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Abstract: It is prone to get stuck in a local minimum when solving the Traveling Salesman Problem 

(TSP) by the traditional Hopfield neural network (HNN) and hard to converge to an efficient solution, 

resulting from the defect of the penalty method used by the HNN. In order to mend this defect, an 

accelerated augmented Lagrangian Hopfield neural network (AALHNN) algorithm was proposed in 

this paper. This algorithm gets out of the dilemma of penalty method by Lagrangian multiplier method, 

ensuring that the solution to the TSP is undoubtedly efficient. The second order factor added in the 

algorithm stabilizes the neural network dynamic model of the problem, thus improving the efficiency 

of solution. In this paper, when solving the TSP by AALHNN, some changes were made to the TSP 

models of Hopfield and Tank. Say, constraints of TSP are multiplied by Lagrange multipliers and 

augmented Lagrange multipliers respectively, The augmented Lagrange function composed of path 

length function can ensure robust convergence and escape from the local minimum trap . The Lagrange 

multipliers are updated by using nesterov acceleration technique. In addition, it was theoretically 

proved that the extremum obtained by this improved algorithm is the optimal solution of the initial 

problem and the approximate optimal solution of the TSP was successfully obtained several times in 

the simulation experiment. Compared with the traditional HNN, this method can ensure that it is 

effective for TSP solution and the solution to the TSP obtained is better. 

Keywords: TSP; HNN; Lagrange neural network algorithm; augmented Lagrangian; nesterov 

acceleration technique 
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1. Introduction 

In a broad sense, combinatorial optimization problem involves finding the “best” object from a 

limited set of objects. “Best” is measured by a given evaluation function, which maps the object to a 

score or cost. The goal is to find the object with the highest evaluation score and the lowest cost. 

Combinatorial optimization often involves sorting, classification, screening and so on. In terms of 

discrete cop problem, the goal is to find a set, an arrangement or a graph from all feasible solutions. 

The Traveling Salesman Problem (TSP) is a classical combinatorial optimization problem. There 

are highly similar problems in multiple disciplines. This problem is described as follows: a traveling 

salesman needs to visit a number of (n) cities; he returns to the starting point after visiting every city 

once; then the shortest path among all paths that meet this condition is the optimal solution to this 

problem. The TSP is a NP-hard problem in classical combinatorial optimization, which is characterized 

by a fact that there is no method with polynomial-time complexity that can accurately find the optimal 

solution at present. Therefore, the TSP is mostly solved by heuristic algorithms such as genetic 

algorithm (GA), neural network algorithm and ant colony optimization (ACO). Hence, it is of great 

significance and theoretical value to study this problem. 

The study of artificial neural network had been in a silence period of for more than ten years since 

the late 1960s, but began to flourish again in the early 1980s. The research boom has continued till 

today. At that time, the concept of HNN was proposed in the two classic papers of Hopfield and 

Tank [1,2]. Y. Zhu [3] addresses the problems of synchronization and state estimation for a class of 

discrete-time hierarchical hybrid neural networks (NNs) with time-varying delays. Wilson and 

pawleyi [4] found that the energy functions of Hopfield and tank may not get effective solutions. And 

in [5] the state estimation problem for a class of discrete-time switched neural networks with modal 

persistent dwell time (MPDT) switching and mixed time delays is investigated.Hopfield neural 

network is a recursive neural network, which was invented by John Hopfield in 1982. Hopfield 

network is a neural network combining storage system and binary system. It guarantees the 

convergence to the local minimum, but it may also converge to the wrong local minimum rather than 

the global minimum. Hopfield network also provides a model to simulate human memory. The success 

Hopfield and Tank made in the solution to the TSP by HNN inspired researchers to get down to dig 

deep into solving the NP-hard problem by neural network. It is found that neural network has many 

advantages over other methods in solving the TSP. M. Waqas et al. [6] described a neural network 

optimizer/scheduler. A new initialization rule is proposed to improve the performance of the system 

and make the system converge to the optimal solution in a shorter time. Therefore, various methods to 

improve the convergence of HNN were proposed by researchers after various improvements and 

studies of solving combinatorial optimization problem by HNN. 

L. García et al. [7] pointed out CHNN (Continuous Hopfield Neural Network) is used as the 

optimizer to make the neural network competitive in solving k-opt problem. I. Valova et al. [8] 

discussed The implementation of some new optimization algorithms and traditional deep learning (DL) 

optimization algorithms. S. Z. Li [9] transformed the relaxation labeling problem into a constrained 

optimization problem and solved it by Lagrange multiplier method. D. Kaznachey et al. [10] and Z. 

Wu et al. [11] solved the combinatorial optimization problem by using neural network and logarithmic 

descent algorithm respectively. A. Pvy et al. [12] proposed a hybrid artificial neural network and 

genetic algorithm to predict the hysteresis loop and magnetic properties of alloys. The research shows 

that artificial neural network, as a powerful calculation technology in nonlinear system modeling, can 
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be reliably applied to the prediction of nonlinear systems. A. Rachmad et al. [13] and A. Mazeev et 

al. [14] improved simulated annealing algorithm to solve minimum distance and TSP problem 

respectively. S. Z. Li [15] proposed the relaxation labeling to improve HNN by Lagrangian multiplier 

method and hierarchical HNN. Honari-Latifpour et al. [16] proposed the application of three state 

plane Potts model in combinatorial optimization problem. S. Zhang et al. [17] analyzed in detail a type 

of neural network for general nonlinear programming, i.e., equality and inequality constraints, etc. This 

method is based on the optimization of Lagrangian multiplier theory and seeks to provide solutions 

that meet the necessary conditions for optimality. S. S. Kia [18] discusses how to use the idea of 

augmented Lagrange method to solve the convex optimization problem with affine constraints, and 

obtain the distributed solution with convergence guarantee in the network with convex local cost. Y. 

Hu et al. [19] proposed A bi-directional graph neural network to solve arbitrary symmetric neural 

networks. U. P. Wen et al. [20] by dividing the application direction of HNN into three categories: 

linear, nonlinear and mixed integer, that we can better understand the application direction of HNN.  

As it is difficult for HNN to converge to an efficient solution when solving the TSP, an AALHNN 

was designed in this paper. Firstly, the TSP was converted into a neural network model to solve a 

constrained optimization problem. For the convenience of solving the TSP by AALHNN, some 

changes were made to the corresponding constraints and objective functions in this paper. Secondly, 

AALHNN made some amendments to the defect that HNN could not get an efficient solution when 

solving the TSP. That is, the stability of neural network was improved by adding a quadratic term to 

AALHNN and the effectiveness and convergence of the algorithm were theoretically proved. Finally, 

the effectiveness of the algorithm was verified by some experiments of solving the TSP by simulation. 

The rest of parts in this paper are included as follows. Part 2 is the model of the TSP to be solved. 

That is, the description of the problem model is illustrated herein. Part 3 refers to the dynamic iterative 

process of augmented Lagrangian neural network energy function and proves the convergence of the 

algorithm. A method based on nesterov technique is proposed to update the Lagrange factor which 

does not affect the convergence and robustness of ALHNN algorithm. Experimental process and data 

analysis and summary are provided in Part 4. Part 5 is the summary of this paper.  

2. Model of the TSP 

2.1. Problem description 

The TSP, i.e., the traveling salesman problem, is a classical combinatorial optimization problem. 

This problem is described as follows. Suppose a traveling salesman has to visit a number of cities, he 

needs to choose a travel path, the constraints on which are that every city must be traversed once and 

only once and final arrival city must be the departure one so as to guarantee the salesman’s profit. The 

ultimate goal of path selection is to obtain an efficient one, the total length of which should be the 

minimum among the all. For the salesman, the route length usually varies according to the sequence 

he chooses to traverse all the cities. For instance, the traversal length is different according to the two 

paths, i.e., A-H-G-F-E-D-C-I-B-A and A-H-G-F-E-D-C-B-I-A in Figure 1(a),(b), but both of them 

satisfy the constraints of the problem, which means they are both efficient solutions. When the number 

of cities is not great, the optimal path may be obtained by the method of exhaustion. Yet, when cities 

are considerable enough in number, the TSP is a typical NP-hard combinatorial optimization problem 

with the characteristic that it is always easy to describe but extremely difficult to solve to the extent 
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that the optimal solution often cannot be obtained. In such cases, an approximate optimal solution can 

be obtained only by heuristic algorithm. Among various intelligent methods for solving the TSP, there 

is no universal optimal solver for all problem instances. This fact greatly facilitates the selection of 

solution algorithm. Neural networks generate solutions by fully representing a graph with a set of 

coordinates followed by capturing graphic information from the coordinates. It is more convenient to 

apply the TSP model on any symmetric graph here in reality [21]. Therefore, solving the TSP by neural 

networks has been proved to have great potential [22]. Meanwhile, under appropriate parameter 

settings, the network can be made more competitive by using continuous HNN [23]. Therefore, in this 

paper, in addition to referring to the previous experimental parameters, some parameters were also set 

in a reasonable and independent way, thus making the augmented Lagrangian neural network algorithm 

designed herein for solving the TSP more stable and effective.  
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(a)                             (b) 

Figure 1. (a) travel paths a; (b) travel paths b. 

2.2. Mathematical model of the TSP 

When solving the TSP by neural networks, this problem can be regarded as a label assignment 

problem. Let  1, ,S m L  represent the set of m  element, and  1, ,Ml L  represent the set 

of M   cities, in which m M  . An M  -dimensional vector [ ( )| ]
i i
p p I I  l   is used to 

represent the assignment status of i S  . The actual value ( ) [0,1]
i
p I    reflects the status in 

which i   is assigned to label I  . The matrix [ ( )| , ]
i

p p I i S I   l   is the results of 

assignment.The Generative Adversarial Network (GAN) is composed of a generator and a discriminator.  
Initially, Hopfield and Tank [2] proposed the following energy function for the TSP of m  citie 
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where 
IJ

d  is the distance between city I  and city J , while A, B, C and D are some constants. 

Variable ( ) (0,1)ip I   represents the neural output of city I  at position i  (position 1m   is 

the same as 1). The relation between them and the internal variable ( )iu I   is
( )/( ) 1 / (1 )iu I T

i
p I e  , where T  is a parameter for temperature. When 0T  , all ( )ip I  are 

forced to take an extreme value. That is, the value of every ( )ip I  is 1 or 0. The first three terms on 

the right side of the equation are the constraints that generate effective travel paths and the last term 
determines the path length. The variable parameter is the solution to the TSP. HNN is the main neural 
network to solve combinatorial optimization problems. The structure of HNN uses three common 
methods i.e., penalty function, Lagrange multiplier, original method and dual method to construct the 
energy function. When the energy function converges to a steady state, the approximate optimal 

solution * arg min ( )
p

p E p  to this problem is obtained.  

When studying the equation above, Wilson and PawleyI [4] found that there is a probability that 

this energy function cannot get an efficient solution. The reason for this is that the equation above may 

obtain a local minimum, which corresponds to an invalid travel path. In order to solve this problem, 

Brandt et al. proposed a corrected energy function as follows: 
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          (2) 

Although this made it converge better to travel paths than the equation proposed by Hopfield and 
Tank does, the quality of these paths is inferior to that of the original paths. In terms of theoretical 
analysis, it is reasonable because HNN is a classic use of penalty method. In order to make the penalty 
method converge to a feasible solution, the weighting factor of the penalty term should be big enough. 
However, as the penalty term becomes stronger and the constraints on the original problem become 
relatively weaker, the quality of the solution is also deteriorating. Even worse is that as they become 
ever-greater, the problem itself becomes pathological accordingly. This is a dilemma in penalty method. 
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Therefore, neither of the above-mentioned methods can ensure that the solution obtained is an efficient 
and the optimal solution. The potential of HNN for solving combinatorial optimization problems is 
limited to some extent due to some of its own problems [24]. The AALHNN method designed herein 
helps the TSP converge to high-quality solutions by improving HNN by the augmented Lagrangian 
method. The TSP model in this paper is given in Eqs (3) to (5).  

In this paper, the TSP is established as HNN dynamic system model by the same steps as HNN:  

Step1: Each effective path of the TSP is extracted as a m*m-dimensional 0-1 digital matrix 

(commutation matrix). There is only one single 1 on each row and each column of the matrix while 

the others are 0. The length of each corresponding path should be calculated.  

Step2: The commutation matrix in Step1 is associated with a neuron network composed of N 

neurons, and each element in the matrix corresponding to each path is associated with the 

corresponding neuronal steady-state output. 

Step3: An energy function E should be found to solve the constrained optimization of the TSP. 

Step4: The moment the minimum value of energy function E is calculated, record the connection 

weight matrix of the neural network and the bias parameter of the neural network. 

The neural network designed by the steps above can solve the TSP. Then, the steady-state output 

of the network is the regional optimal solution to the TSP, and also the minimal point of the energy 

function [25]. Therefore, the extremum of the energy function can be obtained through the steady-state 

output obtained. At this moment, the search time for the neural network to reach the steady state is that 

for solving the TSP, and the calculating process is the iterative process of the dynamic equation of the 

neural network. Therefore, the objective function of an optimization problem needs to be at first 

converted into the energy function of the neural network, and the variables of the initial problem should 

correspond to the state of the network. In such cases, the combinatorial optimization problem TSP can 

be solved by HNN. 

2.3. Constrained minimization problem of the TSP 

Firstly, the original combinatorial optimization problem is modified to the following constrained 

minimization problem: 

   
1 1

1
min ( ) ( ) * ( ) ( )

2 IJ i i ip
i I J I

E p d p I p J p J
 



         (3) 

          ( ) 0 1,
k

subject to C p k K  L  (4) 

( ) 0 ,
i

p I i S I     l                            (5) 

where ( )E p  is the objective function of the total length of the travel path, K  is an integer, 
k

C  is 

some real functions and the constraint is that the value should be 0. The final solution 
k

p  will be 

subject to additional constraints: 

*( ) 0 1 ,
i
p I or i I                               (6) 



3433 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3427-3448. 

( )kC p  in Eq (4) is the following equality constraint:  

 
1
( ) ( ) 1 0i

i
I

C p p I i                            (7) 

 
2
( ) ( ) 1 0I

i
i

C p p I I                            (8) 

 ,

3
( ) ( ) ( ) 0 ,i I

i j
j i

C p p I p I i I


                       (9) 

 ,

4
( ) ( ) ( ) 0 ,i I

i j
J I

C p p I p I i I


                        (10) 

 ,

5
( ) ( )(1 ( )) 0 , .i I

i i
C p p I p I i I                       (11) 

 22 2 * * 3 2K m m m m m m m                         (12) 

Therefore, there is a total of a number of (K ) equality constraints. They can be classified into 

three categories: the first category includes terms 1
C  and 2

C , the second does terms 3
C  and 4

C , 

and the third does term 5
C  . In this paper, when solving the objective function Eq (3) by the 

AALHNN method, the function C  was not simply added to the path length function as a penalty 
term. Instead, an augmented constraint optimization term was combined to form an augmented 
Lagrangian function. 

3. Solving the TSP by the ALHNN algorithm 

The approximate optimal solution of the TSP was obtained by the ALHNN algorithm. The basic 
structure of neural network is to multiply the output of each neuron by some weights and then send 

it to the input end of other neurons, thus forming a total feedback structure [26]. The way how 
algorithm works is as follows. The objective function and constraints of the TSP are mapped to 
energy functions (e.g., Eqs (3) to (5) in Section 2.3) of a Hopfield model, Iterative updating of neural 
network by AALHNN. When the iterative convergence of the network reaches a certain stable 
solution, the energy function reaches some local minimum value. After these local minima were 
determined to meet the conditions for the approximate optimal solution, a solution that meets the 
conditions was obtained, i.e., the approximate optimal TSP path. 

The algorithm flow chart is as follows: 
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Figure 2. Flowchart of augmented Lagrangian Hopfield neural network. 

3.1. Solving the minimum constraint by the Lagrangian neural network 

Like the method proposed by Hopfield, the internal variable ( ) ( , )( , )iu I i I      was 

introduced and associated with ( )
i
p I  through Eqs (13) and (14).  

 ( ) ( ( ))
i T i
p I u I                                (13) 

( )
T
x  is a Sigmoid Function controlled by the temperature parameter 0T  .  
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 /( ) 1 / [1 ].x T

T
x e                             (14)  

Because of the internal variable introduced u , the energy function ( )E u  could be regarded as 

( ( ))E p u  . This method made the value of ( )ip I   within the range of (0,1), which satisfies the 

condition of Inequality Constraint Eq (5). Equality constraint Eq (4) was added to the Lagrangian 

function by the Lagrangian multiplier method. When 0T  , the value of ( )ip I  will be 0 or 1 

(depending on the positivity or negativity of ( )iu I ), which meets the condition of constraint Eq (6). 

Finally, the following Lagrangian function was defined:  

( , ) ( ) ( )
k k

k

L p E p C p                             (15) 

where, k is a Lagrangian multiplier. The complete Lagrangian function of equality constraints 

Eqs (7) to (11) for solving the travelling salesman problem (TSP) is:  

 

5
,

1 1 2 2
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( , ) ( ) ( ) ( ) ( )
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i i I I i i I
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i I i I k
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L p E p C p C p C p

C p

   


   



  
        (16) 

This function is composed of 2m  p  variables and number of K    variables. Since *p  

is the local minimum solution, * *( , )p   must be the stable point of the Lagrangian function, and 

therefore, 

 

* *

* *

( , ) 0

( , ) 0

p
L p

L p






 

 
                              (17) 

Now * *( , )p   satisfies 

 * * * *( , ) ( , ) ( , )L p L p L p                          (18) 

The gradient (first derivative) value of the objective function at this point is 0, but one direction 
starting from the change point is the maximum point of the function, and the other direction is the 
minimum point of the function. This point is defined as the saddle point. 

It can be seen from Eq (18) that when p  is constant, ( , )L p   takes the maximum value when 

   = *  , and when    is constant, ( , )L p    takes the minimum value when p  = *p  .That is,  
* *( , )p  is a saddle point.  

Therefore, when we know the value of * , we find *p , and when we find *p , the value of *  

can also be obtained. This means that robustness of Lagrange algorithm is very strong. Augmented 
Lagrange has better robustness and convergence. It is more suitable for equality constraints. For 
inequality constraints, we need to deform the problem to obtain the intermediate variables, and then 
discuss and solve the intermediate variables. 
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According to Eq (18), if * *( , )p   is a saddle point of ( )E p , it can be seen from Eq (17) that 

* *( , )p   meets the condition of being the minimum constraint of the Lagrangian function, and thus 

* *( , )p   is a local minimum point of Lagrangian Function Eq (16) [27].  

Such a saddle point can be found by solving the following kinetic equation by a basic 

differential multiplier:  

 
( ) ( , )

( )
i

i

dp I L p

dt p I


 


                            (19) 

 
( , )
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k

d L p

dt

 




 


                            (20) 

Such an equation causes energy to fall as p  goes up and rise as   goes up. This process will 

be analyzed in detail in Section 3.2.  

3.2. Proof of convergence of the augmented Lagrangian neural network algorithm 

Lagrangian function Eq (16) could be augmented into the following augmented Lagrangian 
function by adding a penalty term 2[ ( )]

k
C p :  

 
21
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2k k k k

k k
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

                   (21) 

where, 0k   is a penalty factor.  

The kinetic equation used to find the saddle point was changed to: 
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This dynamic equations corresponds to the improved differential multiplier. ( )ip I   and k
  

represent the state variables of corresponding neurons. The neurons in the neural network model were 
classified, according to the different functions of the variables in the neural network model, into two 

categories, i.e., Lagrangian neuron k
   and variable neuron ( )

i
p I  . It can be seen from the state 

equation of neural network model (22) that k
  made the trajectory of the network fall into the feasible 

region; and ( )
i
p I  reduced the Lagrangian function and made it always decrease with ( )

i
p I  and 
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increase with k  along the trajectory of the neural network model. Finally, when the neural network 

model iterated to the steady state,the stable point * *( , )p   satisfies Eq (23),  

 * * * * * *( , ) ( , ) ( , )
| * | * | 0
p p p

dL L dp L d

dt p dt dt  





 
  
 

            (23) 

In the above Eq (23), * *( , )
|
p

dL

dt 
means the sum of the results after partial derivation of p  and 

  respectively[28], In other words, the stable point of neural network model (22) is the stable point 
of the Lagrangian function we constructed. Equation (23) represents the sum of two partial derivatives 
are equal to zero. Because dynamic equations corresponds to the improved differential multiplier, So 
the differential of L over t is equal to the partial derivative of L at point P Plus the partial derivative of 
L at point R. 

Lemma 3.2.1. If the following equation is satisfied, * *( , )p   is an equilibrium point of neural 

network model (22).  

* *

* *

( , ) 0

( , ) 0.

P
L p

L p






 

 
                      (24) 

Theorem 3.2.1. If and only if * *( , )p   is an equilibrium point of neural network model (22), 
* *( , )p  is a saddle point of the Lagrangian function Eq (21). 

Proof: If * *( , )p    is a saddle point of the Lagrangian function Eq (21),Then according to 

Lemma 3.1.1, *p  is a local minimum point of nonlinear programming problem Eq (21). Therefore, 

when * *( , )p   is a saddle point of the Lagrangian function Eq (21), * *( , )p  is an equilibrium point 

of neural network model (22). If * *( , )p    is an equilibrium point of neural network model (22), 

according to the analysis of the state equation of neural network model (22), the equilibrium point 
* *( , )p   is a saddle point of the Lagrangian function. The theorem is thus proved.  

Theorem 3.2.2. If * *( , )p   is an equilibrium point of neural network model (22), the neural 

network model (22) is stable at point * *( , )p  .  

Proof: The energy function that constructs neural network model (22) is  

 
221 1

( , ) ( , ) ( , )
2 2P

E P L P L P


                       (25) 

The differential of the energy function with respect to time t  is 
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d
L p L p L p L p
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 

  





   


   

  

 
 
 

     

     

   

            (26) 

The following conclusion can be drawn from the stability theory of Lyapunov:  
1) If 2 ( , )

pp
L p    is positive definite, the differential of the energy function with respect to t   is 

0
dE

dt
 . Therefore, the neural network model is asymptotically stable at point * *( , )p  .  

2) If 2 ( , )
pp
L p   is positive semi-definite, the differential of the energy function with respect to t  

is 0
dE

dt
 . Therefore, the neural network model is stable at point * *( , )p  .  

Since * *( , )p    is an equilibrium point of neural network model (22) and satisfies 

( , ) 0pL p    , the differential of the energy function with respect to t   at point * *( , )p    is 

0
dE

dt
 . Therefore, the conclusion above shows that the neural network is stable at point * *( , )p  . 

That is, the algorithm converges at this point.  

The quadratic term introduced 
2

[ ( )]
k k

k

C p  does not affect the position of the saddle point 

because of [ ( )] 0kC p  , and the quadratic term plays a role in stabilizing the system [29]. The penalty 

term is necessary for resisting the oscillations of the standard Lagrangian method and can improve the 
convergence performance of numerical calculation.  

3.3. Process of accelerate augmenting the Lagrangian neural network algorithm 

In the augmented Lagrangian multiplier method, the label assignment object changed from p  to 

u ; and neural network model (22) was replaced with  

 
( ( ), )( ) ( )

( ) ( )
i i

i i

L p udu I p I

dt p I u I


 
 

 
                      (27) 

It is noticed that  

 
( )/

( )/ 2

( )
0

( ) (1 )

i

i

u I T
i

u I T
i

p I e

u I T e






 

 
                     (28) 

Hence u  was updated with  
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( ( ), )( )

.
( )

i

i

L p udu I

dt p I



 


                         (29) 

In the TSP, the energy gradient in neural network model (22) is:  

 
1 1

[ ( ) ( )]
( ) IJ i i

J Ii

E
d p J p J

p I  



 


                  (30) 

There are (n=) K  Lagrangian multipliers   in the second term of neural network model (22); 

and the value of K  is given in Eq (12). There are three different types of constant k , which adapt 

to constraints Eqs (7) to (11) [30]. The neurons corresponding to travel paths are composed of 2m  

( )ip I  neurons. These neurons are associated with internal variable u  through Sigmiod Function. 

Meanwhile,an additional number of 25m m    neurons for the Lagrange multipliers. 

The tradition ALHNN algorithm realizes the kinetic processes described in Eqs (14), (22) and (30) 

in the following order as a whole:  

( 1) ( ) ( ) ( ) ( )

( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( )

t t t t ti i
i k k k t

k ki i

C p C p
u I u I q I C p

p I p I
  
   

    
   

      (31) 

 ( 1) ( 1)( ) ( ( ))t t

i T i
p I u I                           (32) 

 ( 1) ( ) ( 1)( ).t t t

k k k k
C p                           (33) 

Where,   is the step length factor. During the update, T  may decrease and k  may increase to 

increase the convergence rate. All i  and I  were synchronously updated. The ALHNN algorithm is 
better than the genetic algorithm (GA) because it does not need the normalized operation required by 
the GA, which is more convenient for conducting a simulation experiment [29]. The convergence rate 
of ALHNN is (1 / )O k . 

In the experiment, we found that the iterative speed of ALHNN is too slow. This is because 
although ALHNN is globally convergent. Therefore,Using nesterov acceleration technique, we can 
obtain the following AALM (acceleration of augmented Lagrangian method) iterations. 

 ( ) ( ) ( 1)( )t t t
k k kC p                          (34) 

( 1) ( ) ( ) ( 1) ( ) ( )1 1
( ) ( ).

2 2
t t t t t t

k k k k k k

t t

t t
       

    
 

             (35) 

Among them, 

 (1) (0)

k k                                  (36) 
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The convergence rate of AALHNN by nesterov acceleration technique is 2(1 / )O k  [31], 

Compared with the traditional ALHNN, it improves ALHNN’s convergence speed. 

Remarks: In the above proof process, the dynamic model is required to be a convex function [31], 
which has some good properties: 
1) The feasible solution set is a convex set; 
2) Any local optimal value of the objective function in the definition domain must be the global 
optimal solution; 
3) The set of optimal solutions is convex (when the optimal solution exists); 
if the programming problem to be solved is a nonconvex function, AALHNN probably not suitable. 

The model in this paper is Minimized Energy Function ( )E p . If Maximized Function ( )F p  

needs to be solved in some cases, simply ( ) ( )E p F p  , then the same renewal equation is used.  

With the output to TSP written below, and constraints Eqs (7) to (11) as the constraints on the 

problem, the following augmented Lagrangian algorithm process could be obtained:  

 

1

( ) ( )

1 1 ( ) ( )

( ) ( )

1
[ ( ) ( )]

2( ) ( )

i i

t t
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       (37) 

 ( ) ( 1)

1
( ) ( ( ))t t
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
                            (38) 
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1 1
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
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 
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             (39) 

In Eqs (37) to (39) above,   is the step length constant; D  is the weighting constant; T is the 

temperature constant;   is a non-decreasing factor of penalty term; and the two partial derivatives in 

neural network model (22) are  

( ) ( )( ) ( ) ( )
1 3, , ,

2 4 5
( ) ( ) (0.5 ( ))

( )

t tt t ti i II i I i IL
j j i

j i J Ii

E
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 


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    (40) 
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


    



   

  


      (41) 

Equation (40) is the partial derivative of Lagrangian multipliers; and Eq (41) is the partial 

derivative of penalty terms. Here constant k
  is uncorrelated to i  or I .  

The system of dynamic equation with respect to variable u  in [4] is 
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The p u  relation is 

 
( 1)

( 1)

[ ( ) 0.5]/

1
( ) .

1
t

t

i u I T
p I

e




 



                      (43) 

( 1)( )t

i
u I  in Eq (43) shifted by 0.5. In this algorithm, i  and j  were synchronously updated.  

4 Simulation experiment 

4.1 Setting the experimental process 

Experimental parameters were set as follows: 

6 7

1 2 3 4 5
100, 1, 0, 10 , 10 , 100.D T                      (44) 

Since paths were closed, the city visited first was set as 1I   . Updated the algorithm 
parameters when , 2, ,i I m L . During each operation, the initial value of variable p  was that 

recommended by Brandt as below.  

 (0)( ) 0.5 , 2, ,
i
p I i I m   L                   (45) 

  was a value randomly taken from the uniform distribution 6 6[ 10 ,10 ] ; and variable (0)u  was 

determined by the respective u p  relation [31]. Finally, in the augmented Lagrangian multiplier, 

the Lagrangian multiplier (0)

k
  was set to 0.  

If the following three conditions are met, the iterative process is deemed convergent. Here it was 

set to solve the termination condition.  

 ( ) ( 1) 0.01 /t tp p m


                           (46) 

 

( ) 1 0.01

( ) 1 0.01

i
I

i
i

p I

p I

 

 




                            (47) 

 1 ( ) 0.01 ( ) 0.01.
i i

p I or p I                      (48) 
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Equation (46) ensures that the final state is stable, Eq (47) ensures the feasibility of the process; 
and Eq (48) indicates that the process is definite and that the value of p  is 0 or 1. The experiments 

that cannot meet these conditions during the experiment iteration are deemed invalid.  

4.2 Solving the TSP by the simulation experiment 

In order to verify the actual application effect of the proposed AALHNN, the effect of the 
AALHNN was compared with that of the traditional Hopfield neural network (HNN) on the same TSP 
by pathfinding simulation, with a group of random paths set as a reference for the two algorithms. The 
number of cities was set to 8, 10,12 and 15, respectively. The coordinates for solving the TSP for 15 
cities are listed in Table 1 and the TSP of the number of other cities takes the coordinates of the previous 
corresponding number in the Table 1. Such data can be easily modified in the running code when 
solving practical problems.  

Table 1. Coordinate of 15 citys. 

Number X Y 

1 0.4000 0.4439 

2 0.2439 0.1463 

3 0.1707 0.2293 

4 0.2293 0.7610 

5 0.5171 0.9414 

6 0.8732 0.6536 

7 0.6878 0.5219 

8 0.8488 0.3609 

9 0.6683 0.2536 

10 0.6195 0.2634 

11 0.4125 0.4941 

12 0.8251 0.7407 

13 0.2551 0.8300 

14 0.9646 0.9132 

15 0.8884 0.5944 

The experimental environment is Intel(R) Core(TM) i7-7500U CPU, 8 GB memory, Geforce 940 
MX, Windows 10 operating system, The simulation code of the AALHNN in this paper was solved by 
matlab 2016 b, while the codes of the HNN and random paths were compiled and solved by Phthon 3.7. 
Since there is a difference in the solving efficiency between the two languages, the solving time was 
not added as a performance comparison indicator for the two algorithms. The final pathfinding 
compare results are listed in Table 2. The experimental data settings are provided in Section 4.1. 

Figure 3 shows that the HNN may generate a trivial solution due to its limitations; and according 
to the statistics by multiple experiments, the solution success rate is about 80% when the city number 
of TSP is 10 and will decreases to about 71% when the city number of TSP is 15. And under the same 
circumstances AALHNN can always solve TSP as long as the number of cities of TSP is reasonable. 
Therefore, experiments show that the AALHNN can jump out of the local optimal solution for the 
same problem and get a better solution result. 
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Figures 4 to 7 show the solution path diagrams of the three algorithms when the city number of 

TSP is 8, 10, 12 and 15, respectively. It can be seen from these figures that when the number of TSP 

cities is certain, the AALHNN solution result is better than HNN, and the two algorithms have great 

path length optimization compared with random paths, which means that AALHNN has certain 

application effectiveness and novelty. 

  

Figure 3. HNN Invalid optimization path for 10 citys and 15 citys. 

    

Figure 4. Comparison of TSP paths obtained by three methods in 8 cities. 

   

Figure 5. Comparison of TSP paths obtained by three methods in 10 cities. 
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Figure 6. Comparison of TSP paths obtained by three methods in 12 cities. 

   

Figure 7. Comparison of TSP paths obtained by three methods in 15 cities. 

Table 2. Comparison of TSP solutions of three methods. 

City number 

method 

8 10 12 15 

AALHNN 2.6853 2.6907 2.7174 3.4019 

HNN 2.6907 2.7782 3.7987 5.4106 

Random Path 3.6115 3.6088 5.1849 7.7740 

It can be seen from Table 2 that the results obtained by AALHNN change little when the number 
of TSP cities increases. However, the results obtained by HNN begin to deform when the number of 
cities increases to 12, and the TSP path length increases greatly at this time. This reflects the robustness 
of AALHNN. Of course, from Figures 3 to 7, it can be seen that the results of the two neural networks 
are more optimized than the random path. 

From Figure 8(a) it shows the comparison of the effective solution path length obtained by the 
three methods for TSP with different number of cities. It can be seen from the figure that the result 
obtained by AALHNN is better than that obtained by HNN, and from the simulation experiment, the 
success rate of AALHNN is 100%, which is greatly optimized compared with HNN. It is worth noting 
that the path length obtained by AALHNN is not optimized compared with ALHNN This is because 
the acceleration technique in this paper only improves the convergence rate of ALHNN, which can be 
seen from Table 3. 
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(a)                                      (b) 

Figure 8. (a) The results of solving TSP by three methods; (b) Time comparison of 
ALHNN and AALHNN. 

Table 3. Comparison of performance for the 15-city problem. 

 Rate of solving feasible solution Convergence speed of algorithm 

HNN 71.43% fast 

ALHNN 100.00% slow 

AALHNN 100.00% fast 

Figure 8(b) shows that the method of updating Lagrange factor by using the acceleration 
technique of Eq (39) can greatly improve the convergence speed (repeat the experiment 50 times for 
each coordinate and take the average value) of ALHNN. Table 3 shows that AALHNN improves the 
convergence rate compared with ALHNN, while AALHNN and ALHNN greatly improve the 
probability of obtaining feasible solutions compared with HNN. 

4.3 Result analysis 

Tables 2 and 3 show that the length of random TSP paths was greatly optimized by the HNN. 
However, according to Figure 3, the HNN has a probability of not finding the efficient solution. 
Moreover, the AALHNN and ALHNN ensures better results when solving the TSP than the HNN, and 
greatly improves the solution success rate. It can be noticed that the solution success rate by the HNN 
decreases as the number of cities increases. The reason is that with the increase in the number of cities 
in the TSP, there’s more probability of obtaining a trivial solution as the corresponding HNN equation 
gets stuck in the local minimum. It can also be noted that AALHNN greatly improves the convergence 
rate of ALHNN.The following conclusion is made based on the above simulation experiment and its 
analysis: the proposed AALHNN has better solution lengths and success rates than the HNN,and also 
has better solution convergence rate than ALHNN. 
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5 Conclusions 

Based on the basic HNN, an accelerated augmented Lagrangian method was proposed in this 

paper to solve the TSP. The innovation of this paper is from the existing literature, the paper found that 

the HNN may not always generate an efficient solution when solving the TSP (i.e., the shortcoming of 

the penalty method), but the AALHNN can overcome the shortcoming. The AALHNN introduces 

Lagrangian multipliers to solve the function and introduces quadratic terms to augment the Lagrangian 

function, providing greater convergence stability, And an iterative method based on nesterov 

acceleration technique is proposed to update the Lagrange factor. In this paper, the convergence of the 

AALHNN was theoretically proved. Besides, the performances and success rates in solving the TSP 

were compared between the HNN and AALHNN by a simulated program. It is concluded that the final 

solution length is shorter than HNN, and the solution success rate is greatly improved. It was found in 

experiments that the efficiency of solving the TSP by the AALHNN decreases with the increase in the 

number of cities. The reason is that when the number of cities increases, the equations with Lagrangian 

multipliers become more complex; the algorithm iteration becomes more difficult; and the amount of 

calculation also soars. As a result, the efficiency of obtaining efficient solutions decreases. Therefore, 

the next research direction should be expanding the application scope of the AALHNN by simplifying 

the equations. 
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