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Abstract: Smart meters allow real-time monitoring and collection of power consumption data of a
consumer’s premise. With the worldwide integration of smart meters, there has been a substantial
rise in concerns regarding threats to consumer privacy. The exposed fine-grained power consumption
data results in behaviour leakage by revealing the end-user’s home appliance usage information. Pre-
viously, researchers have proposed approaches to alter data using perturbation, aggregation or hide
identifiers using anonymization. Unfortunately, these techniques suffer from various limitations. In
this paper, we propose a privacy preserving architecture for fine-grained power data in a smart grid.
The proposed architecture uses generative adversarial network (GAN) and an obfuscator to generate a
synthetic timeseries. The proposed architecture enables to replace the existing appliance signature with
appliances that are not active during that period while ensuring minimum energy difference between
the ground truth and the synthetic timeseries. We use real-world dataset containing power consumption
readings for our experiment and use non-intrusive load monitoring (NILM) algorithms to show that our
approach is more effective in preserving the privacy level of a consumer’s power consumption data.
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1. Introduction

Over the past decade, advances in the industrial and social sectors have drastically increased the
demand for energy consumption. For example, Energy International Agency (EIA) projects a nearly
50% increase in world energy usage by 2050, led by growth in Asia from 2018 to 2050. The buildings
sector, which includes residential and commercial infrastructure, is estimated to increase by 65% in
energy consumption between 2018 and 2050 i.e., from 91 quadrillions to 139 quadrillions British
Thermal Unit (BTU) [1]. The global CO, emission will increase more than double by 2050 while
the global investment in electrical grid infrastructure is estimated to be around $6 trillion by 2030 [2].
To meet this ever-increasing demand for energy supply, the need for efficient use of energy resources,
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reduced carbon emission, and integration of multiple sources of renewable energy, required a new
electrical grid to incorporate the digital and computing technologies to automate and manage the energy
supply needs of the 215t century.

A smart grid is an electrical network that integrates information and communication technologies
for efficient distribution and consumption of energy resources. The integration of various communi-
cation and data processing capabilities transforms the traditional electrical grid into a revolutionized
power system, enabling information flow between different entities such as metering, substations, dis-
tributions, transmission, and generation [3]. With this increased availability of communication and
computing resources, the smart grid has enhanced benefits and potential unknown to the traditional
electrical network. For instance, a smart grid with its broad range of grid-side and consumer-side ap-
plications, enables monitoring of energy consumption data, demand response, dynamic pricing, and
different information messages via its smart infrastructure. It also enables collecting and processing
various types of energy related data through its smart infrastructure consisting of different entities such
as grid sensors, wide-area monitoring, distribution energy management systems, etc. [4].

One such important asset of the smart grid is known as Advanced Metering Infrastructure (AMI).
The AMI is made up of a set of smart meters, communication modules, local area network (LAN),
data concentrator (DC), wide area network (WAN), software, and hardware of central system [5]. The
AMI allows two-way communication between the consumer’s smart meter and the energy supplier
for measuring periodic or on-demand fine-grained energy consumption data. This fine-grained energy
consumption data as feedback helps reduce cost and reduce consumption by up to 20% through efficient
energy management. The European Parliament and Council of the European Union has taken one such
initiative under the EU Directive 2006/32/EC to provide accurate measuring and actual “time of use”
of energy consumption to the energy consumers [6].

While such detailed energy consumption feedback benefits economically and ecologically for in-
volved stakeholders, smart meters allow massive energy information flow between consumers and
suppliers, causing a potential threat to consumers’ privacy. This sensitive energy information in col-
laboration with algorithms such as NILM [7], can help third parties deduce a consumer’s daily routine,
appliance usage, working hours, meal hours, occupants present on premises or any medical equipment
in usage and even living habits such as the time when TV is watched.

In 2009, the Federal Bureau of Investigation’s Cyber Intelligence investigated a widespread incident
of power theft related to smart meters. It was found that the miscreants hacked in to the smart meters
and reprogrammed the power consumption settings, resulting in a loss of $US 400 million annually for
the Puerto Rico utility [8]. Furthermore, in 2007, the Austin Energy/Austin Police conducted a warrant-
less surveillance program where consumer usage information was provided to find marijuana growing
operations. Furthermore, law enforcement agencies might use the data as real-time surveillance [9].
Figure 1 shows how NILM enables the identification of individual appliances using various machine
learning algorithms from a single aggregate power consumption reading of a consumer’s premise. Var-
ious entities such as law enforcement agencies, marketing agencies, and malicious users may misuse
this fine-grained data to profile a consumer and jeopardize their privacy or to achieve unfair business
strategies.

Recent research findings [3] on various privacy-preserving schemes and their implementation con-
clude that there are some practical limitations of the existing approaches: first, noise added through
various noise distribution techniques do not considerably affect the identification of appliances; second,
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the effectiveness of these approaches is quantified using information-theoretic metrics and not NILM
algorithms; and finally, various auto-encoders and filters can be used to denoise a time series.

This paper solves these problems by proposing a privacy-preserving architecture that combines an
obfuscator and GAN model to generate a synthetic time series that is close to the real time series.
The proposed privacy preserving architecture enables a consumer to obfuscate the power consumption
data to help prevent NILM algorithms from inferring the active appliances. Thus preventing consumer
profiling and preserving privacy. We evaluate our approach using the widely accepted NILMKTK [7]
framework and publicly available datasets such Dutch Residential Energy Dataset (DREDD) [10].
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Figure 1. Appliance disaggregation from a single point of measurement of power i.e. aggre-
gate reading using NILM algorithms to predict the appliance activity [11].

1.1. Contribution

In this paper, we propose a novel privacy-preserving architecture that will generate a synthetic time
series yielding the following contributions:

1. We develop a privacy-preserving architecture to preserve the privacy of consumer activity de-
duced through disaggregation algorithms. The architecture identifies the inactive states and gen-
erates state combination close to the total aggregate power consumption.

2. We propose a novel hybrid privacy approach to generate indistinguishable synthetic time series
data. The proposed approach hybridizes the strength of the generative adversarial network (GAN)
with NILM in an adaptive manner. In this work, we develop an obfuscator model that generates
the combination of the appliance’s inactive state for GAN discriminator. A customized generator
model is devised to produce a various robust combination of states of appliance signatures.

3. We evaluate and quantify the effectiveness of our privacy-preserving architecture by performing
disaggregation on the synthetic time series generated by our architecture using NILM algorithms.
We show that the disaggregation results are distinguishable from the real dataset using the MEC
metric.
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2. Motivation and related works

The Privacy Impact Assessment (PIA) was a comprehensive process of determining the privacy,
confidentiality, and risk involved with data collection in the smart grid. Revealing information about
residential consumers and activities within the house was one of the concerns reported by the privacy
sub-group of the Cyber Security Working Group [12].

In 2009, the FBI Cyber intelligence investigated a wide spread incident of power theft related to
the smart meters. It was found that the miscreants hacked into the smart meters and reprogrammed the
power consumption settings resulting in a loss of $US 400 million annually for the Puerto Rico utility.
Furthermore, in 2007, the Austin Energy/Austin Police conducted a warrantless surveillance program
where consumer usage information was provided to find marijuana growing operations. Besides this,
law enforcement agencies might use the data as real-time surveillance [3].

Although NILM enables efficient use of power consumption, it however, presents severe privacy
concerns. The appliance usage inference from a NILM algorithm can be related to the daily routines
i.e., behavioral patterns of a household or the presence of a number of individuals in a premise. Such
sensitive data helps a malicious user build a detailed profile of consumer behavior in a premise and
provide a basis for forecasting a premise activity such as when the premise was unattended, work
schedules, and other personal activities. Furthermore, marketing agencies can use this data to carry
out a targeted advertisement for devices not owned by consumers or for mass surveillance by law
enforcement agencies. The potential privacy concerns and usage of data makes it a valuable target for
data thieves.

Several privacy-preserving approaches have been proposed and used by researchers. We have per-
formed an extensive literature survey on privacy-preserving schemes [3] and we have presented some
state-of-the-art approaches proposed by researchers in this section.

Battery-based load hiding (BLH) approach uses a battery i.e., rechargeable, to partially supply the
energy demand to manipulate meter reading to hide the actual energy consumption. [13] proposed a
reinforcement learning (RL) based BLH approach to preserve privacy for high-frequency and low-
frequency variation data. The RL-BLH algorithm learns a decision policy for choosing pulse magni-
tudes on the fly without prior knowledge of usage patterns and uses artificially generated data to reduce
the time taken to converge to an optimal policy. However, reinforcement learning does not estimate the
actual input/output characteristic but only the desired probabilistic behavior. [14] proposed a scheme
to address the smart meter (SM) privacy concerns using renewable energy sources (RES) and a bat-
tery to partially hide the consumption pattern from the utility provider. The proposed scheme uses
an information-theoretic approach to minimize leakage of consumer’s energy consumption data to the
utility provider as well as the energy generated by the RES. However, renewable energy is wasted when
the battery is maximally charged or the required energy load is smaller than the generated energy.

Data obfuscation provides a unique opportunity to mask the original energy consumption data by
applying random noise [15] or by using an appropriate algebraic transformation on the fine-grained
energy usage data [16]. [17] proposed a utility-privacy tradeoff scheme based on random data obfusca-
tion. In the proposed scheme, random data-obfuscation generated by the Laplace distribution is used to
mask the real-time data. The proposed scheme also has a Key Initialization Centre (KIC) to initialize
keys to smart meters and control centre and has a higher error rate. Furthermore, KIC uses Paillier
encryption for generating encryption parameters, which is computationally expensive.
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Data anonymization allows to disassociate the customer identity from its energy consumption data
while utilities receive enough information to compute the required information. These approaches
allow the implementation of additional trusted infrastructure. [18] proposed an authentication frame-
work based on anonymization to protect unauthorized data access and achieve privacy. The framework
is designed to prevent service providers from correlating various types of data from a smart meter
and avoid a single point of failure. The scheme does not consider the trustworthiness concern of the
Anonymizer (AN), Electricity supplier (ES), and the Data Collector (DC) colluding. [19] proposed a
privacy-preserving approach based on pseudo-identity. The approach uses a hash tree-based mecha-
nism to achieve data integrity. However, the approach does not prevent insider attacks. Furthermore,
anonymization techniques have previously failed on multiple occasions [20,21], and the data was traced
back to individuals.

In data aggregation, network aggregators are used for concatenating and summarizing data packets
from various devices using functions such as sum or average. [22] proposed Integrated Authentication
and Confidentiality (IAC) protocol to provide efficient and secure AMI communications. The scheme
uses hop-by-hop data aggregation and a forwarding approach between the intermediate nodes. The
proposed approach does not consider the malfunctioning of intermediate nodes and is also vulnerable
attack such as replay attack and forgery attack. [23] proposed a secured privacy-preserving protocol
for smart metering systems using multiple gateways for aggregation using a cluster approach. The
proposed protocol uses Fully Homomorphic Encryption (FHE) with a randomly generated polynomial
(secure MPC) to secure the data. The encrypted data is aggregated using a hierarchical manner and
without revealing the actual meter readings. However, FHE requires a lattice-based cryptosystem,
which is very complex. Thus, implementing a lattice-based cryptosystem requires significantly high
and complex computations and ciphertext sizes.

Differential Privacy is another related privacy concept based on privacy-preserving data mining.
The privacy mechanism adds controlled noise to the requested data before being released. [24] use
the Laplace mechanism to hide the consumer’s power consumption data in smart meter data sets,
achieving e-differential privacy. [25] uses a differential privacy approach by using household batteries.
The battery recharges/discharges power in a bid to hide the original power consumption data. The
addition of the noise depends on & and the sensitivity function. The lower the value of € is chosen,
the privacy risk is low. However, choosing a suitable value for € poses a difficult challenge, as it may
significantly decrease the utility of the data. Furthermore, it is challenging to input a differential privacy
based dataset to a complex optimization algorithm which may lose the practicality of the original power
consumption dataset [26].

3. Background
In this section, we introduce the technological concept related to this work.

3.1. Generative adversarial network

GAN:Ss are deep generative models [27-29] used to produce synthetic images and text. The GAN
consist of a generator (G) and a discriminator (D), which compete in a two-player min-max game V
(D, G). The G learns a mapping G(z) that tries to map the random noise vector z to a realistic time
series. The D tries to find a mapping D(x) that tell us the input data’s probability of being real. This is
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achieved by minimizing/maximizing the binary cross-entropy [30]:
ming maxp V(G, D) = Ex paara(op[l0gD(x) +E; j )[log(1 = D(G(2)))] (3.1

A simplified explanation of the Eq (3.1) is that the generator is trained to produce fake samples
while the discriminator is trained to identify the synthetic of fake samples. A competition between
the generator and the discriminator helps them improve their methods until the synthetic data is not
distinguishable from the real data samples.

Algorithm 1 shows the training process for the generator model G of GANs. D and G are a neural
network which try to maximize and minimize the objective, respectively. In other words, the objective
of the generator G is to produce fake or synthetic data while the discriminator D is responsible for
detecting the fake data samples. The feedback enables the D and G to improve their functions until the
synthetic samples are indiscernible from the real data [31].

Algorithm 1 Training Algorithm of GAN
Input: Real samples { x, x; ...x; } p(x)
Output: A Generative Model G

1: G « a generative neural network

2: D « a discriminator neural network

3. while until convergence of loss values do

4:  Create mini-batch of real samples X={x;, x, ...x,}

5:  Create set of latent vector inputs Z={z;, 25 ...Z,,}

6:  Train the discriminator D by maximizing equation 3.1
7. Train the generator G by minimizing equation 3.1

8: end while

9: return G

3.2. Non-intrusive load monitoring

NILM consists of machine learning algorithms that infer end-user appliances running in a con-
sumer’s premise from an aggregate power consumption obtained from a single point of source such
as the smart meter. Given a smart meter, there exist an aggregate power consumption time series P =
{p1,p2s...p} fortime T = {1,2,3,...t}. The NILM infers the power consumption yﬁ of appliance i €
{1,2,3... M} of M active appliances such that

Pr=3YY 39400 (3.2)

where o (¢) represents unaccounted power or noise.

3.3. Multi-State Energy Classifier metric

The Multi-State Energy Classifier (MEC) metric combines both event classification and energy
estimation of an appliance state to give a more realistic and accurate evaluation of the performance of
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the existing NILM techniques [32]. The MEC metric consist of three steps namely; calculating the
classification accuracy, the energy estimation accuracy and the total penalty of the operational states
of an appliance. We choose the MEC metric to measure the accuracy of the NILM algorithms for
the following reasons: the MEC accurately classifies multiple states of an appliance, quantifies the
accuracy even for values that are too far from the original ground truth. Also the metric does not
exceed the usual accuracy interval of O and 1 for relatively large errors.

4. Proposed privacy preserving architecture

In this section, we introduce the security and privacy concern that will be addressed and the overall
workflow of the proposed privacy-preserving architecture. We also present the hybrid-GAN, as shown
in Figure 2. Figure 2 illustrates the overall architecture, which comprises of three important steps
detailed in following subsections.
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Figure 2. An overview of the proposed architecture to preserve the privacy of the energy
consumption data of the consumer.

4.1. Privacy concern

We address the following privacy and security concern in this paper: infer the use of the individual
appliances using a NILM algorithm from an aggregate power consumption reading i.e., consumer
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profiling. Since our privacy-preserving architecture generates a synthetic time series based on the
inactive states during a given time period 7, it is strong against appliance inference via NILM. Unlike
noise addition techniques, the hybrid-GAN effectively reduces the appliance detection accuracy and is
immune to noise removing techniques such as auto-encoders and filters.

4.2. Architecture workflow

This section presents the proposed privacy-preserving architecture, as shown in Figure 2. Figure 2
illustrates the overall process, which comprises of the following steps:

1. The original power reading from the consumer’s premise is disaggregated using a NILM tech-
nique and given to the data pre-processing step of the obfuscator.
2. The obfuscator process generates a combination of the appliance’s inactive state. The obfuscator

provides the obfuscated aggregate readings to the discriminator.
3. The GAN process in the proposed architecture is trained on the real dataset consisting of all the

state combinations of the appliances used on a consumer’s premises.

4. The GAN process generates a synthetic time series which is close enough to the real time series
with a different combination of states of an appliance.

In the next section, we explain the obfuscator (O) in detail.
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Figure 3. The diagram presents the operational flow of the proposed obfuscator module.

Mathematical Biosciences and Engineering

Volume 19, Issue 4, 3350-3368.



3358

4.3. Obfuscator

The obfuscator process generates a combination of inactive states of appliances with total energy
nearly equivalent to the original ground truth. The identification and storing of inactive states of an
appliance allows the hybrid-GAN to generate n-combinations of inactive states and select the optimal
solution close to the original ground truth power consumption. Figure 3 presents the obfuscation
process in detail. The obfuscator takes the ground truth aggregate g,...- and the active operational
states of appliances d; where i=1/ to m for the time T to output a obfuscated aggregate value. The
obfuscator process is subdivided into two steps:

Step 1 Data pre-processing: In the data pre-processing step, the basic idea is to identify the active
states and the corresponding power of the appliances, calculate the remaining power, categorize the
appliances, and compute the inactive devices and its corresponding states.

The process starts by traversing through the data points of the ground truth time series Gy =
{8powers di, ...dy} Where gpoyer = Zf‘ﬁl d; at time f. An appliance object A; is instantiated of type
< appliance > and the d; power value is set to the object A, power. The A; is stored in devices
list of type < PowerReadings >. The process now categorizes the appliance A; into Always Active or
Not Always Active. We categorize the appliances based on the amount of privacy concern. An Always
Active appliances such as fridge, smoke alarm do not cause privacy concerns as high as appliances in
the Not Always Active category such as fan, television, laptop etc. These appliances help deduce a
consumer’s activity pattern which is a serious privacy concern. Hence we aim to obfuscate only the
Not Always Active appliances. Based on the categorization of the appliances i.e. for an always active
appliance, we set the total power of always active devices in reading.activePower and then calculate
the remaining power to be obfuscated i.e the total power g,,,., minus the reading.activePower. The
remaining power is then updated in reading.remPower.

For a Not Always Active appliance, the process starts by identifying the state of an appliance. The
process compares the A;.power to Map < State, Power > to obtain the active state of an appliance.
The Map < State, Power > consists of all the appliances and its states and the corresponding power
of the appliance states. The states of an appliance are identified using the appliance state clustering
technique as mentioned in [32]. Next, the inactive states of an appliance A; are stored into inActives of
type < inActiveProperties >. A similar process is performed for all the devices active during the same
instance at time 7. This is done to track the change in the state of appliances for consecutive instances.

Step 2 Generate n-device combinations: The next step in the process involves generating the state
combinations for obfuscation. The combination process is executed only when the obfuscator detects
a change in state of appliances at time ¢ — 1 and 7. This reduces the need for re-generating the state
combinations for sequentially similar active states and reduces computational time. The input for the
process is the inactive states inActives, the total power g,,..- and a user supplied parameter thres as
shown in Figure 4.

The thres is used to compute the lower bound and the upper bound for the total power of permitted
combination i.e., thresy,., and thres,,,.,. The process generates ‘N-Appliance’ combinations of all
the appliances A; and its inactive states and computes the total power of the combination. The process
ensures that the appliance states of the combination i.e., A;.S tate are mutually exclusive. The combina-
tion is stored in allPossibleCombination if the total power of the combination lies within the thres;,,.,
and thres, .. The process then maps the combination to the closest threshold. The N appliance com-
bination with minimum distance is stored in combinationDevice. Similar process is performed for N
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= 1 to number of devices in the inActives. At the end of the process, the combinationDevice is stored
with best combination of N appliances. Furthermore, combinationDevice are sorted with respect to
minimum distance and number of appliances in the combination. Once sorted, the process outputs the
first combination in the combinationDevice.

Combination

makeUniqueCombination

Start inActives, Gpower, Thres Calculate Thres,ppe & For N-device
Thresiower combinations

Init combinationDevice
End For Generqte gll N-
combination
Add to combinationDevice
: o
T Output combination Compute total power
Compute best N- Store to

Map <State, Power> device combination allPossibleCombination

allPossibleCombination l

Figure 4. Process flowchart for generating mutually exclusive n-device combinations of
inactive device states.

4.4. GAN architecture

In this section, we discuss the proposed GAN of the privacy-preserving architecture, as shown in
Figure 2. Most of the existing GANs were developed for images process and audios applications.
However, researchers have used GAN to preserve privacy of the original timeseries by generating a
synthetic timeseries. In [33], author uses GAN to preserve the privacy of an individuals sensitive data
generated by his movements i.e. the GPS trajectories. To this end, this work proposes a hybrid GAN
architecture for the privacy preserving problems related to the consumers energy consumption data in
a smart grid. The proposed architecture is designed to deal with timeseries dataset based on the model
presented in [34]. To design a GAN architecture for preserving privacy in time series dataset, several
changes and customisation have been made to develop an efficient and effective model. These are:

e A smart meter measures energy consumption at low-frequency sampling rate and sends data every
15 min interval, we split the time series into daily vectors i.e., minutes and seconds using hot
embedding.

e We set a low decay rate to allow the GAN to have enough time to capture the pattern of the
dataset.

e The aggregate power reading time series in very dynamic in nature. We use a small kernel in
order to reduce the amount of inaccurate values of the power reading time series.

o We use Adam optimizer since the aggregate power time series is sparse in nature. We set the beta
parameter value in order to ensure that the small weights are assigned to far gradients.
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In the literature, several convolutional neural network (CNN) models were developed for image
and audio classification problems. However, the same model cannot be directly used to deal with the
time series data because the data is represented in sequences-time manner. CNN exhibits excellent
performance on several challenging applications and thus it can be used to learn from a time series
dataset. While recurrent neural networks (RNN) can also be used for timeseries data as they store
temporal information available in a time series, CNN models are computationally lighter and learn by
batch, in our experiments it is more suitable as we have resource constraint devices and data is sent in
batches every 5—15 min (based on the utility provider) time interval. Furthermore, while RNN learns
from the previous data timestep it needs to predict, whereas CNNs learns by seeing the data from a
broader perspective, which is more feasible for our GAN model.

To this end, we use 1D CNN where the time series is represented as one-dimensional sequences
of data. The CNN model learns to extract features from sequences of observations and then map the
internal features into different activities. It directly learns most effective features from the raw time
series dataset without the need for the domain expertise to extract those features. Thus the proposed
model can adaptively deal with various data types and can cope with problem changes that might occur
during the development process.

In this work, we develop a 1D CNN for both the discriminator (D) and Generator (G) models. We
then conducted experimental tests to find the best parameter values for this GAN model. Considering
the time and accuracy, we have fine-tuned various parameters by setting a small kernel size i.e. 2 and
gradually increasing or decreasing the other parameters to get the best possible output. As seen in these
experiments, the decay values of le-1 and le-2 decreased the learning rate rapidly for this model and
resulted in poor synthetic timeseries generation. On the other hand, a smaller decay value resulted in
better performance. Most of the GAN models have a default value for the beta parameter set to 0.9,
but reducing it to 0.4 provided a more stable training process. Therefore, we use the suggested values
as shown in Table 1.

Table 1. Fine-tuned parameters for the proposed GAN model.

Parameters Minimum Maximum Suggested value
Decay Rate le-1 le-7 le-4
Beta parameter 0.1 0.9 0.4

In the following subsection, we describe the discriminator (D) and Generator (G) in detail.

4.4.1. Discriminator

The discriminator (D) is trained to differentiate between the generated samples as synthetic and the
original samples as real. The D consists of multiple layers of a 1D CNN neural network that takes
the sample input from the obfuscator, the minute vector, and the seconds vector as input and classifies
whether the input is real or synthetic. The first layer of the discriminator consists of a 1D convolutional
network. We set the number of filters for the layer and assign a low value for the kernel size. The kernel
size specifies the size of the convolutional window. The first layer of 1D convolutional is followed by a
Leaky Rectified Linear Unit (LeakyReLLU) activation. We use LeakyReLU as it fixes the dying ReLU
problem, is balanced and speeds up the training process. The second layer of the discriminator also
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consist of a 1D convolutional network followed by batch normalization and the leakyReLLU activation.
The batch normalization normalizes its output with the moving average of the u and the o of the batch.
The third layer in the discriminator is also a 1D convolutional network with batch normalization and
leakyReL.U. At the output, we use the sigmoid activation. The sigmoid activation exist between (0,1)
and is used to predict the probability i.e., real or fake.

4.4.2. Generator

The generator (G) is trained to generate synthetic samples. The G consists of multiple layers of
neural network that takes a latent vector Z, the minute vector, and the seconds vector as input. The first
layer of the generator consists of a transpose 1D convolutional network. We set the number of filters
for the layer and assign a low value for kernel size and the strides. The first layer of 1D convolutional
is followed by batch normalization and the leakyReLLU activation. The second layer also consist of
a transpose 1D convolutional network with batch normalization and leakyReLU activation. The final
layer also consists of a transpose 1D convolutional network with filters set to input dimension and
followed by a sigmoid activation at the output layer.

5. Implementation & results

The implementation and results of the proposed privacy-preserving architecture for generating ob-
fuscated timeseries is discussed in this section. The architecture is implemented in sequential order as
shown in Figure 3.

5.1. Dataset description

We conduct experiments using the DREDD dataset, an open source real-world dataset for re-
searchers [10]. We use a subset which records aggregated energy consumption and appliance level
energy consumption. The aggregate power readings and the appliance level reading are collected at
a sampling frequency rate of 1 Hz. The dataset consists of various appliance types such as Type I
(On-Off), Type 1I (Multi-State) etc.

5.2. NILM algorithm

We first perform power disaggregation on the ground truth data and measure the appliance detec-
tion accuracy of three state-of-art algorithms i.e., Combinatorial Optimization (CO), Factorial Hidden
Markov Model (FHMM) [7] and Sparse Viterbi [35] using the MEC metric [32]. The disaggregation
algorithms are first trained on the original dataset (aggregate and appliance-level power consumption
data) to identify the appliance states. Once the algorithm learns the appliance states, the algorithms
are tested on the aggregate power consumption data. Table 2 presents the appliance level detection
accuracy of the algorithms using the aggregate power consumption data as an input. The SparseViterbi
algorithm has shown a consistent detection accuracy of more than 90% for all the appliances in the
dataset. In our simulation we used four thousand (4,000) data points in a bias environment (train and
test on same dataset samples).

We choose the SparseViterbi disaggregation algorithm to generate the initial input to hybrid-GAN
due to the higher rate of appliance detection as shown in Table 2. The algorithm is a highly accurate
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load classification and estimation algorithm. The algorithm uses a variant Viterbi algorithm and a
hidden Markov model (HMM) to disaggregate appliances with complex multi-states power signatures

[35].

Table 2. Detection accuracy results for state-of-art disaggregation algorithms using the MEC
metric: Combinatorial Optimization (CO), Factorial Hidden markov Model (FHMM), Sparse

Viterbi.
Appliance CO FHMM Sparse Viterbi
Fridge 40.60% 77.28% 96.58%
Fan 29.26% 28.42% 97.02%
Cooker 19.61% 61.39% 93.72%
Television 22.47% 35.53% 97.01%
Socket 00.01% 43.03% 95.88%
Laptop 19.60% 23.32% 97.57%
Heater 03.07% 70.92% 99.59%

The algorithm outputs ground truth time series Gr = {gpowers A1, .-.dy} Where gpoper = Z,’Zl d; at time
t where M =1 to m.

5.3. Data pre-processing

In the first step, the pre-processing component is implemented on every ground truth instance at
time ¢t = 1 to T'. In this process, the active appliances and their states are identified. The appliances are
categorized into ‘Always Active’ and ‘Not Always Active’. Based on the categorization, the remaining
power to be obfuscated is calculated. The inactive states of appliances are identified as well. The
output of this process is inActives, thres, totalPower and remainingPower. Table 3 presents the data
pre-processing output for every instance ¢. The data pre-processing step calls the n-device combination
process when a change of appliance states is detected, as shown in Table 3.

Table 3. A output sample of step 1 (data pre-processing) of the obfuscator of the proposed
privacy-preserving architecture.

Main Remaining Active States State Change InActive States
Power
. Cooker (51,S2), Television (S1,S2,S3),
149 49 Er;jii ((2?) ﬁ‘fcs VIV L’Vlga(gtf)p (Ssoii(et s2) Yes Laptop (S1,83), Heater (S2,S3),
’ ’ Microwave (S2,S3), Socket (S1,S3)
Fridge (S2), Fan (S1), Laptop (S2),
14949 Heater (S1), Microwave (S1), Socket (52) \° No State Change
Cooker (S1,S2), Television (S1,S2,S3),
45 43 i/?irlr(jlzl’vtagtf )p éiii{’elj?; ;e)r (SD, Yes Laptop (S1,S3), Heater (S2,S3),
W ’ Microwave (S2, S3), Socket (52,S3)
Fan (S1), Laptop (S2), Heater (S1),
4 43 Microwave (S1), Socket (S1) No No State Change
45 43 Fan (S1), Laptop (S2), Heater (S1), No No State Change

Microwave (S1), Socket (S1)
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5.4. Generate N-device combinations

The second step of the implementation is makeUniqueCombination process. As shown in Figure
4, the process calculates the upper and lower threshold, generates n-appliance combination of inactive
states. The process then selects the best optimal solution based on the minimum energy difference,
the specified threshold, and the number of devices in the combination. The process outputs an obfus-
cated aggregate Obfusy = {0y, O,,...0,}. Table 4 represents the ground truth and Table 5 presents the
corresponding obfuscator inactive state combination output at every time instance ¢. The obfuscator

re-calculates the states when a change in active appliances is detected in the ground truth, as shown in
Table 5.

Table 4. Original ground truth data disaggregated using NILM algorithm Sparse Viterbi
(Power in W).

Main Power Fridge Television Fan Laptop Heater Microwave Socket Cooker

149 98 0 29 12 2 1 7 0
149 98 0 29 12 2 1 7 0
149 98 0 29 12 2 1 7 0
45 0 0 29 12 2 0 1 0
45 0 0 29 12 2 0 1 0

Table 5. The corresponding output generated by the obfuscator against the ground truth data
shown in Table 4 (Power in W).

g{;t,r;r Fridge Television Fan Laptop Heater Microwave Socket Cooker
43 98 36 0 7 > 0 o 5
143 98 36 0 7 > 0 0 0
143 98 36 0 7 2 0 0 0
41 0 0 0 7 2 25 7 0
41 0 0 0 7 2 25 7 0
5.5. GAN

The third step is the GAN to generate a synthetic time series. The discriminator, as explained
in Section 4.4.1 is responsible for distinguishing between the real and synthetic data samples. The
discriminator takes vector,, e, VECtOTspcong and Obfusy = {0y, O,,...0;} as an input. The generator,
as explained in Section 4.4.2 generates synthetic data samples. The generator takes latent vector Z,
VeCtor e and VeCtor .., @S an input.
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5.6. Discussion & results

We plot the real ground truth data and the synthetic time series output of a consumer, as shown
in Figure 5 . As the obfuscator generates a combination of inactive states close to original ground
truth, the energy difference is minimum. The energy difference is based on the threshold variable
thres specified by the user to balance the utility-privacy tradeoff. We exploit the NILM feature of
identifying states to make NILM predict inaccurate states. Figure 6 shows the ground truth (blue)
and the disaggregated result (yellow) of generated synthetic time series for appliances i.e. fan and
television. In Figure 6, at data sample #;, the ground truth for appliance Fan is an Off state with a
corresponding power of 0 Watts, whereas the NILM algorithm predicts a wrong active state with a
corresponding power of 29 Watts. This shows a wrong prediction of an individual appliance activity
compared to its ground truth.

Table 6 presents the accuracy scores for disaggregation of different appliances from a synthetic
generated timeseries using the NILM algorithm Sparse Viterbi. We perform disaggregation on aggre-
gate timeseries obfuscated using two approaches i.e. adding White Gaussian Noise (WGN) and our
proposed method hybrid-GAN. We select appliance fridge and heater to be an always active device,
while others as not always active. As mentioned before, we aim to only obfuscate the not always active
devices. The results presented in table 6 show disaggregation results of hybrid-GAN based synthetic
timeseries. We measure the accuracy of appliance detection rate of NILM algorithm by using the
MEC [32] metric. The amount of noise added is set to 2, 3, 5 and 8% for both the approaches to show
the variation between different percentage of noise levels (Min:2% - Max:8%) for our experiments.
This results in a variation of 2 to 8% in the power consumption, which is acceptable in a real world
scenario.

The MEC metric accurately quantifies the appliance in terms of energy estimation as well as state
classification. Referring to Tables 2 and 5, the disaggregation accuracy of a SparseViterbi algorithm
for the original ground truth power consumption data is 97.02, 97.01, and 97.57% for appliances Fan,
Television and Laptop respectively. By adding a noise threshold of 5%, our proposed approach reduces
the detection accuracy to 40.16, 39.76, and 61.60% for appliances Fan, Television and Laptop as
compared to 91.21, 64.73, and 74.24% using the Gaussian noise approach. We show that our approach
effectively reduces the appliance detection rate as compared to White Gaussian Noise (WGN).

Synthetic

il
i
1

( T Tl = S Ll ey = e = e RN o S e SN = ]-—*|—::—:*'—::> = el =
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

Data samples (Seconds)

Figure 5. Ground truth (blue) and the hybrid-GAN based synthetic (yellow) aggregate time-
series for a consumer.
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Figure 6. Ground truth (blue) and the disaggregated result (yellow) of Hybrid-GAN based
synthetic timeseries for appliance Fan and Television (Power in W).

Table 6. Detection accuracy results of an aggregate synthetic timeseries generated using
Gaussian Noise and Hybrid-GAN for various multi-state appliances using Sparse Viterbi and

MEC.

Appliances  Gaussian Noise Hybrid-GAN
2 3 5 8 2 3 5 8

Fridge 93.98% 92.71% 91.81% 91.41% 9226% 91.21% 92.51% 91.66%
Television  74.05% 71.35% 64.73% 65.93% 49.52% 46.74% 43.17% 39.76%
Fan 90.10% 89.67% 91.21% 88.30% 81.25% 76.56% 73.04% 40.16%
Laptop 86.99% 83.38% T74.24% 72.20% 73.87% 71.69% 66.30% 61.60%
Heater 94.65% 93.72% 93.07% 94.01% 92.78% 90.29% 91.64% 88.68%
Socket 74.71% 69.41% 58.25% 47.67% 53.28% 44.13% 41.94% 36.63%

6. Conclusions & future works

This paper proposed a new privacy preserving architecture that generates a synthetic time series
based on the inactive state combinations. The proposed architecture addresses the critical issues with
the existing scenario: lack of effective privacy preserving approach to preserve consumer privacy and
prevent inference of appliance activity. The proposed architecture solves this using a hybrid-GAN i.e.
by combining the obfuscator with a generative adversarial network to generate a synthetic time series
close enough to the real time series. As shown in the results, the proposed architecture has reduced
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the average appliance detection accuracy of the NILM algorithm between 4-18% for devices with
binary and multiple states of operation. In future works, we aim to completely integrate the obfuscator
as part of the GAN. This will enable GAN to generate specific combinations corresponding to the
aggregate power based on constraints and conditions. Furthermore, we also aim to include appliance
state selection based on time of the day and the appliance in use relating to the consumer. For example,
using a BBQ appliance in early hours of morning would notify a malicious user of a synthetic time
series in use. Synchronizing the appliance and time of use will help mislead malicious user as the
inactive state combinations will be more time-based and will reflect a normal consumer activity when
analysed.
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