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Abstract: In this paper, we present a multi-scale co-affection model of HIV infection and opioid
addiction. The population scale epidemiological model is linked to the within-host model which de-
scribes the HIV and opioid dynamics in a co-affected individual. CD4 cells and viral load data obtained
from morphine addicted SIV-infected monkeys are used to validate the within-host model. AIDS diag-
noses, HIV death and opioid mortality data are used to fit the between-host model. When the rates of
viral clearance and morphine uptake are fixed, the within-host model is structurally identifiable. If in
addition the morphine saturation and clearance rates are also fixed the model becomes practical identi-
fiable. Analytical results of the multi-scale model suggest that in addition to the disease-addiction-free
equilibrium, there is a unique HIV-only and opioid-only equilibrium. Each of the boundary equilibria
is stable if the invasion number of the other epidemic is below one. Elasticity analysis suggests that the
most sensitive number is the invasion number of opioid epidemic with respect to the parameter of en-
hancement of HIV infection of opioid-affected individual. We conclude that the most effective control
strategy is to prevent opioid addicted individuals from getting HIV, and to treat the opioid addiction
directly and independently from HIV.

Keywords: co-affection; multi-scale; HIV; opioid addiction; elasticity analysis; identifiable; invasion
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1. Introduction

The first cases of AIDS were reported in the United States in June 1981, and even after four decades,
HIV/AIDS continues to be one of the biggest global epidemic of infectious disease the world faces.
Since the beginning of the epidemic, 79.3 million (55.9–110 million) people have been infected with

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2022168


3637

the HIV virus and 36.3 million (27.2–47.8 million) people have died of HIV. Globally, 37.7 million
(30.2–45.1 million) people were living with HIV at the end of 2020 [1]. Extensive research has been
performed by researchers from different disciplines, e.g., Biology, Mathematics, Medicine, Public
Health and Pharmaceutical Industries, trying to suppress the infection, while curbing or even eliminat-
ing the spread of HIV [2–6].

Opioids are a broad group of pain-relieving drugs that work by interacting with opioid receptors
in human cells, resembling opium in addictive properties or physiological effects. This class of drugs
include the illegal drug heroin, synthetic opioids such as fentanyl, and pain relievers available legally
by prescription, such as oxycodone, hydrocodone, codeine, morphine, and many others. The opioid
epidemic is one of the greatest public health problems in the USA. Opioid overdose death rates have
increased steadily for more than a decade and doubled in the period 2013–2017, when the highly potent
synthetic opioid fentanyl entered the drug supply [7]. Evidence supports that using prescription opioids
can lead to opioid use disorder, and before 2010, the majority of deaths were linked to prescription
opioids. Opioid use disorder is chronically relapsing, and requires chronic disease management [8].

In 1972, Hughes and Crawford introduced epidemiological field methodology to describe research
and intervention in urban heroin spread. They concluded that “contagious” individuals tend to be in
the early stages of heroin experimentation or addiction and to curb the spread, prevention and early
intervention, along with more availability of treatment option would be effective [9]. In 1979, Mack-
intosh and Stewart introduced an exponential model to show that the spread of heroin usage follows an
epidemic pattern and concluded that early intervention is key to stop the heroin epidemic from spread-
ing [10]. Battista et al. investigated a mathematical model that considered opioid addiction originating
from prescribed drug usage. The model considered illicit drug usage and treatment as well [11]. They
reached the conclusion that to curb the prescription generated opioid epidemic, combatting addiction
should be the primary control strategy.

The HIV and opioid epidemics are intimately linked, and not just because the demographic suffering
most from both the epidemics are similar, people who are young, previously healthy and already stig-
matized in some way [12]. People living with HIV often suffer from chronic pain. They are therefore
prescribed opioids more often and at higher doses than people who do not have HIV, and dispropor-
tionately experience risk factors for substance use disorder, which suggests they could be at increased
risk of the misuse of opioids. Opioid misuse among adults receiving ART (Anti-retroviral Therapy) is
associated with inadequate ART adherence, insufficient durable viral suppression, and higher risk of
HIV transmission to sexual partners [13]. Certain prescribed opioids for pain management also work
as immunosuppressants, and increase infection risks, and HIV infected people are more susceptible
to these effects [14]. It is also possible that HIV related neuropathogenesis in patients may be more
severe, in case of significant opioid usage interfering with the ART treatment [15].

Opioids are associated with HIV risk behaviors such as needle sharing when infected and risky
sexual behaviors, and have been linked to outbreaks of HIV and viral hepatitis. People who are addicted
to opioids are also at risk of turning to other ways to get the drug, including trading sex for drugs or
money, which increases HIV risk [16].

If the HIV infected and opioid dependent person is receiving treatment for both ailments simultane-
ously, research has shown that treatment for Opioid Use Disorder can help with HIV viral suppression,
adherence to antiretroviral therapy, and overall mortality for patients [17].

In 2020, Duan et al. proposed a model of coinfection, featuring the joint spread of HIV and Heroin
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usage, and concluded that in the United States, the two disease are in a state of coexistence. Further
conclusion was the best control strategies would be to target the drug abuse epidemic, and to neutralize
HIV risky behavior among drug users [18].

To model the spread of the disease in the population, it is to be noted that the pathogen is in dynamic
interplay with each host body’s immune system. The host’s propensity to transmit the pathogen or die
from it depends on the amount of the pathogen in the system as well as the intensity of the immune
response. The spread of diseases on a population level therefore depends on these within-host disease
characteristics of infectious individuals [19]. Following a method similar to Gilchrist and Sasaki’s
nested approach [20], in this paper we form an immuno-epidemiological model, where the within-host
model is a simple pharmacokinetic model depicting both HIV and opioid usage. The between host
model is an age structured expansion of the model utilized in [18]. The model developed addresses the
question, “What control strategies will best combat the inter-connected spread of both the epidemics?”

The paper is organized as follows: In Section 2 the within-host model of HIV, and the subsequent
modification to include opioid drug usage is introduced. Further, parameters for the models are es-
timated by fitting to data, and identifiability analysis is performed on both the models. In Section
3 the between-host model is introduced, along with the linking parameters to create the immuno-
epidemiological model; Basic reproduction numbers for both the epidemics are defined, and stability
analysis is performed for the disease free equilibrium. Both invasion numbers are defined and stability
analysis is done on the boundary equilibriums. In Section 4 the parameters of the between-host model
are estimated and sensitivity analysis is conducted on the invasion numbers, with respect to impor-
tant parameters of the between-host model. Section 5 summarizes our results obtained, and Section 6
contains the Appendix.

2. Within-host models of HIV infection and opioid addiction

Before introducing a within-host model of HIV infection and opioid addiction, we first start with
the well-known model of HIV [4, 21].

Within-Host Model 1 (M1):



dT
dt

= λ − βVT − dT,

dTi

dt
= βVT − δTi,

dV
dt

= πTi − cV,

(M1)

Here, T (t) denotes the number target cells, specifically the number of CD4 cells per ml, Ti(t) denotes
the number of infected target cells and V(t) denotes the virus (HIV), measured as vRNA copies per ml
of plasma. Target cells are produced at rate λ and cleared at rate d. Virus infection of target cells is
modeled by the mass action term βVT . Infected cells die at a rate δ and new viral particles are produced
at a rate π. The clearance rate of the virus is denoted by c.

We modify the within-host model (M1) by explicitly including the opioid drug concentration, C(t),
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(mg of opioid per kg of the host), and its impact on the average susceptibility of target cells:

Within-Host Model 2 (M2):



dT
dt

= λ − k(C)VT − dT,

dTi

dt
= k(C)VT − δTi,

dV
dt

= πTi − cV,

dC
dt

= Λ − dcC,

(M2)

Opioid is taken at doses Λ and it is degraded at rate dc. Prior within-host models of HIV and opioids
have been developed in [22], where the authors suggests that the morphine increases the susceptibility
of target cells to HIV. Based on that result, we model the infection rate of target cells by HIV in the
presence of opioid as

k(C) = β +
β1C(t)

C0 + C(t)
,

where C0 is the half saturation constant, β is the transmission coefficient in the absence of opioid
and β1 is a maximal increase in infection rate due to opioids. The resulting within-host model is a
pharmacokinetic type of model.

2.1. Parameter estimation

We use the viral load and CD4 measurements collected from 12 rhesus macaques in the experiment
[23] to validate the within-host model of HIV and opioid addiction. The 12 animals were divided into
two equal groups: six monkeys were morphine addicted and six monkeys served as controls. The
simian-human immunodeficiency (SIV) virus was administered intravenously to all 12 animals, while
6 of them were given 5 mg/kg morphine three times a day to induce morphine addiction [23]. The
averaged viral load and CD4 count of both the morphined and control groups are used to estimate
within-host model parameters, which are as shown in Table 1.

Table 1. Average viral loads (vRNA copies/ml) and CD4 cell count (number of cells per ml)
of morphine and control group. Average values are computed from the data given in [22].

Week 0 Week 1 Week 2 Week 3 Week 4 Week 6 Week 8 Week 10 Week 12

Morphine Group
Viral Load 7, 031, 667 11, 433, 333 815, 150 281, 833 320, 650 2, 856, 850 2, 367, 767 8, 457, 567

Control Group
Viral Load 8, 510, 000 11, 300, 000 917, 000 382, 000 273, 000 157, 000 155, 000 95, 100

Morphine Group
CD4 Count 1, 213, 000 204, 000 128, 000 76, 000 137, 000 152, 000 121, 000 127, 000 140, 000

Control Group
CD4 Count 1, 304, 000 619, 500 371, 167 151, 667 235, 833 241, 167 270, 000 379, 167 246, 167

In compact form the within-host models (M1) and (M2) can be rewritten as

x′(t) = f (x, p), x(0) = x0, y(t) = h(x, p) (2.1)
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where x denote the state variables of the system. The system (x(t)) evolves in time, depending on the
parameters (p) and the initial conditions (x0), while we observe the quantities (y) which are functions
of the state variables and model parameters. We assume that both observations, y(t) = (y1(t), y2(t)),
(viral load and CD4 count) are contaminated with measurements errors Ei and E j respectively

Y i
1 = y1(ti) + Ei i = 1, 2, · · · , n that is Y i

1 = h1(x(ti), p) + Ei i = 1, 2, · · · , n (2.2)
Y j

2 = y2(t j) + E j j = 1, 2, · · · ,m that is Y j
2 = h2(x(t j), p) + E j j = 1, 2, · · · ,m (2.3)

Clearly,
h1(x(ti), p) = V(ti, p) and h2(x(t j), p) = T (t j, p).

The measurement errors cause the observations to deviate from their smooth path V(t) and T (t) and
satisfy the following form

Ei = h1(x(ti), p)εi, and E j = h2(x(t j), p)ε j

where εi and ε j are independent and identically distributed with mean zero and constant variance σ2
0.

Thus the observations, Y i
1 and Y j

2 have mean h1(x(ti), p), h2(x(t j), p) and variances h1(x(ti), p)2σ2
0,

h2(x(t j), p)2σ2
0, respectively. We estimate the parameters of the within-host models (M1) and (M2)

by fitting the logarithm of the predicted viral load and CD4 count to the log of the data in Table 1 via
the following optimization problem.

p̂ = minp

ω1

n∑
i=1

| log10(V(ti, p)) − log10(Y i
1)|2 + ω2

m∑
j=1

| log10(T (t j, p)) − log10(Y j
2)|2


w.r.t the constraint p > 0

(2.4)

where ω1 and ω2 are appropriate weights. The optimization problem is just a least squares on the
logarithms of data points. The weights are picked so that the range of the expressions in two summation
terms are about the same magnitude.

The structural identifiability analysis of model (M2) revealed that the within-host model is uniden-
tifiable due to parameter correlations given in (2.11) and (2.12) (explained in detail in the following
section). To improve the parameter identifiability, we fix parameters, c,Λ and dc. It is worth mention-
ing at this point that, this would only improve the identifiability, but it would not result in structurally
identifiable model because of the correlations between β, β1 and C0 in models (2.11) and (2.12). We
fix the viral clearance rate as c = 23 day−1 [22], and Λ = 15

mg
kg day

. The half life of morphine is 3

hours, thus we fixed dc = 5.5 day−1. Estimating the within-host model M2 parameters, when c,Λ and
dc are fixed, reveals that β = 0 (see Table 2). So we update the HIV infection rate of target cells in an
addicted host to

k(C) =
β1C(t)

C0 + C(t)
.

We then refit the within-host model (M2) by setting β = 0, and the estimated values are presented
in Table 2. The fit of within-host models (M1) and (M2) are given in Figure 1.
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Table 2. Parameter estimation results of within-host models (M1) and (M2). Estimated
values obtained by approximating the solutions of the optimization problem (2.4). In fitting
model (M2), the viral and morphine clearance rates together with morphine uptake are fixed
at c = 23 day−1, Λ = 15

mg
kg day

and dc = 5.5 day−1.

Parameter λ β d δ π c β1 C0

Units
CD4 count
ml × day

ml
vRNA × day

1
day

1
day

vRNA
CD4 count × day

1
day

vRNA
CD4 count × day

mg
kg

Model (M1)
Estimated Value 45,885 1.08 × 10−8 0.16 0.891 2841.5 10.1

Model (M2)
Estimated Value 24,530 1.3 × 10−16 0.11 0.61 4931 - 3.9 × 10−5 6,757

Model (M2) with β = 0
Estimated Value 24,603 - 0.11 0.60 4834 - 4.0 × 10−5 6,530

Figure 1. Fitting Results: Top Row : Within-host model (M1) predictions (blue curve) to
the (a) log10 viral load and (b) log10CD4 count data (red circles). Bottom Row : Within-
host model (M2) predictions (blue curve) to the (a) log10 viral load and (b) log10CD4 count
data (red circles). The estimated values presented in Table 2. Initial conditions for model
(M1) are T (0) = 1, 304, 000, V(0) = 200 and initial conditions for model (M2) are T (0) =

1, 213, 000, V(0) = 200, C(0) = 0.04.
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2.2. Structural identifiability

In order to validate the within-host models with data, it is crucial to perform identifiability analysis.
The first step in identifiability analysis is the structural identifiability. Structural identifiability is the
property of the within-host model and the analysis assumes ideal, noise free data. To be specific it
assumes that the smooth observations for the whole time interval are given. We use differential algebra
approach in studying the structural identifiability analysis of the within-host models (M1) and (M2).
For a review of other structural identifiability methods, we refer the reader to [24]. The first step in
differential algebra approach is to obtain the input-output equations. We eliminate the unobserved
state variable which is the infected target cell population, Ti from model (M1) to obtain the following
equivalent model (2.5). Within the identifiability analysis literature, we call the resulting equivalent
system as input-output equations.

input-output equations for the within-host model (M1):

V ′′ + (c + δ)V ′ − πβVT + cδV = 0
T ′ + βVT + dT − λ = 0

(2.5)

Solving input-output equations is equivalent to solving the model (M1) for the viral load and target
cell population. In the equivalent system, the viral load and target cell states depend on the parameters
p = {λ, β, d, δ, π, c}. Structural identifiability of a within-host model using differential algebra approach
has the following definition [24–27].

Definition 2.1. Let c(p) denote the coefficients of the input-output equations where p is the vector of
model parameters. We say that the within-host model is structured to reveal its parameters from the
observations if and only if

c(p) = c(q) =⇒ p = q.

Following the definition of the structural identifiability, suppose that another set of parameters q =

{λ̂, β̂, d̂, δ̂, π̂, ĉ} would produce the same viral load and target cell populations. Thus first we would have

V ′′ + (ĉ + δ̂)V ′ − π̂β̂VT + ĉδ̂V = 0,
T ′ + β̂VT + d̂T − λ̂ = 0.

(2.6)

Let c(p) and c(q) denote the coefficients of the differential polynomials in models (2.5) and (2.6)
respectively. Since both models (2.5) and (2.6) are assumed to produce the same observations, solving
the system of nonlinear equations c(p) = c(q),

c + δ = ĉ + δ̂, πβ = π̂β̂, cδ = ĉδ̂, β = β̂, d = d̂, λ = λ̂ (2.7)

we obtain two sets of solutions,

{λ = λ̂, β = β̂, d = d̂, π = π̂, δ = δ̂, c = ĉ}

and
{λ = λ̂, β = β̂, d = d̂, π = π̂, δ = ĉ, c = δ̂}.

So, we conclude that the model (M1) is not structured to reveal all its parameters from the viral load
and CD4 count data. Only the parameters λ, β, π and d can be uniquely identified. The within-host
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model (M1) is a locally identifiable model, since solving c(p) = c(q), resulted in two sets of solutions.
As it is clear from the two sets of solutions, by fixing viral clearance rate to c = ĉ, we would obtain a
structurally identifiable model. Thus we have showed the following Proposition 2.1.

Proposition 2.1. The within-host model (M1) is not structured to reveal its parameters from the viral
load and target cell observations. Only the parameters λ, β, π and d can be uniquely identified. If the
viral clearance rate is fixed, c = ĉ, then the model (M1) reveals all its parameters uniquely.

We continue with identifiability analysis of model (M2). This time eliminating the unobserved state
variables which are the infected target cell population and the concentration of opioid from the model
is not a trivial task. We use DAISY to obtain the following equivalent system to model (M2);

input-output equations for the within-host model (M2):

V ′′ + (c + δ)V ′ + πT ′ + cδV + πdT − πλ = 0
β1C0V ′T ′T + β1C0dV ′T 2 − β1C0λV ′T − T ′′VTβ1C0 + T ′2Vβ1C0−

T ′2(C0dc + Λ) + T ′VT (−2βC0dc − 2βΛ − β1C0dc − 2β1Λ) − T ′Vβ1C0λ − 2T ′Td(C0dc + Λ)+
2T ′λ(C0dc + Λ) + V2T 2(−β2C0dc − β

2Λ − ββ1C0dc − 2ββ1Λ − β
2
1Λ)+

VT 2d(−2βC0dc − 2βΛ − β1C0dc − 2β1Λ) + VTλ(2βC0dc + 2βΛ + β1C0dc + 2β1Λ)−
T 2d2(C0dc + Λ) + 2Tdλ(C0dc + Λ) − λ2(C0dc + Λ) = 0

(2.8)

Setting c(p) = c(q), we get

c + δ = ĉ + δ̂, π = π̂, cδ = ĉδ̂, πd = π̂d̂, πλ = π̂λ̂,
C0dc + Λ

β1C0
=

Ĉ0d̂c + Λ̂

β̂1Ĉ0
, (2.9)

together with

2βC0dc + 2βΛ + β1C0dc + 2β1Λ

β1C0
=

2β̂Ĉ0d̂c + 2β̂Λ̂ − β̂1Ĉ0d̂c + 2β̂1Λ̂

β̂1Ĉ0
,

β2C0dc + β2Λ + ββ1C0dc + 2ββ1Λ + β2
1Λ

β1C0
=
β̂2Ĉ0d̂c + β̂2Λ̂ + β̂β̂1Ĉ0d̂c + 2β̂β̂1Λ̂ + β̂2

1Λ̂

β̂1Ĉ0

(2.10)

Solving the nonlinear systems (2.9) and (2.10), we obtain the following two sets of nonzero positive
solutions, {

λ = λ̂, d = d̂, π = π̂, δ = δ̂, c = ĉ, β + β1 = β̂ + β̂1,

dcβ1

β
=

d̂cβ̂1

β̂
,

Λβ1

βC0
+

(Λ̂ + Ĉ0d̂c)β
Ĉ0β̂

=
Λ̂β̂1

β̂Ĉ0
+

(Λ̂ + Ĉ0d̂c)
Ĉ0

} (2.11)

and {
λ = λ̂, d = d̂, π = π̂, δ = ĉ, c = δ̂, β + β1 = β̂ + β̂1,

dcβ1

β
=

d̂cβ̂1

β̂
,

Λβ1

βC0
+

(Λ̂ + Ĉ0d̂c)β
Ĉ0β̂

=
Λ̂β̂1

β̂Ĉ0
+

(Λ̂ + Ĉ0d̂c)
Ĉ0

} (2.12)

This concludes that the model (M2) is not structurally identifiable. It only reveals the parameters,
λ, d and π from the viral load and CD4 cell count data.
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Proposition 2.2. The within-host model (M2) is not structurally identifiable from the viral load and
CD4 cell count observations.

Since validating model (M2) with data revealed that β = 0, we continue our analysis by modifying
model (M2), by setting β = 0. We obtain the following input-output equations in this case.
input-output equations for the within-host model (M2) with β = 0:

V ′′ + V ′(c + δ) + T ′π + Vcδ + Tdπ − λπ = 0

V ′T ′T + V ′T 2d − V ′Tλ − T ′′VT + T ′2V − T ′2
(C0dc + Λ)

β1C0
+

T ′VT
(−C0dc − 2Λ)

C0
− T ′Vλ − 2T ′T

d(C0dc + Λ)
β1C0

+ 2T ′
λ(C0dc + Λ)

β1C0
− V2T 2β1Λ

C0
+

VT 2 d(−C0dc − 2Λ)
C0

+ VT
λ(C0dc + 2Λ)

C0
− T 2 d2(C0dc + Λ)

β1C0
+ 2T

dλ(C0dc + Λ)
β1C0

−
λ2(C0dc + Λ)

β1C0
= 0

(2.13)
Note that c(p) = c(q) is the same as systems (2.9) and (2.10) with β = 0. Solving c(p) = c(q) we

obtain, {
λ = λ̂, d = d̂, π = π̂, δ = δ̂, c = ĉ, β1 = β̂1, dc = d̂c,

C0

Λ
=

Ĉ0

Λ̂

}
and {

λ = λ̂, d = d̂, π = π̂, δ = ĉ, c = δ̂, β1 = β̂1, dc = d̂c,
C0

Λ
=

Ĉ0

Λ̂

}
So, the within-host model (M2) with β = 0 is also not structurally identifiable from viral load and

CD4 cell counts. It is not possible to identify parameters C0 and Λ individually. It is only possible to

identify their ratio
C0

Λ
. If Λ is fixed, then C0 would be identified. But even then, the within-host model

(M2) with β = 0 becomes locally identifiable since there exist two sets of solutions to c(p) = c(q). We
summarize the structural identifiability in the following proposition.

Proposition 2.3. The within-host model (M2) with β = 0 is not structurally identifiable from the viral
load and CD4 cell count observations.

If the viral clearance and morphine recruitment rates are fixed, that is c = ĉ and Λ = Λ̂, then the
model (M2) with β = 0 becomes structurally identifiable.

2.3. Practical identifiability

Structural identifiability is a property of the within-host model and the analysis is performed without
the actual data. A within-host model which is structurally identifiable may not be practically identifi-
able when the actual data is used in the parameter estimation problem. We continue our identifiability
analysis with practical identifiability of within-host models (M1) and (M2) using Monte Carlo simula-
tions (MCS). Using the estimated parameters p̂ as presented in Table 2; we generate synthetic data sets
Y = (Y i

1,Y
j

2) which are contaminated with error. In particular, we generate M = 1000 data sets of viral
load and CD4 cell counts using normal distribution whose mean is the model predictions and standard
deviations are y1(ti)σ0 and y2(t j)σ0 respectively. That is;
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Y i
1 = N (y1(ti, p̂), y1(ti, p̂)σ0) and Y j

2 = N
(
y2(t j, p̂), y2(t j, p̂)σ0

)
(2.14)

where N(µ, σ) denotes the normal distribution with mean µ and standard deviation σ. The synthetic
viral load and CD4 cell count data sets are generated for each measurement errors, by increasing the
errors gradually from σ0 = 1%, to σ0 = 5%, 10% to σ0 = 30%. We then fit the within-host models
(M1) and (M2) to each M = 1000 data sets by solving the optimization problem (2.4) and then calculate
the Average Relative Errors (AREs) of each parameter for each noise level. The AREs are computed
as

ARE(pk) = 100%
1
M

M∑
j=1

|p̂k − pk
j |

p̂k (2.15)

where pk is the kth parameter in p and p̂ are the parameters that generate the random variables Y i
1 and

Y j
2. Since a population of parameter estimates results for each measurement error is obtained, we also

compute the 95% confidence intervals. AREs of the parameters together with the confidence intervals
for each measurement error are presented in Tables 3–6. Examining the AREs and the confidence
intervals of the MCS for the within-host model (M1) as presented in Table 3, we see that the AREs of
parameters π and c are higher compared to measurement error levels (σ0). Note that the within-host
model (M1) is only locally identifiable (see Proposition 2.1) and this is observed in AREs in Table
3. Next, we fix the viral clearance rate and run the MCS again for the within-host model (M1), and
as a result AREs of all parameters have decreased significantly (see Table 4). We conclude that the
within-host model (M1) is practically identifiable when the clearance rate is fixed. MCS results for the
within-host model (M2) with β = 0 and when Λ, dc and c are fixed are presented in Table 5. As seen
from AREs in Table 5 the parameters β1 and C0 have higher AREs especially when the measurement
error is 30%, even though the model is structurally identifiable in that case (see Proposition 2.3). If in
addition to Λ, dc, c the half-saturation constant C0 is fixed, then the within-host model (M2) becomes
practically identifiable as evident from Table 6.

3. A multi-scale model of opioid and HIV epidemics

Research shows that HIV infected individuals who use drugs of abuse maintain a higher HIV vi-
ral load and treatment is not as effective for them [22, 28]. The goal of this study is to understand the
interplay between the two epidemics; HIV and opioid addiction. We use the term “co-affected” to char-
acterize the individuals who are living with HIV and are also opioid drug users. Our previous research
suggests that the role of the co-affected class is very important in the symbiotic relationship between the
two epidemics [18]. To study the interplay of these two epidemics, we develop a multi-scale epidemic
model where the total population is divided into five non-intersecting classes; susceptible individuals
S (t), opioid addicted individuals U(t), HIV infected individuals V(t), co-affected individuals I(t), and
individuals with AIDS A(t). To understand the impact of within-host level opioid addiction on the pop-
ulation level HIV dynamics, we structure the co-affected class with time-since-co-affection parameter
τ. The density of opioid addicted individuals who are also infected with HIV is then denoted by i(t, τ).
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The number of co-affected individuals is determined by

I(t) =

∫ ∞

0
i(t, τ)dτ.

The multi-scale HIV-opioid epidemic model takes the following form;

dS (t)
dt

= ΛS − λu(t)S (t) − λv(t)S (t) − µS (t) + δuU(t),

dU(t)
dt

= λu(t)S (t) − qvλv(t)U(t) − (µ + du + δu)U(t),

dV(t)
dt

= λv(t)S (t) − quλu(t)V(t) − (µ + dv + γv)V(t) + δu

∫ ∞

0
σ(τ)i(t, τ)dτ,

∂i(t, τ)
dt

+
∂ksi(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δuσ(τ))i(t, τ),

ksi(t, 0) = qvλv(t)U(t) + quλu(t)V(t)

dA(t)
dt

= γvV(t) +

∫ ∞

0
γi(τ)i(t, τ)dτ − (µ + da)A(t),

(3.1)

where ks is a scaling factor such that τ = kst. Note that τ for the within-host scale is measured in days,
while the between-host scale time t is measured in years. The scaling factor ks allows us to convert
between the two time units. Thus, ks allows us to properly “zoom” on each scale and to consider
both scales simultaneously in dynamic regime. The parameter ΛS denotes the recruitment/birth rate
and µ denotes the natural death rate of the population. A susceptible individual can get into contact
with a HIV infected or opioid addicted individual and move to the corresponding class upon effective
transmission of infection or addiction. The force of HIV-infection takes into account the different
infectivity of co-affected individuals;

λv(t) =

βv1V(t) +

∫ ∞

0
βv2(τ)i(t, τ)dτ

N(t)
. (3.2)

Here βv1 denotes the HIV infection rate of individuals living with HIV and βv2(τ) denotes the HIV
infection rate of co-affected individuals which is assumed to vary with infection age τ. We use the data
in [29] to determine the form of the linking for the transmission coefficient βv2(τ) to the viral load [19].
Fitting to data, we obtain the following form for βv2(τ);

βv2(τ) =
β0V(τ)

B + V(τ)
,

where V(τ) is the viral load in an HIV-infected host who is also opioid user. That is we obtain the
transmission coefficient of the co-affected individual using the within-host model (M2).

We suppose that individuals with AIDS are isolated and consider the following form for the total
number of active population;

N(t) = S (t) + U(t) + V(t) + I(t).

Mathematical Biosciences and Engineering Volume 19, Issue 4, 3636–3672.



3647

The force of opioid addiction, λu(t), has a similar formulation. Thus

λu(t) = βu

U(t) +

∫ ∞

0
i(t, τ)dτ

N(t)
, (3.3)

where βu denotes the rate at which an effective contact with an opioid user will result in addiction. In
system (3.1), the term qvλv denotes the force of infection of an opioid user to HIV infection. Similarly,
the term quλu denotes the force of addiction of an HIV-infected individual to opioid dependence.

Table 3. Monte Carlo Simulation results of Model (M1). The AREs and 95% confidence in-
tervals of parameters of within-host model (M1) is presented for each measurement error σ0.

λ d β

ARE 95% CI ARE 95% CI ARE 95% CI

0% 10−14 [45,885, 45,885] 0 [0.160, 0.160] 0 [1.08 × 10−8, 1.08 × 10−8]

1% 0.8 [45,035, 46,841] 0.9 [0.157, 0.164] 1.0 [1.05 × 10−8, 1.11 × 10−8]

5% 3.7 [42,148, 50,455] 4.0 [0.147, 0.178] 3.7 [9.74 × 10−9, 1.17 × 10−8]

10% 7.2 [38,605, 54,658] 7.7 [0.135, 0.196] 6.7 [9.13 × 10−9, 1.27 × 10−8]

20% 15.3 [31,862, 68,340] 16.1 [0.114, 0.249] 14.2 [7.60 × 10−9, 1.55 × 10−8]

30% 26.7 [24,535, 90,430] 27.9 [0.09, 0.362] 50.5 [6.05 × 10−9, 2.07 × 10−8]

δ π l

ARE 95% CI ARE 95% CI ARE 95% CI

0% 0 [0.891, 0.891] 1.6 × 10−14 [2841.5 2841.5] 1.8 × 10−14 [10.1, 10.1]

1% 2.8 [0.842, 0.964] 18.2 [2068.5 5027.8] 22.1 [6.58, 19.24]

5% 9.1 [0.799, 1.174] 47.9 [1508.3 9460.4] 57.8 [3.91, 35.98]

10% 13.0 [0.748, 1.303] 63.1 [1297.1 13398] 74.4 [3.22, 49.67]

20% 22.1 [0.635, 1.625] 78.1 [1025.5 15496] 89.8 [2.63, 52.13]

30% 37.7 [0.538, 2.478] 114. 7 [590.1 20122] 114.2 [1.97, 65.88]

The parameters du, dv and da denote additional death rates induced by addiction, HIV infection and
AIDS respectively. Death rate of co-affected individuals is composed of two sources of additional
death rates; HIV-infection which varies with infection age and opioid addiction. Namely,

di(τ) = d0 (T (0) − T (τ)) + d1,
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where d0 (T (0) − T (τ)) represents death rate due to HIV and d1 represents death rate due to addiction.
The disease induced death rate does not depend explicitly on the viral load because the viral load is
high during the acute HIV phase but the death rate is low during the same stage. The same relationship
is also suggested in [30]. We assume that the opioid users recover at rate δu and move to the susceptible
class. Similarly, co-affected individuals recover from addiction and move to the HIV infected class,
with a rate δuσ(τ) depending on their HIV infection age τ. γv denotes the transition into AIDS. As
before, the transition into AIDS of co-affected individuals γi(τ) varies with infection age. We use the
following function as suggested in [30]

γi(τ) = γ0 (T (0) − T (τ)) .

Similarly, transition into AIDS does not depend explicitly on the viral load, because an HIV infected
individual develop AIDS at average 8 to 10 years after the infection [31], and the viral load usually is
not high during that transition time. The flowchart of the model is given in Figure 2. We previously
proved the existence, uniqueness, positivity and boundedness of multi-scale models such as studied in
this paper in [32–34]. Similar analysis can be adapted to this model (3.1) to establish the same results.

Figure 2. Flow chart of the multi-scale model of HIV and opioid epidemics: Susceptible
individuals S (t) are infected with HIV or acquire opioid addiction and move to the HIV
infected compartment V(t) or opioid addiction compartment U(t). Opioid addicted individ-
uals can be infected with HIV and move to the co-affected compartment i(t, τ). Similarly,
individuals who are originally infected with HIV acquire opioid addiction and move to the
co-affected compartment. Upon recovery from addiction, HIV infected individuals move to
the susceptible compartment at rate δu, and co-affected individual move to the HIV infected
only compartment with a rate δuσ(τ) depending on HIV infection age τ. Co-affected indi-
viduals move to the AIDS compartment with a rate γi(τ), HIV infected individuals move to
AIDS compartment with a constant rate γv.
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3.1. Basic reproduction numbers and stability of disease-addiction free equilibrium

Table 4. Monte Carlo Simulation results of Model (M1) when the viral clearance rate is fixed
at c = 10.1. The AREs and 95% confidence intervals of parameters of within-host model M1

is presented for each measurement error σ0.

λ d β

ARE 95% CI ARE 95% CI ARE 95% CI

0% 0 [45,885, 45,885] 0 [0.160, 0.160] 0 [1.08 × 10−8, 1.08 × 10−8]

1% 0.7 [45,139, 46,639] 0.7 [0.157, 0.163] 0.6 [1.07 × 10−8, 1.10 × 10−8]

5% 3.4 [42,248, 49,869] 3.6 [0.147, 0.176] 3.0 [1.01 × 10−9, 1.17 × 10−8]

10% 7.0 [38,728, 54,348] 7.2 [0.135, 0.195] 6.2 [9.48 × 10−9, 1.28 × 10−8]

20% 15.1 [31,976, 67,788] 15.8 [0.114, 0.250] 14.1 [7.80 × 10−9, 1.55 × 10−8]

30% 26.3 [24,721, 97,073] 28.3 [0.09, 0.389] 25.8 [5.97 × 10−9, 2.05 × 10−8]

δ π

ARE 95% CI ARE 95% CI

0% 0 [0.891, 0.891] 0 [2841.5 2841.5]

1% 0.5 [0.879, 0.902] 0.8 [2781.5 2897.6]

5% 2.7 [0.831, 0.948] 4.1 [2552.4 3133.8]

10% 5.4 [0.771, 1.006] 8.5 [2270.2 3494.0

20% 11.8 [0.648, 1.177] 20.3 [1718.8 4780.1]

30% 21.6 [0.525, 1.646] 40.6 [1173.7 8817.3]

We analyze the system (3.1) by first determining the equilibrium points. We set the differentials
with respect to t equal to zero and obtain the following system. Since the individuals with AIDS are
isolated, we study the following equivalent system.

ΛS − λu(t)S (t) − λv(t)S (t) − µS (t) + δuU(t) = 0,

λu(t)S (t) − qvλv(t)U(t) − (µ + du + δu)U(t) = 0,

λv(t)S (t) − quλu(t)V(t) − (µ + dv + γv)V(t) + δu

∫ ∞

0
σ(τ)i(t, τ)dτ = 0,

∂ksi(t, τ)
dτ

= −(µ + di(τ) + γi(τ) + δuσ(τ))i(t, τ),

ksi(0) = qvλv(t)U(t) + quλu(t)V(t).

(3.4)
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Table 5. Monte Carlo Simulation Results of the within-host model (M2) with β = 0. The
parameters Λ, dc and c are fixed at Λ = 15, dc = 5.5 and c = 23. The AREs and 95% confi-
dence intervals of parameters of within-host model (M2) is presented for each measurement
error σ0.

λ d β1

ARE 95% CI ARE 95% CI ARE 95% CI

0% 1.5 × 10−14 [24,603, 24,603] 0 [0.114, 0.114] 0 [4.0 × 10−5, 4.0 × 10−5]

1% 0.4 [24,343, 24,841] 0.5 [0.112, 0.115] 2.0 [3.7 × 10−5, 4.2 × 10−5]

5% 2.1 [23,304, 25,782] 2.6 [0.107, 0.121] 6.4 [3.1 × 10−5, 4.9 × 10−5]

10% 4.3 [21,967, 27,013] 5.2 [0.099, 0.129] 9.8 [3.0 × 10−5, 5.4 × 10−5]

20% 8.9 [19,219, 29,775] 11.2 [0.083, 0.147] 72.1 [2.8 × 10−5, 6.9 × 10−5]

30% 14.2 [15,849, 33,561] 20.0 [0.056, 0.175] 7 × 109 [1.8 × 10−5, 1.1 × 10−4]

δ π C0

ARE 95% CI ARE 95% CI ARE 95% CI

0% 0 [0.603, 0.603] 0 [4834 4834] 0 [6530, 6530]

1% 0.4 [0.598, 0.608] 0.9 [4730 4938] 2.3 [6087, 7012]

5% 1.8 [0.577, 0.629] 4.6 [4310 5352] 8.1 [4991, 8244]

10% 3.6 [0.548, 0.634] 9.1 [3779 5883] 11.5 [4411, 9227]

20% 7.4 [0.488, 0.702] 18.6 [2713 6977] 44.0 [3482, 11349]

30% 12.0 [0.404, 0.7749] 29.1 [1600 7915] 6 × 109 [2020, 12812]
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Table 6. Monte Carlo Simulation Results of the within-host model M2 with β = 0. The
parameters Λ, dc, c and C0 are fixed at Λ = 15, dc = 5.5 , c = 23 and C0 = 6530. The AREs
and 95% confidence intervals of parameters of within-host model M2 is presented for each
measurement error σ0.

λ d β1

ARE 95% CI ARE 95% CI ARE 95% CI

0% 1.5 × 10−14 [24,603, 24,603] 0 [0.114, 0.114] 0 [4.0 × 10−5, 4.0 × 10−5]

1% 0.4 [24,339, 24,849] 0.5 [0.112, 0.115] 0.8 [3.9 × 10−5, 4.0 × 10−5]

5% 2.2 [23,284, 25,829] 2.7 [0.106, 0.121] 4.1 [3.6 × 10−5, 4.4 × 10−5]

10% 4.4 [21,965, 27,088] 5.6 [0.098, 0.129] 8.5 [3.3 × 10−5, 4.9 × 10−5]

20% 9.0 [19,072, 29,843] 11.9 [0.081, 0.148] 19.5 [2.8 × 10−5, 6.5 × 10−5]

30% 14.3 [15,714, 32,659] 21.1 [0.044, 0.175] 41.7 [2.5 × 10−5, 1.1 × 10−4]

δ π

ARE 95% CI ARE 95% CI

0% 0 [0.603, 0.603] 0 [4834 4834]

1% 0.4 [0.598, 0.608] 0.9 [4722 4943]

5% 1.8 [0.577, 0.630] 4.7 [4276 5370]

10% 3.7 [0.548, 0.655] 9.5 [3738 5937]

20% 7.6 [0.488, 0.706] 19.4 [2631 7058]

30% 12.3 [0.400, 0.751] 30.5 [1518 8119]

When both HIV infection and addiction disappear in the population, we obtain the disease-
addiction-free equilibrium for which the compartments U(t), V(t) and i(t, τ) are zero. The disease-

addiction-free equilibrium for the system (3.4) is given as E0 =
(
S 0, 0, 0, 0

)
=

(
ΛS

µ
, 0, 0, 0

)
.

To determine the stability, we linearize the system around the disease-addiction-free equilibrium.
We take S (t) = S 0 + x(t), U(t) = u(t),V(t) = v(t), N(t) = N0 + n(t) and i(t, τ) = y(t, τ), where
x(t), u(t), v(t), y(t, τ) and n(t) denote the perturbations around E0. The linearized system for perturba-
tions takes the following form,
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dx(t)
dt

= −λu(t)S 0 − kλv(t)S 0 − µx(t) + δuu(t),

du(t)
dt

= λu(t)S 0 − (µ + du + δu)u(t),

dv(t)
dt

= λv(t)S 0 − (µ + dv + γv)v(t) + δu

∫ ∞

0
σ(τ)y(t, τ)dτ,

∂y(t, τ)
dt

+
∂ksy(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δuσ(τ))y(t, τ),

ksy(t, 0) = 0

(3.5)

where

λu(t) = βu

u(t) +

∫ ∞

0
y(t, τ)dτ

N0 , λv(t) =

βv1v(t) +

∫ ∞

0
βv2(τ)y(t, τ)dτ

N0 , N0 = S 0 =
ΛS

µ
.

Table 7. Definitions of parameters and dependent variables of the between-host model.

Parameter/Variable Description
S (t) Number of susceptible individuals at time t
V(t) Number of HIV infected individuals at time t
U(t) Number of opioid addicted individuals at time t
i(t, τ) Density of co-affected individuals with co-affection age τ at time t
A(t) Number of individuals with AIDS at time t
ΛS Constant recruitment rate
βu Transmission rate of opioid addiction
βv1 Transmission rate of HIV infection of HIV infected only individuals
βv2(τ) Transmission rate of HIV infection of co-affected individuals
µ Natural Death rate
du Death rate induced by opioid addiction
dv Death rate induced by HIV infection
di(τ) Death rate induced by co-affection at co-affection age τ
da Death rate induced by AIDS
δu Recovery rate from Opioid addiction
σ(τ) Addiction recovery rate for co-affected individuals
qu Increase/decrease of HIV infection due to opioid addiction
qv Increase/decrease of opioid addiction due to HIV infection
γv Rate of transition from HIV to AIDS
γi(τ) Rate of transition into AIDS for co-affected individuals
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We look for solutions of the form x(t) = x0eλt,u(t) = u0eλt, v(t) = v0eλt, y(t, τ) = y(τ)eλt and obtain
the following eigenvalue problem,



(λ + µ)x0 +

βu

u0 +

∫ ∞

0
y(τ)dτ

N0

 S 0 + k


βv1v0 +

∫ ∞

0
βv2(τ)y(τ)dτ

N0

 S 0 − δuu0 = 0,

(λ + µ + du + δu)u0 −

βu

u0 +

∫ ∞

0
y(τ)dτ

N0

 S 0 = 0,

(λ + µ + dv + γv)v0 −


βv1v0 +

∫ ∞

0
βv2(τ)y(τ)dτ

N0

 S 0 + δu

∫ ∞

0
σ(τ)y(τ)dτ = 0,

∂ksy(τ)
dτ

+ λy(τ) = −(µ + di(τ) + γi(τ) + δuσ(τ))y(τ),

ksy(0) = 0

(3.6)

Solving the fourth equation of system (3.6) we get

y(τ) = y(0)π(τ)e−λτ/ks = 0. (3.7)

where

π(τ) = e
−

1
ks

∫ τ

0
µ + di(ξ) + γi(ξ) + δuσ(ξ)dξ

.

Using Eq (3.7) and the second equation of system (3.6), we obtain,

(λ + µ + du + δu)u0 − βu
u0

N0 S 0 = 0 (3.8)

Solving this equation we obtain,

u0

(
1 −

βu

λ + µ + du + δu

)
= 0. (3.9)

Since u0 , 0, we set the following equation,

1 =
βu

λ + µ + du + δu
. (3.10)

We define the basic reproduction number of opioid addiction Ru as

Ru =
βu

µ + du + δu
. (3.11)
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Similarly using Eq (3.7) and the third equation of system (3.6), we obtain,

1 =
βv1

λ + µ + dv + γv

Then, we define the basic reproduction number of HIV-infection Rv as

Rv =
βv1

µ + dv + γv
. (3.12)

Now we state the following theorem,

Theorem 1. If max{Ru,Rv} < 1 then disease-addiction-free equilibrium E0 is locally asymptotically
stable. If max{Ru,Rv} > 1 then the equilibrium E0 is unstable.

Proof. Suppose

G1(λ) =
βu

λ + µ + du + δ
,

G2(λ) =
βv1

(λ + µ + dv + γv)
.

Then we notice that G1(0) = Ru, G2(0) = Rv, lim
λ→∞

G1(λ) = 0, lim
λ→∞

G2(λ) = 0. We claim that if
max{Ru,Rv} < 1 then the disease free equilibrium is locally asymptotically stable, that is all the roots
of system (3.6) have negative real parts. To show this, we proceed by way of contradiction. Suppose
system (3.6) has a root λ0 with<(λ0) ≥ 0. Then,

1 = |G1(λ0)| ≤ |G1(<λ0)| ≤ |G1(0)| = Ru

1 = |G2(λ0)| ≤ |G2(<λ0)| ≤ |G2(0)| = Rv

This is a contradiction. Hence E0 is locally asymptotically stable when max{Ru,Rv} < 1.

3.2. Stability of boundary equilibria and invasion numbers

To obtain the opioid-only boundary equilibrium E∗1 =
(
S ∗1,U

∗
1, 0, 0

)
, we set S (t) = S ∗1, U(t) = U∗1,

V(t) = 0 and i(t, τ) = 0 in system (3.4), then the system reduces to the following,

ΛS − µS ∗1 − S ∗1λu(U∗1) + δuU∗1 = 0
S ∗1λu(U∗1) − (µ + du + δu)U∗1 = 0

λu(U∗1) = βu
U∗1
N∗1

(3.13)

Solving system (3.13) we obtain,

S ∗1
N∗1

=
1

Ru
, and

U∗1
N∗1

= 1 −
1

Ru
.
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At the HIV-only equilibrium, E∗2 = (S ∗2, 0,V
∗
2 , 0), the system (3.4) reduces to

ΛS − µS ∗2 − S ∗2λv(V∗2) = 0
S ∗2λv(V∗2) − (µ + dv + γv)V∗2 = 0

λv(V∗2) =
βv1V

∗
2

N∗2

(3.14)

Solving system (3.14) we obtain,

S ∗2
N∗2

=
1

Rv
, and

V∗2
N∗2

= 1 −
1

Rv
.

We state the following lemma,

Lemma 1. Given min{Ru,Rv} > 1, then there exist an opioid-only boundary equilibrium, and an
HIV-only boundary equilibrium of system (3.1).

To find the invasion number of HIV and stability of E∗1 we linearize the system (3.1) around E∗1. We
set S (t) = x(t) + S ∗1, U(t) = u(t) + U∗1, V(t) = v(t), i(t, τ) = y(t, τ) and N(t) = n(t) + N∗1 , then the system
for the perturbations becomes,



dx(t)
dt

= −S ∗1λu(u, y) − x(t)βu
U∗1
N∗1

+ S ∗1βu
U∗1n(t)

N∗21

− µx(t) + δuu(t) − S ∗1λv(v, y),

du(t)
dt

= S ∗1λu(u, y) + x(t)βu
U∗1
N∗1
− S ∗1βu

U∗1n(t)
N∗21

− qvU∗1λv(v, y) − (µ + du + δu)u(t),

dv(t)
dt

= S ∗1λv(v, y) − quv(t)βu
U∗1
N∗1
− (µ + dv + γv)v(t) + δu

∫ ∞

0
σ(τ)y(t, τ)dτ,

∂y(t, τ)
dt

+
∂ksy(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δuσ(τ))y(t, τ),

ksy(t, 0) = qvU∗1λv(v, y) + quv(t)βu
U∗1
N∗1
,

(3.15)

where,

λu(u, y) = βu

u +

∫ ∞

0
y(t, τ)

N∗1
, λv(v, y) =

βv1v(t) +

∫ ∞

0
βv2(τ)y(t, τ)dτ

N∗1
.

We look for solutions of the form x(t) = xeλt,u(t) = ueλt,v(t) = veλt, y(τ, t) = y(τ)eλt and obtain the
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following eigenvalue problem,

λx = −S ∗1λu(u, y) − xβu
U∗1
N∗1

+ S ∗1βu
U∗1n
N∗21
− µx + δuu − S ∗1λv(v, y),

λu = S ∗1λu(u, y) + xβu
U∗1
N∗1
− S ∗1βu

U∗1n
N∗21
− qvU∗1λv(v, y) − (µ + du + δu)u,

λv = S ∗1λv(v, y) − quvβu
U∗1
N∗1
− (µ + dv + γv)v + δu

∫ ∞

0
σ(τ)y(τ)dτ,

∂ksy(τ)
dτ

+ λy = −(µ + di(τ) + γi(τ) + δuσ(τ))y(τ),

ksy(0) = qvU∗1λv(v, y) + quvβu
U∗1
N∗1
,

(3.16)

where,

λu(u, y) = βu

u +

∫ ∞

0
y(τ)

N∗1
, λv(v, y) =

βv1v(t) +

∫ ∞

0
βv2(τ)y(τ)dτ

N∗1
.

From the third, fourth and fifth equation of system (3.16) we obtain,

(λ + µ + dv + γv)v = S ∗1λv(v, y) − quvβu
U∗1
N∗1

+ δu

∫ ∞
0
σ(τ)y(τ)dτ,

∂ksy(τ)
dτ

+ λy = −(µ + di(τ) + γi(τ) + δuσ(τ))y(τ),

ksy(0) = qvU∗1λv(v, y) + quvβu
U∗1
N∗1
.

(3.17)

From the second equation of system (3.17) we get y(τ) = y(0)π(τ)e−λτ/ks . Setting

K = βuqu
U∗1
N∗1

and Q(λ) = δu

∫ ∞

0
σ(τ)π(τ)e−λτ/ksdτ

the first and third equations of system (3.17) become,

(λ + µ + dv + γv + K)v − Q(λ)y(0) = S ∗1λv(v, y)
−Kv + ksy(0) = qvU∗1λv(v, y)

(3.18)

Solving for v and y(0) we obtain,

v =
ksS ∗1 + qvU∗1Q(λ)

ks(λ + µ + dv + γv + K) − KQ(λ)
λv(v, y),

y(0) =
qv(λ + µ + dv + γv + K)U∗1 + KS ∗1
ks(λ + µ + dv + γv + K) − KQ(λ)

λv(v, y).

Substituting these values into the following equation,

λv(v, y) =

βv1v(t) +

∫ ∞

0
βv2(τ)y(τ)dτ

N∗1
,
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and cancelling λv(v, y) from both sides of the equation, we obtain;

1 =
βv1

N∗1

ksS ∗1 + qvU∗1Q(λ)
ks(λ + µ + dv + γv + K) − KQ(λ)

+

∫ ∞

0
βv2(τ)e−λτ/ksπ(τ)dτ

N∗1

qv(λ + µ + dv + γv + K)U∗1 + KS ∗1
ks(λ + µ + dv + γv + K) − KQ(λ)

.

(3.19)
We then define invasion number of HIV infection, R1

vi
as

R1
vi

=
βv1

N∗1

ksS ∗1 + qvU∗1δu

∫ ∞

0
σ(τ)π(τ)dτ

ks(µ + dv + γv + K) − Kδu

∫ ∞

0
σ(τ)π(τ)dτ

+

∫ ∞

0
βv2(τ)π(τ)dτ

N∗1

qv(µ + dv + γv + K)U∗1 + KS ∗1

ks(µ + dv + γv + K) − Kδu

∫ ∞

0
σ(τ)π(τ)dτ

(3.20)

Let

Gvi(λ) =
βv1

N∗1

ksS ∗1 + qvU∗1Q(λ)
ks(λ + µ + dv + γv + K) − KQ(λ)

+

∫ ∞

0
βv2(τ)e−λτ/ksπ(τ)dτ

N∗1

qv(λ + µ + dv + γv + K)U∗1 + KS ∗1
ks(λ + µ + dv + γv + K) − KQ(λ)

β̂(λ) =

∫ ∞

0
βv2(τ)e−λτ/ksπ(τ)dτ

Clearly, β̂(λ) is bounded above by β̂(0) and Q(λ) is bounded above by Q(0) for λ real. Note that,
Gvi(0) = R1

vi
and lim

λ→∞
Gvi(λ) = 0. Suppose system (3.19) has a root λ = x + iy with<(λ) = x > 0. We

first, prove the following inequaltiy.∣∣∣∣qv(λ + µ + dv + γv + K)U∗1
N∗1

∣∣∣∣ +
∣∣∣∣K S ∗1

N∗1

∣∣∣∣
|ks(λ + µ + dv + γv + K)| − |KQ(0)|

≤

∣∣∣∣qv(µ + dv + γv + K)U∗1
N∗1

∣∣∣∣ +
∣∣∣∣K S ∗1

N∗1

∣∣∣∣
|ks(µ + dv + γv + K)| − |KQ(0)|

(3.21)

To prove inequality (Eq 3.21) we write down the left hand side of the inequality,∣∣∣∣qv(λ + µ + dv + γv + K)U∗1
N∗1

∣∣∣∣ +
∣∣∣∣K S ∗1

N∗1

∣∣∣∣
|ks(λ + µ + dv + γv + K)| − |KQ(0)|

=
qvC1z + KC2

ksz − KQ(0)
= f (z),

where, C1 =
U∗1
N∗1

, C2 =
S ∗1
N∗1

and z =
√

(x + µ + dv + γv + K)2 + y2 where z = x + yi. Since f ′(|z|) < 0,

f (|z|) is a decreasing function. That is when z(0, 0) ≤ z(x, y), f (z(0, 0)) ≥ f (z(x, y)) when x ≥ 0. But
f (z(0, 0)) is just the right hand side of inequality (Eq 3.21). This proves the inequality (Eq 3.21). Using
inequality (Eq 3.21) we now state the following,

1 = |Gvi(λ)| ≤ |Gvi(0)| = R1
vi < 1
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This is a contradiction. So system (3.19) can only have roots with non-negative real parts when
R1

vi < 1. If R1
vi > 1 then Gvi(λ)→ 0 as λ→ 0 and λ real. Thus E∗1 is unstable. Note that,

U∗1
N∗1

= 1 −
1

Ru
,

S ∗1
N∗1

=
1

Ru
. (3.22)

To find the further eigenvalues, satisfying the third, fourth and fifth equation of system (3.16),
y(t, τ) = 0 and v(t) = 0. The first two equations in system (3.16) then reduce to

λx = −S ∗1βu
u

N∗1
− xβu

U∗1
N∗1

+ S ∗1βu
U∗1n

N∗21

− µx + δuu,

λu = S ∗1βu
u

N∗1
+ xβu

U∗1
N∗1
− S ∗1βu

U∗1n

N∗21

− (µ + du + δu)u.
(3.23)

Adding the two equations and solving for n we get

n = −
duu

(λ + µ)
which implies x = −

λ + µ + du

λ + µ
u.

Replacing x and n in the second equation of system (3.16) we get,

(λ + µ + du + δu)u = S ∗1βu
u

N∗1
−
λ + µ + du

λ + µ
uβu

U∗1
N∗1

+ S ∗1βu
U∗1
N∗21

duu
(λ + µ)

=⇒

(
λ + µ + du + δu + βu(1 −

1
Ru

)
λ + µ + du

λ + µ

)
u = S ∗1βu

u
N∗1

1 +
du

U∗1
N∗1

λ + µ


(3.24)

Multiplying both sides of the equation 1
N∗1

,

(
λ + µ + du + δu + βun(1 −

1
Ru

)
λ + µ + du

λ + µ

)
u

N∗1
=

S ∗1
N∗1
βu

u
N∗1

1 +
du

U∗1
N∗1

λ + µ

 (3.25)

u
N∗1

= 0 implies from system (3.24) u would be zero, which would not be of interest. Thus u
N∗1
, 0 and

canceling the expression on both sides, then the characteristic equation becomes,

(λ + µ + du + δu) (λ + µ) + βu (λ + µ + du)
(
1 −

1
Ru

)
= βu

(
λ + µ + du(1 −

1
Ru

)
)

1
Ru

(3.26)

Rewriting this equation as a quadratic equation, we get

λ2 + (2µ+ du + δu + βu − 2βu
1

Ru
)λ+ (µ + du + δ) µ+ βu

(
1 −

1
Ru

)
(µ+ du)− βu

1
Ru

(
µ + du(1 −

1
Ru

)
)

= 0

(3.27)
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Simplifying the equation, we have λ2 + bλ + c = 0 where b = βu − du − δu > 0 and

c =

(
1 −

1
Ru

)
(βu(µ + du) − (µ + du + δu)du) > 0

since βu > (µ + du + δu) when Ru > 1. Hence this quadratic equation has only roots with negative real
parts.

Combining the work above we can conclude,

Theorem 2. The unique boundary equilibrium E∗1 is locally asymptotically stable if R1
vi
< 1, and it is

unstable if R1
vi
> 1.

To find the invasion number of Opioid addiction and stability of E∗2 we first linearize the system (3.1)
around E∗2. We set S (t) = x(t) + S ∗2, U(t) = u(t), V(t) = v(t) + V∗2 , i(t, τ) = y(t, τ) and N(t) = n(t) + N∗2 ,
the system for the perturbations become,



dx(t)
dt

= −S ∗2λ
2
u(u, y) − µx(t) + δuu(t) − S ∗2λ

2
v(v, y) −C1x + S ∗2

βv1V
∗
2n

N∗22

,

du(t)
dt

= S ∗2λ
2
u(u, y) − qvuC1 − (µ + du + δu)u(t),

dv(t)
dt

= xC1 + S ∗2λ
2
v(v, y) − S ∗2

βv1V
∗
2n

N∗22

− quV∗2λ
2
u(u, y)

−(µ + dv + γv)v(t) + δu

∫ ∞
0
σ(τ)y(t, τ)dτ,

∂y(t, τ)
dt

+
∂ksy(t, τ)

dτ
= −(µ + di(τ) + γi(τ) + δuσ(τ))y(t, τ),

ksy(t, 0) = qvC1u + quV∗2λ
2
u(u, y)

(3.28)

Where,

λ2
u(u, y) = βu

u +
∫ ∞

0
y(t, τ)

N∗2

λ2
v(v, y) =

βv1v(t) +

∫ ∞

0
βv2(τ)y(t, τ)dτ

N∗2

and

C1 =
βv1V

∗
2

N∗2
.

We look for solutions of the form x(t) = xeλt, u(t) = ueλt, v(t) = veλt, y(τ, t) = y(τ)eλt and obtain the
following eigenvalue problem,
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λx = −S ∗2λ
2
u(u, y) − µx + δuu − S ∗2λ

2
v(v, y) −C1x + S ∗2

βv1 V∗2 n

N∗22
,

λu = S ∗2λ
2
u(u, y) − qvuC1 − (µ + du + δu)u,

λv = xC1 + S ∗2λ
2
v(v, y) − S ∗2

βv1 V∗2 n

N∗22
− quV∗2λ

2
u(u, y) − (µ + dv + γv)v + δu

∫ ∞
0
σ(τ)y(τ)dτ,

∂ksy(τ)
dτ

+ λy = −(µ + di(τ) + γi(τ) + δuσ(τ))y(τ),

ksy(0) = qvC1u + quV∗2λ
2
u(u, y)

(3.29)

Where,

λ2
u(u, y) = βu

u +
∫ ∞

0
y(τ)dτ

N∗2

λ2
v(v, y) =

βv1v +

∫ ∞

0
βv2(τ)y(τ)dτ

N∗2
From the fourth equation of system (3.29) we get

y(τ) = y(0)π(τ)e−λτ/ks (3.30)

Let Q(λ) =
∫ ∞

0
π(τ)e−λτ/ksdτ.

From the second equation of system (3.29) we get

u =
S ∗2

λ + µ + du + δu + qvC1
λ2

u(u, y)

Multiplying both sides of this equation with 1
N∗2

we get,

u
N∗2

=
S ∗2

(λ + µ + du + δu + qvC1)N∗2
λ2

u(u, y). (3.31)

From the fifth equation of system (3.29) we get,

y(0)
N∗2

=
qvC1u
ksN∗2

+
quV∗2
ksN∗2

λ2
u(u, y).

Supplying these values in the equation,

λ2
u(u, y) = βu

u +
∫ ∞

0
y(τ)dτ

N∗2
,

and canceling λ2
u(u, y) from both sides we obtain,

1 = βu[
S ∗2

(λ + µ + du + δu + qvC1)N∗2
+ Q(λ)(

qvC1

ksN∗2

S ∗2
λ + µ + du + δ + qvC1

+
quV∗2
ksN∗2

)] (3.32)
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We then define the invasion number of opioid epidemic as,

R2
ui

=
(ks + qvC1Π)βuS ∗2

(µ + du + δu + qvC1)ksN∗2
+ Πquβu

V∗2
ksN∗2

(3.33)

where Π =

∫ ∞

0
π(τ)dτ and C1 =

βv1V
∗
2

N∗2
. We call R2

ui the invasion number of opioid addiction. We

claim that when R2
ui
< 1, the boundary equilibrium E∗2 is locally asymptotically stable, that is all the

roots of Eq (3.32) have negative real parts.
Suppose

Gui(λ) =
(1 + qvC1Q(λ))βuS ∗2

ks(λ + µ + du + δu + qvC1)N∗2
+ Q(λ)

quβu

ks

V∗2
N∗2
.

Then Gui(0) = R2
ui

and limλ→∞ Gui(λ) = 0.
Assume the Eq (3.32) has roots with non-negative real part<(λ) > 0. The Eq (3.32) satisfies,

1 =

∣∣∣∣∣∣ (1 + qvC1Q(λ))βuS ∗2
ks(λ + µ + du + δu + qvC1)N∗2

+ Q(λ)
quβu

ks

V∗2
N∗2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (1 + qvC1Q(λ))βuS ∗2
ks(λ + µ + du + δu + qvC1)N∗2

∣∣∣∣∣∣ +

∣∣∣∣∣∣Q(λ)
quβu

ks

V∗2
N∗2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (1 + qvC1Q(<(λ)))βuS ∗2
ks(λ + µ + du + δu + qvC1)N∗2

∣∣∣∣∣∣ +

∣∣∣∣∣∣Q(<(λ))
quβu

ks

V∗2
N∗2

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (1 + qvC1Π)βuS ∗2
ks(µ + du + δu + qvC1)N∗2

∣∣∣∣∣∣ +

∣∣∣∣∣∣Πquβu

ks

V∗2
N∗2

∣∣∣∣∣∣
≤ R2

ui
< 1

(3.34)

This is a contradiction. Hence all roots of Eq (3.32) have negative real parts when R2
ui
< 1.

Now let us suppose, R2
ui
> 1. Then since G ′ui(λ) < 0 when λ > 0 and real, Gui(λ) is decreasing when

λ > 0 and real. But we have, Gui(0) = R2
ui
> 1 and limλ→∞ Gui(λ) = 0. Then Eq (3.32) has at least one

positive root when R2
ui
> 1.

If λ is not a solution of characteristic Eq (3.32), we have u = 0, y(0) = 0, the first two equations of
system (3.29) reduce to

λx = −µx − S ∗2
βv1v
N∗2
−C1x + S ∗2

βv1V
∗
2n

N∗22

,

λv = xC1 + S ∗2
βv1v
N∗2
− S ∗2

βv1V
∗
2n

N∗22

− (µ + dv + γv)v.
(3.35)

Adding the two equations and solving for n we get

n = −
(dv + γv)v

(λ + µ)
,

i.e.
x = −

λ + µ + dv + γv

λ + µ
v.
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Using these values in the second equation of system (3.35) we get,

(
λ + µ + dv + γv +

C1(λ + µ + dv + γv)
λ + µ

)
v = S ∗2

βv1v
N∗2

λ + µ + (dv + γv)
V∗2
N∗2

λ + µ

 . (3.36)

Since v , 0 we can cancel v
λ+µ

from both sides and get the following equation,

1 = S ∗2
βv1

N∗2

 λ + µ + (dv + γv)
V∗2
N∗2

(λ + µ + C1)(λ + µ + dv + γv)

 . (3.37)

Now we know for the boundary equilibrium E∗2, S ∗2 + U∗2 = N∗2 , i.e both S ∗2
N∗2

and U∗2
N∗2

are less than one.
We also have the following,

C1

βv1

=
V∗2
N∗2
,

and since Rv > 1, βv1 > µ + dv + γv. Assume the Eq (3.37) has roots with non-negative real part. With
<(λ) ≥ 0 the Eq (3.37) satisfies,

1 =

∣∣∣∣∣∣∣∣βv1

S ∗2
N∗2

(λ + µ + (dv + γv)
V∗2
N∗2

)

(λ + µ + dv + γv)(λ + µ + C1)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣βv1

1
Rv

(λ + µ + (dv + γv) C1
βv1

(λ + µ + dv + γv)(λ + µ + C1)

∣∣∣∣∣∣∣∣
<

∣∣∣∣∣βv1

1
Rv

1
(λ + µ + dv + γv)

∣∣∣∣∣ ≤ ∣∣∣∣∣βv1

1
Rv

1
(µ + dv + γv)

∣∣∣∣∣ = 1.

(3.38)

This is a contradiction. So we can state the following theorem,

Theorem 3. The unique boundary equilibrium E∗2 is locally asymptotically stable if R2
ui
< 1, and it is

unstable if R2
ui
> 1.

3.3. Estimating parameters of the multi-scale model of HIV and opioid epidemics

The Centers for Disease Control (CDC) collects and reports the surveillance data on persons di-
agnosed with HIV infection. The time series data of HIV diagnoses, which is defined by CDC as the
number of HIV infections, confirmed by laboratory or clinical evidence in one calendar year, regardless
of the stage of HIV-infection [31] is available at their website [35] starting from 2008. AIDS diagnoses
are the individuals who were diagnosed with HIV infection and classified as AIDS. We obtain the HIV
deaths and AIDS diagnoses from the CDC website to estimate the parameters of the multi-scale model
(3.1) [35]. We report the time series data in Appendix Table A. National Center for Health Statistics
reports the drug overdose deaths in the US from 1999–2018 [36]. The report gives any drug overdose
mortality, but we used only the opioid deaths as given in complimentary pdf file [37]. We present the
time series opioid overdose data in Appendix Table A.
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We would like to estimate the parameters of the multi-scale model (3.1). As explained above the
parameters of the co-affected class are linked to the viral load and target cell population within-infected
host who abuse opioid drugs. Let pe denote the parameters of the between host model (3.1) and let p
denote the parameters of the within-host model M2, then using the multi-scale data, we will estimate
the following parameters;

[pe, p] = [βu, βv1 , β0, B, δu, qu, qv, du, dv, da, d0, d1, γv, γ0, σ︸                                                        ︷︷                                                        ︸
between-host model (3.1)

, λ, d, β1, δ, π︸       ︷︷       ︸
within-host model M2

].

For simplicity, we set σ(τ) = σ. Recruitment and natural death rates are fixed at ΛS = 50, 000, 000µ
and µ = 1/75. To define the multi-scale parameter estimation problem based on the data available in
US, we set yp(t) = (yp1(t), yp2(t), yp3(t)) to denote the observations. Observations for the between-
host model parameter estimation are AIDS cases, denoted by yp1(t), HIV deaths denoted by yp2(t) and
deaths due to opioid addiction denoted by yp3(t). Based on the model (3.1) observations are given as
the following

yp1(t) = γvV(t) +

∫ ∞

0
γi(τ)i(t, τ)dτ

yp2(t) = dvV(t) +

∫ ∞

0
d0 (T (0) − T (τ)) i(t, τ)dτ

yp3(t) = duU(t) +

∫ ∞

0
d1i(t, τ)dτ

(3.39)

Clearly, each observation depends on both the between-host parameters pe and within-host parame-
ters p. Let ti

k = {ti
1, t

i
2, t

i
3, · · · , t

i
ni
}, for i = 1, 2, 3 denote the discrete time points measured in years when

the AIDS diagnoses, (i = 1), HIV deaths (i = 2) and opioid deaths (i = 3) are reported. Let Zi
k denote

the number of AIDS diagnoses (i = 1), HIV deaths (i = 2) and opioid deaths (i = 3) at the correspond-
ing discrete times. Then we use the following optimization problem to estimate the parameters of the
multi-scale system (3.1).

minpe,p

ω1

n1

n1∑
k=1

|yp1(t1
k , pe, p) − Z1

k )|2

Ẑ1
+
ω2

n2

n2∑
k=1

|yp2(t2
k , pe, p) − Z2

k )|2

Ẑ2
+
ω3

n3

n3∑
k=1

|yp3(t3
k , pe, p) − Z3

k )|2

Ẑ3

+
ω4

n

n∑
i=1

| log10(V(ti, p)) − log10(Y i
1)|2

Ŷ1
+
ω5

m

m∑
j=1

| log10(T (t j, p)) − log10(Y j
2)|2

Ŷ2


w.r.t the constraints pe > 0, p > 0, βu = Ru(µ + du + δu) and βv1 = Rv(µ + dv + γv).

(3.40)
Note that we use multi-scale data to estimate parameters of the multi-scale model. The within-host

scale data and population scale data have different magnitudes. For instance, the weekly log viral load
data is within range 5–8, and the yearly AIDS cases is within range 1× 104 − 4× 104. Furthermore, the
number of data points varies significantly for each observation. In such a case, the iterative numerical
algorithm which approximates the minimization problem (3.40) tends to minimize the data with the
highest magnitude at price of deviating from the small magnitude data. To overcome this issue, we
normalize with the average data value. Thus in problem (3.40),
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Ẑ1 =
1
n1

n1∑
k=1

Z1
k , Ẑ2 =

1
n2

n2∑
k=1

Z2
k , Ẑ3 =

1
n3

n3∑
k=1

Z3
k , and

Ŷ1 =
1
n

n∑
i=1

log10(Y i
1), Ŷ2 =

1
m

m∑
j=1

log10(Y j
2).

Also note, that in problem (3.40), ω1, . . . , ω5 are weights given to each data sets.

Figure 3. Model fit to data.

3.4. Sensitivity analysis

In this section we are interested in performing elasticity analysis of the invasion numbers with re-
spect to the reproduction numbers as well as several important parameters. In article [18], we computed
the elasticities of the two invasion numbers of an ODE model similar to the one here with parameters
estimated from fitting to data. We found out that the invasion numbers are most sensitive to the param-
eter qv that gives the enhancement of HIV infection of opioid-addicted individuals. We concluded that
“decreasing the HIV infection in drug users is the most efficient way to decouple the two epidemics”.
In this section, we want to see whether the results from [18] can be confirmed. Thus, in this section
we compute the corresponding elasticities. To do that we set, M1 = µ + du + δu, M2 = µ + dv + γv,

and βv2 =

∫ ∞

0
βv2(τ)π(τ)dτ. The analytical expressions of the derivatives of the invasion reproduction

numbers with respect to the corresponding parameters are given as in the following.
Expressions for R2

ui

∂R2
ui

∂Ru
=

M1

Rv

[
(ks + qvM2(Rv − 1)Π)

(M1 + qvM2(Rv − 1))ks
+

Πqu(Rv − 1)
ks

]
,

∂R2
ui

∂Rv
= M1Ru

[
Πqu

ksR2
v

+
qvM2Π

R2
v (M1 + qvM2(Rv − 1))ks

−
(ksRv + qvM2(Rv − 1)Π)(qvM2ks)

Rv(M1 + qvM2(Rv − 1))2k2
s

]
,

∂R2
ui

∂qu
=

ΠM1Ru(Rv − 1)
ksRv

,

∂R2
ui

∂qv
=

M1M2Ru(Rv − 1)(M1Π − ks)
Rv[M1 + qvM2(Rv − 1)]2 .
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Expressions for R1
vi

∂R1
vi

∂Rv
=

M2(ks + qvδu(Ru − 1)[
∫ ∞

0
σ(τ)π(τ)dτ])

RuksM2 + Ruqu(Ru − 1)M1[ks − δu

∫ ∞
0
σ(τ)π(τ)dτ]

,

∂R1
vi

∂Rv
=

A1B1 − A2B2

A2
1

,

∂R1
vi

∂qv
=

M2Rvδu[
∫ ∞

0
σ(τ)π(τ)dτ](Ru − 1) + βv2(M2(Ru − 1) + qu(Ru − 1)RuM1)

Ru[ksM2 + qu(Ru − 1)M1(ks − δ
∫ ∞

0
σ(τ)π(τ)dτ)]

,

∂R1
vi

∂qu
=

A1C1 − A2C2

A2
1

,

Where,

A1 = ksM2 + qu(Ru − 1)M1[ks − δu

∫ ∞

0
σ(τ)π(τ)dτ],

A2 = M2
Rv

Ru
(ks + qvδu[

∫ ∞

0
σ(τ)π(τ)dτ](Ru − 1)) +

βv2

Ru
[qv(M2(Ru − 1) + qu(Ru − 1)2M1) + qu(Ru − 1)M1],

B1 = M2Rv

−ks

R2
u

+
qvδu

∫ ∞
0
σ(τ)π(τ)dτ

R2
u

 +
βv2

R2
u

(
qvM2 + qvquM1(R2

u − 1) + M1qu

)
,

B2 = quM1(ks − δu

∫ ∞

0
σ(τ)π(τ)dτ),

C1 = βv2 M1(Ru − 1),

C2 = (Ru − 1)M1[ks − δu

∫ ∞

0
σ(τ)π(τ)dτ].

To determine the best control measures, knowledge of the relative importance of the different pa-
rameters responsible for transmission is useful. Elasticity is a measure of the relative change of a
quantity Q with respect to the parameter p, and it is defined as follows:

εQ
p =

∂Q
∂p

p
Q
.

We denote the elasticities of the invasion numbers with respect to the reproduction numbers as
follows:

A =
∂R2

ui

∂Ru

Ru

R2
ui

B =
∂R2

ui

∂Rv

Rv

R2
ui

C =
∂R1

vi

∂Ru

Ru

R1
vi

D =
∂R1

vi

∂Rv

Rv

R1
vi
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Table 8. Parameter estimation results of multi-scale fitting problem (3.40) to multi-scale data
via multi-scale models (3.1) and (M2).

Parameter Estimated Value Units
βu 0.385676 1/time

βv1 0.0551 1/time

β0 0.00011046 1/time

B 15318.9 vRNA/ml

δu 0.118227 1/time

qu 0.867138 Unitless

qv 30.6189 Unitless

du 0.00817752 1/time

dv 0.0144092 1/time

da 1.2766e+11 1/time

d0 2.72895e-07 ml/(time × cells)

d1 3.4671e-06 1/time

γv 0.0223488 1/time

γ0 1.63927e-12 1/time

σ 0.000270006 Unitless

λ 22843.6 CD4 count/(time ×ml)

d 0.0766824 1/time

β1 2.02785e-05 vRNA/(CD4 count × time)

δ 0.725266 1/time

π 8465.63 vRNA/(CD4 count × time)

Ru 2.76 Unitless

Rv 1.1 Unitless

Figure 4 gives the elasticities of the invasion number with respect to the reproduction numbers.
One immediate observation is that these elasticities are not all positive. In particular, the elasticity of
R1

vi
with respect to Ru is negative which means that increase in opioid addicted individuals decreases

the invasibility of HIV and may decouple the two pandemics. The negative sign is in a sense natural
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because it signifies competition between the two diseases. At the same time Figure 4 reveals that the
elasticity of R2

ui
with respect to Rv is positive but very small. This means that an increase in HIV-

infected individuals barely affects the invasion capabilities of the opioid affected. Looking at Table 9
the largest number in magnitude is the elasticity of R2

ui
with respect to qv. This is the same elasticity

that in [18] had maximal magnitude. This suggests that the key to controlling these two pandemics is
to decrease the HIV infection in drug users – this is the point where the control measures will have
maximum impact. Decreasing qv will increase the invasion capabilities of opioid addiction. To counter
that effect, we have to simultaneously control the opioid epidemic.

Parameters not involved in the reproduction numbers but potentially important for control are qu

and qv. We denote the elasticities of the invasion numbers with respect to these parameters as follows:

W =
∂R1

vi

∂qu

qu

R1
vi

X =
∂R1

vi

∂qv

qv

R1
vi

Y =
∂R2

ui

∂qu

qu

R2
ui

Z =
∂R2

ui

∂qv

qv

R2
ui

Figure 4. Figure shows elasticities of the invasion numbers with respect to the reproduction
numbers. The parameters used are given in Table 8.

Table 9. Table shows elasticities of the invasion numbers with respect to the parameters qu,
qv and δu. The parameters used are given in Table 8.

Elasticity Estimated Value
W -0.8097

X 0.0023

Y 0.0014

Z -187.7127
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4. Discussion and conclusions

In this paper we formulate a multi-scale immuno-epidemiological model of HIV-Opioid epidemics
coinfection using the nested approach [20]. The system consists of a within-host model of ordinary
differential equations describing the dynamics within the co-affected individuals. The within-host
model is linked with an epidemiological model via epidemiological parameters. The multi-scale model
here is an extension of the ODE model considered in [18].

To estimate the parameters for the within-host model, the viral load and CD4 measurements
obtained from [23] are utilized. Structural identifiability analysis is performed for the estimated
parameters, and we conclude that model (M2) is not structurally identifiable as developed. Validation
of the model (M2) with data suggests that β = 0. Then the within-host model with β = 0, is structural
identifiable if we fix the drug-infusion and the viral clearance rates. Furthermore the model becomes
practically identifiable, when the opioid clearance rate and saturation constant are fixed. We fit the full
multi-scale model to the within-host data [23] and the number of AIDS diagnoses in the US, number
of HIV deaths and number of opioid deaths. We choose to fit the within-host and between-host models
simultaneously to all five data sets because our prior research suggests that simultaneous fitting improves
the identifiability of the parameters [26]. This allows us to determine the parameters of the full model.

We study the multi-scale immuno-epidemiological model analytically. We compute the reproduc-
tion numbers of HIV and opioid epidemics. We show that the unique disease-addiction-free equilib-
rium is locally stable if both reproduction numbers are below one and unstable if an least one repro-
duction number is grater than one. If the reproduction number of HIV is greater than one, there is
a unique equilibrium corresponding to HIV only. We show further that the HIV only equilibrium is
locally asymptotically stable if the opioid invasion number is smaller than one, and it is unstable if
the opioid invasion number is greater than one. Similarly, if the reproduction number of the opioid
is greater than one there exists a unique equilibrium corresponding to the opioid epidemic only. We
show that the opioid-only equilibrium is locally asymptotically stable if the HIV invasion number is
smaller than one. If the HIV invasion number is greater than one, the opioid only equilibrium is unsta-
ble. Simulations suggest that there is an interior equilibrium potentially under the condition that both
invasion numbers are larger than one; however proving that analytically has not been possible. In the
ODE case [18], simulation suggested that the interior equilibrium may not be unique. Thus we expect
possible non-uniqueness in this case too.

Using the fitted parameters we compute the elasticities of the invasion numbers with respect to the
reproduction numbers as well as with respect to some of the parameters. The elasticities of the invasion
number of the opioid with respect to the reproduction number of HIV is very small and positive. In
terms of control the HIV epidemic has very little impact on the invasion capabilities of the opioid
epidemic. On the other hand, the elasticity of the invasion number of HIV with respect to the opiod
reproduction number is very large and negative suggesting that the opioid epidemic has a big impact on
the invasion capabilities of HIV. In particular decreasing HIV prevalence increases the opioid epidemic
invasion capabilities and strengthens the opioid epidemic. This is what we observe in reality – HIV
incidence and deaths drop but the opioid deaths rise in numbers. The largest in modulus elasticity is
that of the opioid invasion number with respect to qv – the coefficient of enhancement of HIV infection
of opioid affected individuals. This coefficient is already very large – we estimate it at 30, but it also
has a very large effect on the invasion capabilities of the opioid epidemic. We find that this elasticity
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is the largest also in our previous article [18] and we surmise that targeting HIV infection of opioid
affected individuals will have the largest impact on the both epidemics. Decreasing HIV-infection of
opioid affected individuals will strengthen the invasion capabilities of the opioid epidemic and should
be coupled with systematic control of the opioid epidemic alone. Thus, even though our model is
different and our data are different in this article compared to [18], we reach similar conclusion about
control strategies for the coupled epidemics.
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Appendix

Table A. HIV deaths, AIDS diagnoses and opioid deaths. Resources are [35] and [36].

Years HIV deaths AIDS cases Opioid deaths

1999 — — 8050

2000 — 38,285 8407

2001 — 36,922 9496

2002 — 36,726 11,920

2003 — 37,317 12,940

2004 — 36,220 13,756

2005 — 34,261 14,918

2006 — 32,790 17,545

2007 — 31,984 18,516

2008 18,525 31,384 19,582

2009 18,043 30,187 20,422

2010 16,742 27,401 21,089

2011 16,300 25,620 22,784

2012 16,018 24,684 23,166

2013 15,908 23,656 25,052

2014 16,145 19,313 28,647

2015 15,860 18,590 33,091

2016 16,395 18,375 42,249

2017 16,358 17,749 47,600

2018 15,483 17,113 46,802
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