the value of m passes through
mTC1, a transcritical bifurcation takes place, which can cause the collision of saddle E∗2 with stable
node E1. This collision transforms the stability of boundary equilibrium point E1, and makes it an
unstable saddle. Then if the value of m increases greater than mTC2 = 3.622895828, model (2.3) occurs
a transcritical bifurcation at E1 again, but this time is the consequence of the collision of E1 with E∗1,
which can prompt saddle E1 regain its stability and back to a node. These switching of stability with
respect to two Transcritical bifurcations can be better explained through the phase portraits in Figure 7.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3673–3700.



3692

2.72 2.74 2.76 2.78 2.8 2.82 2.84 2.86 2.88

x

27.3

27.305

27.31

27.315

27.32

27.325

27.33

27.335

27.34

27.345

27.35

y

m=1.3840

stable limit cycle

E1
*

E2
*

(a)

2.74 2.745 2.75 2.755 2.76 2.765 2.77 2.775 2.78

x

27.333

27.334

27.335

27.336

27.337

27.338

27.339

27.34

27.341

27.342

27.343

y

m=1.385035335

center E
1
*

(b)

2.72 2.74 2.76 2.78 2.8 2.82 2.84 2.86 2.88

x

27.3

27.305

27.31

27.315

27.32

27.325

27.33

27.335

27.34

27.345

27.35

y

m=1.3851

E1
*

E2
*

(c)

Figure 6. The process of Hopf bifurcation according to the bifurcation parameter m. (a)
Through Hopf bifurcation with 1.3840 = m < mHp, there exists a stable periodic orbits
around the unstable focus E∗1. (b) E∗1 is a center when m = mHp = 1.385035335. (c) E∗1
is locally asymptotically stable when 1.3851 = m > mHp. (d) Hopf bifurcation diagram
repressenting stable E∗1 and stable limit cycles with various values of m.
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Figure 7. The bifurcation curves diagram of model (2.3). The small diagram inside is a
partial enlargement of the big diagram.

In order to study how the parameters m and β synergistically affect the dynamic behavior of model
(2.3), the numerically simulation of B-T bifurcation with k = 5, n = 0.2, r = 0.15, d = 0.21 will be
carried out. By calculation, we obtain mBT = 1.374006280 and βBT = 0.1748528137, and we have
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∣∣∣∣∣∂ (σ00, σ01)
∂ (ξ1, ξ2)

∣∣∣∣∣
ξ1=ξ2=0

=

∣∣∣∣∣∣ 0.00009876 - 43590.55576
95.31449003 - 7.25883992

∣∣∣∣∣∣ = 4.154811591 · 106 , 0,

$20 = 0.19835682 + 0.30459173ξ1 + 1.52158465ξ2 + 0.41550653ξ2
1 + 1.88040682ξ1ξ2,

θ11 = −5.51455564+24.53907955ξ1+21.15093188ξ2+12.40764023ξ2
1−100.4590524ξ1ξ2−121.6857571ξ2

2.

Therefore, we know that the transformation of parameters is nonsingular, and $20 > 0 and θ00 , 0
for small ξ1 and ξ2. Moreover, the local expressions of bifurcation curves S N, Hp and HL around the
origin are revealed up to second-order approximately as:
(1) The saddle-node bifuecation curve satisfies σ01 (ξ1, ξ2) , 0, and

S N =
{
(ξ1, ξ2) | 0.00009876ξ1 − 43590.55576ξ2 + 0.06615614ξ2

1 + 855595.4398ξ1ξ2 + 1003142.522ξ2
2

}
,

(2) The Hopf bifurcation curve satisfies σ00 (ξ1, ξ2) < 0 and

Hp =
{
(ξ1, ξ2) | 0.00009876ξ1 − 43590.55576ξ2 + 9084.918166ξ2

1 + 854211.6945ξ1ξ2 + 1003195.213ξ2
2

}
,

(3) The homoclinic bifurcation curve satisfies σ00 (ξ1, ξ2) < 0 and

HL =
{
(ξ1, ξ2) |0.00009876ξ1 − 43590.55576ξ2 + 17806.37610ξ2

1 + 852883.2991ξ1ξ2 + 1003245.796ξ2
2

}
.
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Figure 8. The process of Transcritical bifurcation of model (2.3) with parameters fixed as
mentioned in the main text. (a) Internal equilibrium point E∗1 and boundary equilibrium point
E1 are stable node but E∗2 is an unstable saddle when 3.2 = m < mTC1 = 3.547677046. (b)
When mTC1 < m = 3.6 < mTC2 = 3.622895828, E1 lose its stability and becomes a saddle
through colliding with E∗2. (c) E1 regains its stability and becomes a node through colliding
with E∗1 when 4 = m > mTC2. (d) Partical enlarged view of the whole process of Transcritical
bifurcation. The black point represents equilibrium point E1, red for E∗1 and blue for E∗2.

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3673–3700.



3694

Meanwhile, the corresponding bifurcation curves is depicted in Figure 8, and the small image in
Figure 8 is a partial enlargement of the saddle-node bifurcation curve, which should be exactly coin-
cided with horizontal line ξ2 = 0. Here we need to explain that the error in the image is inevitable
through simulation, but this error does not affect the readability of the numerical simulation results.
Obviously, these three curves will divide the visible area into four regions as I, II, III and IV. It is easy
to see form Figure 9(a) that when (ξ1, ξ2) = (0, 0), model (2.3) has an unique internal equilibrium point,
which is a cusp of codimension 2. If we fix ξ1 = 0.01 for the seek of convenience, then we have the
following results.
(1) There is no internal equilibrium point when ξ2 = −0.0001 in region I, it can see from Figure 9(b)

that the fish will finally extinct as long as the algae population exceeds a certain threshold.
(2) Model (4.1) has gone through a saddle-node bifurcation when ξ2 = 0.00001, (ξ1, ξ2) can go through

the curve S N into region II, there exists a stable focus E∗1 and an unstable saddle E∗2, which is shown
in Figure 9(c).

(3) With the value of ξ2 varying from 0.00001 to 0.00003, (ξ1, ξ2) moves from region I to II and model
(4.1) occurs a supercritical Hopf bifurcation (see Figure 9(d)), which deprives the stability of E∗1
and produces a stable limit cycle surrounding E∗1.

(4) As the value of ξ2 increases to 0.00005307, (ξ1, ξ2) is exactly locating on the curve HL, the stable
limit cycle grows and goes through the saddle E∗2 and converts to an unstable homoclinic orbit,
which can be seen in Figure 9(e).

(5) The homoclinic orbit disappears when ξ2 = 0.00007 and (ξ1, ξ2) is in region IV, and there exists an
unstable focus E∗1 and a saddle E∗2 (see Figure 9(f)).

From the above numerical example, it can be seen that the aggregation effect and conversion rate
have a great influence on model (2.3), and the two populations show a series of rich properties such as
extinction, coexistence and periodic oscillation near the B-T bifurcation point.

Based on the above numerical simulation analysis, we can know that the values of three key pa-
rameters m, n and β have an important influence on the dynamic behaviors of model (2.3), which can
not only essentially change the dynamic characteristics, but also affect the survival and extinction of
algae and fish. It is clearly visible from Figures 3(a) and 4 that the value of key parameter β can lead
to the taking place of a saddle-node bifurcationthe in model (2.3), which can promote algae and fish to
form a new stable coexistence model. It must be stated from Figures 3(b), 5 and 7 that the value of the
key parameter m is very important for the occurrence of subcritical Hopf bifurcation and transcritical
bifurcation of model (2.3), which is not only related to whether algae and fish can survive for a long
time, but also can urge algae and fish to form a stable periodic oscillation coexistence mode. It is more
worthy of our clear understanding from Figures 8 and 9 that the synergistic action mechanism of key
parameters m and β plays an important role in changing the dynamic characteristics and internal es-
sential laws of model (2.3), which can not only impel algae and fish to form two new types of periodic
oscillation coexistence modes (Limit cycle coexistence mode and homoclinic orbit coexistence mode),
but also lead to the extinction of algae and fish, or the extinction of fish and the outbreak of algae
bloom. All in all, it is necessary to consider Allee effect and aggregation effect in building aquatic
ecological model to further ascertain the dynamic relationship between algae and fish.
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Figure 9. Phase portraits of model (4.1) as varying the values of ξ1 and ξ2 around (0, 0). (a)
When (ξ1, ξ2) = (0, 0), there exists a cusp with codimension two. (b) Model (4.1) has no
internal equilibrium point as (ξ1, ξ2) = (0.01,−0.0001) locating in region I. (c) Two internal
equilibrium points appear through a saddle-node bifurcation, E∗1 is a stable focus and E∗2 is
an unstable saddle, when (ξ1, ξ2) = (0.01, 0.00001) lies in region II. (d) A stable limit cycle
arises surrounding E∗1 with the happening of Hopf bifurcation as (ξ1 xi2) into region III. (e)
When (ξ1, ξ2) = (0.01, 0.00005307) lies on the curve HL, the limit cycle will get larger and
approaches to the saddle E∗2 then becomes a homoclinic orbit. (f) The homoclinic break as
(ξ1, ξ2) into region IV, E∗1 and E∗2 are unstable, the former is a focus while the latter is a saddle.
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6. Conclusions

Although the dynamic behaviors of the predator-prey model with Allee effect in the single or both
species have been studied by many mathematicians and biologists, there was relatively few literature
on the combination of it with algal aggregation. Within the research framework of mutual restriction
between algae and fish, we proposed a modified algae and fish model to probe bifurcation dynamic
behaviors. Firstly, we studied all possible equilibrium points of model (2.3) and their stability, which
could not only directly give the ideal coexistence mode of algae and fish, but also provide a theoret-
ical basis for the subsequent discussion of bifurcation dynamics. Secondly, when there is only one
internal equilibrium point in model (2.3), we gave a threshold condition about aggregation effect pa-
rameter m and Allee effect parameter n to ensure that model (2.3) has a limit cycle, this result implied
that the relationship between aggregation effect parameter m and Allee effect parameter n was very
important for whether algae and fish could exist periodic oscillation survival mode. Finally, by select-
ing the absorption-conversion rate β, aggregation effect parameter m and Allee effect threshold n as
control parameters respectively, we theoretically derived some key threshold conditions to compel that
model (2.3) could undergo transcritical, saddle-node, Hopf and B-T bifurcation, these bifurcation dy-
namic behaviors could force the internal essential changes in the dynamic relationship and coexistence
mode between algae and fish. Moreover, it had to be said that these theoretical results not only could
summarize and develop the previous theoretical research results, but also further promote the rapid
development of bifurcation dynamics in aquatic ecosystem.

In order to verify the feasibility of the theoretical analysis results and visually explore dynamic
relationship between algae and fish, a large number of bifurcation numerical simulation results were
implemented. Through analysis and comparison, it could be seen that in model (2.3) aggregation effect
parameter m and Allee effect parameter n played an important role in the occurrence and evolution
of bifurcation dynamics, which also indirectly showed that the coexistence mode of algae and fish
depended heavily on aggregation effect and Allee effect. Furthermore, through numerical analysis of
B-T bifurcation behavior, it was worth us to clarify that value relationship of the absorption-conversion
rate β and aggregation effect parameter m could promote that model (2.3) experienced saddle-node,
Hopf and Homoclinic bifurcation, these bifurcation behaviors could not only force algae and fish to
form three new coexistence modes, but also was the internal driving force to dynamically adjust their
coexistence mode. In a word, it should be emphasized that when we used the mathematical ecological
model to study the dynamic relationship between algae and fish, aggregation effect and Allee effect
were one of the ecological and environmental factors, which needed to be considered urgently.

The theoretical and numerical results of this paper can get the following four results: (1) If the
dynamic behavior of transcritical bifurcation can occur in model (2.3), which means that algae and fish
can change from a single population survival mode to a dual population sustainable survival mode. (2)
If the dynamic behavior of saddle-node bifurcation can occur in model (2.3), which hints that algae
and fish can change from a dual population unsteady coexistence mode to a dual population steady
coexistence mode. (3) If the dynamic behavior of Hopf bifurcation can occur in model (2.3), which
shows that algae and fish can change from a dual population steady-state coexistence mode to a dual
population periodic oscillation mode. (4) If the dynamic behavior of B-T bifurcation can occur in
model (2.3), which suggests that the coexistence mode of algae and fish is easily affected by eco-
environmental factors, and the coexistence mode can change back and forth between an equilibrium
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point steady-state mode, a stable periodic oscillation mode and an unstable survival mode. Therefore,
the four kinds of bifurcation dynamic behaviors occurred in model (2.3) can represent the dynamic
change characteristics of the coexistence mode of algae and fish under the dynamic change of eco-
environmental factors. In other words, the interaction mechanism between algae and fish in nature
can be described and explained by the bifurcation dynamic behavior, dynamic evolution process and
internal essential characteristics of model (2.3).

In the follow-up research works, we will firstly deepen theoretical research of bifurcation dynamics
in some modified ecological models, especially B-T bifurcation. Since neither algae nor fish will
remain in a fixed space for many factors (mate choice, food supplies, population density, etc.), it is
meaningful to consider their changes of spatial diffusibility [35, 36]. Finally explore how to control
algae bloom by fish under human external control. In a word, all the results are expected to be helpful
in the process of study bifurcation dynamic behavior in some aquatic ecosystems.
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Appendix

Existence of internal equilibrium points.

Equilibrium points Conditions

E∗1

case 1: (m − n) (1 − k − m + n) − k > 0

max
{
0, (β−d)k2+(dm−βm−d)k

m(m−k−1)

}
< r < min

{
d, k[d−(d−β)(m−n)]

(m−n)(1−k−m+n)−k

}
case 2: (m − n) (1 − k − m + n) − k < 0

max
{
0, (β−d)k2+(dm−βm−d)k

m(m−k−1) ,
k[d−(d−β)(m−n)]

(m−n)(1−k−m+n)−k

}
< r < d

E∗2

case 1: m > n
d < r < (β−d)k2+(dm−βm−d)k

m(m−k−1)
case 2: m < n
(1).(m − n) (1 − k − m + n) − k > 0

max
{
0, k[d−(d−β)(m−n)]

(m−n)(1−k−m+n)−k

}
< r < (β−d)k2+(dm−βm−d)k

m(m−k−1)

(2).(m − n) (1 − k − m + n) − k < 0

0 < r < min
{

(β−d)k2+(dm−βm−d)k
m(m−k−1) ,

k[d−(d−β)(m−n)]
(m−n)(1−k−m+n)−k

}

E∗1, E∗2

(2n − 2m + 1) r < k (β − d)
(k + 1)2r2 + 2

[
(β − d) k2 − (β + d) k

]
r + (β − d)2k2 > 0

case 1: (m − n) (1 − k − m + n) − k > 0

0 < r < min
{
d, k[d−(d−β)(m−n)]

(m−n)(1−k−m+n)−k ,
(β−d)k2+(dm−βm−d)k

m(m−k−1) , k
1+k (β − d)

}
case 2: (m − n) (1 − k − m + n) − k < 0

max
{
0, k[d−(d−β)(m−n)]

(m−n)(1−k−m+n)−k

}
< r < min

{
d, (β−d)k2+(dm−βm−d)k

m(m−k−1) , k
1+k (β − d)

}
E∗1 = E∗2

r =
k
(
dk−βk+d+β±

√
−β2k+βdk+βd

)
(k+1)2

0 < r < k
1+k (β − d)

max
{
0, 2n−2m+1

β−d r
}
< k 6 d

β−d
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