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Abstract: Background and objective: Mathematical model is a very important method for the control
and prevention of disease transmissing. Based on the communication characteristics of diseases, it is
necesssery to add fast and slow process into the model of infectious diseases, which more effectively
shows the transmission mechanism of infectious diseases. Methods: This paper proposes an age
structure epidemic model with fast and slow progression. We analyze the model’s dynamic properties
by using the stability theory of differential equation under the assumption of constant population size.
Results: The very important threshold R0 was calculated. If R0 < 1, the disease-free equilibrium is
globally asymptotically stable, whereas if R0 > 1, the Lyapunov function is used to show that endemic
equilibrium is globally stable. Through more in-depth analysis for basic reproduction number, we
obtain the greater the rate of slow progression of an infectious disease, the fewer the threshold results.
In addition, we also provided some numerical simulations to prove our result. Conclusions: Vaccines
do not provide lifelong immunity, but can reduce the mortality of those infected. By vaccinating,
the rate of patients entering slow progression increases and the threshold is correspondingly reduced.
Therefore, vaccination can effectively control the transmission of Coronavirus. The theoretical
incidence predicted by mathematical model can provide evidence for prevention and controlling the
spread of the epidemic.

Keywords: age structure; Lyapunov function; infection equilibrium; global stability; prevention and
control

1. Introduction

COVID-19 is an emerging acute infectious disease, which incubation period is 1–14 days, usually
3–7 days. COVID-19 generally have no obvious precursors, the infection will be after the Coronavirus
disease early, some patients may also have no obvious symptoms, most common in patients with fever,
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dry cough, lack of power as the main performance, but beyond that, due to individual differences,
the patient also can appear muscle pain, chest tightness, pharyngeal itching, runny nose. The lack of
specificity, which can be seen in many diseases and is not unique to COVID-19, makes it difficult for
patients to identify infection by symptoms themselves. Some immunity can be acquired after infection
or after the cornavirus vaccine, but the duration is unclear.

The establishing and analyzing of mathematical models play an important role in the control and
prevention for disease transmissing. McKendrick first proposed the PDE formulation for the age
distribution of a population [1]. Ever since the research results by Kermack and McKendrick [2],
Hoppensteadt [3], Iannalli [4] and Webb [5], age structure models have been widely used in the study
of transmission dynamics of infectious diseases [6–8]. Recently, Bentout Soufiane et al. considered
an alcoholism model for age structure and investigated the glabal behavior [9]. In December 2019,
some medical institutions of Wuhan reported some cases of pneumonia of unknown cause. On 11
February 2020, the World Health Organization officially named the pneumonia contracted by the
Novel Coronavirus as “COVID-19”. Recently many scholars have studied on COVID-19, which all
proposed and studied the dynamical model which has helped to control infectious diseases. Glenn
Webb proposed a model of a COVID-19 epidemic which is developed to predict the effectiveness of
vaccination [10]. B. Tang et al. proposed calculation of the basic reproduction number by virtue of
mathematical modeling can help decide the potential and severity of an outbreak and provide critical
information for identifying the type of disease interventions and intensity [11]. J. Jiao et al. presents
an SEIR epidemic model with infectivity in incubation period and homestead-isolation on the
susceptible [12]. Besides, deep learning frameworks [13] also can be used for prediction virus spread
and a more reliable model incorporating more parameters input into a neural network based virus
transmission predictor may be implemented.

McCluskey assumed that infected individuals can develop disease by either of two pathogenic
machanism: fast progression or endogenous reactivation [14]. Generally, acute infectious diseases
develop through four stages, among which the incubation period is very important, which refers to the
period from pathogen invasion to the onset of clinical symptoms. Take COVID-19 for example which
has a certain incubation period. According to current epidemiological statistics, the incubation period
is about 1–14 days. Some patients will show symptoms on the day of infection or one or two days
later, while some patients will have a longer incubation period of about two weeks. Consequently, it is
necessary to consider the factors of fast and slow progress in infection modeling.

Besides, the treatment of disease is proportional due to medical resources. Capasso and Serill [15]
introducing saturated incidence in the cholera epidemic model, describes the tingible into infected class
average relationship g(I) = kI/(1 +µ), k, µ > 0, which said the disease infection ability, said a crowded
or change on the influence of the individual, the increase in the number of infected people, easy to dye
more vigilant, lead to easy dyeing behaviour change or when the disease is especially crowded in the
environment may be unlimited effective contact.

2. Materials and methods

Zunyou Wu who is the chief expert of epidemiology at the Chinese Center for Disease Control
and Prevention, said there are three possible cases of re-positive symptoms for COVID-19: first, false
negative or false positive nucleic acid test; second, the virus is active again; third, reinfection. Zijian
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Feng who is the deputy director of the Chinese Center for Disease Control and Prevention, said that
the re-positive case caused continued transmission is rare and does not play a big role. Recently, some
provinces in China have seen new cases of COVID-19 including asymptomatic patients. Therefore
an infected individual ows into the exposed class after been treated but not becomes susceptible in
our models. Inspired by the above discussions, we consider an SEI epidemic model which introduce
the latent age, the nonlinear incidence of reactive unsaturated treatment and the saturation treatment
function. 

dS (t)
dt

= Λ − βS I − µS ,
∂e(t, a)

dt
+
∂e(t, a)

da
= −(µ + α(a))e(t, a),

dI(t)
dt

=

∫ ∞

0
α(a)e(t, a)da + (1 − p)βS I − f (I) − (d + µ)I,

(2.1)

for boundary and initial values conditions

e(t, 0) = pβS I + f (I),
S (0) = S 0, e(0, a) = e0(a), I(0) = I0.

(2.2)

where S (t), e(t, a) and I(t) respectively be the population sizes of susceptible, latent and infective
classes. We assume that the population size is changeless. β represents susceptible people in contact
with an infected person transmit rate, p represents susceptible people contact with an infected person
enter slow propagation process called latent stage which denoted by e(t,a) where individuals are
infected with disease but are not yet contagious, where a is called the age of latency progression,
which is the duration of the incubation period. We denote E(t) =

∫ +∞

0
e(t, a)da as the latent

individuals’ total density. 1 − p represents susceptible people and the onset of contact after rapid
development for the onset of ratio, µ and d represent people natural mortality and mortality due to
illness. f (x) = γx/(1 + mx) represents the saturation treatment function where the γ is cure rate of the
disease.

We define X = R+ × L1
+(0,+∞) × R+, equipped with the norm ‖(x1, x2, x3)‖X = |x1| +

∫ ∞
0

x2(a)da +

|x3|. The initial condition of system (2.1) belongs to the positive cone of X, then can be rewritten
as x0 = (S 0, e0(·), I0) ∈ X. We can get a continuous semi-flow associated with system (2.1), that is,
Θ : R+ × X −→ X produced be system (2.1) adopts the following form, Θ(t, x0) = (S (t), e(t, ·), I(t)), t ≥
0, x0 ∈ X, with

‖ Θ(t, x0) ‖X= |(S (t)| +
∫ +∞

0
|e(t, ·)|da + |I(t)|. (2.3)

For simplicity, let ε(s) = u + α(s), θ =
∫ ∞

0
α(a)e−

∫ a
0 ε(τ)dτda,K0(a) = e−

∫ a
0 ε(τ)dτ. The second equation

of system (2.1) is solved along t − a = constant

e(t, a) =


(
pβS (t − a)I(t − a) +

γI(t − a)
1 + mI(t − a)

)
K0(a), t > a ≥ 0,

e0(a − t)
K0(a)

K0(a − t)
, a ≥ t ≥ 0,

(2.4)
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Let Ω =

{
(S (t), e(t, ·), I(t)) ∈ X, S (t) +

∫ +∞

0
e(t, a)da + I(t) ≤ Λ

µ

}
. The interior of Ω is Ω̊. we can

easily verify the non-negative and positive invariance set of the system (2.1) with the help of
article [5].

We note that if R0 > 1, Ω is the positive invariant set for Θ, and it attracts all solutions of the system
(2.1) with non-negative initial conditions.

2.1. Reproduction number

Firstly, there is a disease-free equilibrium point E0 = (S 0, 0, 0) in the system (2.1), where S 0 = Λ
µ

,
and we define the basic reproduction number of the system (2.1) as following

R0 =
pβΛθ + γµθ + (1 − p)βΛ

(γ + d + µ)µ

and it is easily known that if R0 > 1, system (2.1) has an only positive endemic equilibrium point
E∗(S ∗, e∗(a), I∗), where

S ∗ =
Λ

βI∗ + µ
, e∗(a) = (pβS ∗I∗ +

γI∗

1 + mI∗
)e−

∫ a
0 ε(τ)dτ.

Define space
X := R3 × L1((0,+∞),R),
X0 := R2 × 0 × L1((0,+∞),R),
X+ := R3

+ × L1
+((0,+∞),R),

and X0+ = X+

⋂
X0. Define operator T : D(T ) ⊂ X → X,

T


S
I(
0
e

)
 =


−µ

−(d + µ)(
−e(0)

−e′ − (µ + α(a))e

)


where D(T ) = R × R × 0 ×W1,1((0,+∞),R) . Consider nonlinear mapping F : X0 → X, for

F


S
I(
0
e

)
 =


Λ − βS I∫ ∞

0
α(a)e(t, a)da + (1 − p)βS I − f (I)(

pβS I + f (I)
0L1

)


define

U(t) =

(
S (t), I(t),

(
0

e(t, ·)

) )T

Therefore systerm (2.1) can be rewritten as an abstract Canchy problem

dU(t)
dt

= TU(t) + F(U(t)) t ≥ 0, U(0) = u0 ∈ X0+. (2.5)

Draw on the results in Magal [16] and Magal and Thiemel [17], there exists an uniquely
deterministic semiflow {U(t)}t≥0 on X0+ which is bound dissipative and asymptotically smooth, and
{U(t)}t≥0 has a global attractor T ⊂ X which attracts the bounded sets of X.
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2.2. Locally asymptotic stability

Theorem 2.1. If R0 ≤ 1, the disease-free equilibrium E0 is locally asymptotically stable.

Proof. Let x1(t) = S (t) − S 0, x2(t) = e(t, a), x3(t) = I(t), linearizing the system (2.1) at E0, and
considering the exponential solution x1(t) = x0

1eλt, x2(t, a) = x0
2eλt, x3(t) = x0

3eλt, we can derive

(λ + µ)x0
1 + βS 0x0

3 = 0,
dx0

2(a)
da

= −(λ + µ + α(a))x0
2(a),

x0
2(0) = pβS 0x0

3 + γx0
3,

λx0
3 =

∫ ∞

0
α(a)x0

2(a)da + (1 − p)βS 0x0
3 − (µ + d + γ)x0

3.

(2.6)

Integrating the second equation of system (2.6) from 0 to a, considering the boundary condition,
deduces x0

2(a) =
(
pβS 0x0

3 + γx0
3
)
e−(λ+µ)a−

∫ a
0 α(s)ds. Substituting x0

2(a) into the fourth equation of system
(2.6), solving it, we get the characteristic equation

H(λ) = −λ +

∫ ∞

0
α(a)

(
γ + pβ

Λ

µ

)
e−(µ+λ)ae−

∫ a
0 α(τ)dτda + (1 − p)β

Λ

µ
− (d + µ + γ).

easily know H′(λ) < 0 which implies that H′(λ) is a decreasing function, and

lim
λ→+∞

H(λ) = −∞, lim
λ→−∞

H(λ) = +∞, H(0) = (d + µ + γ)(R0 − 1).

Let λ = x + yi is an arbitrary complex root of H(λ) = 0, then

H(x + yi) = −x +

∫ ∞

0
α(a)

(
γ + pβ

Λ

µ

)
e−(µ+x)ae−

∫ a
0 α(τ)dτcos(ya)da + (1 − p)β

Λ

µ
− (d + µ + γ)

− (iy +

∫ ∞

0
α(a)

(
γ + pβ

Λ

µ

)
e−(µ+x)ae−

∫ a
0 α(τ)dτisin(ya)da) = 0.

be equivalent to

−x +

∫ ∞

0
α(a)

(
γ + pβ

Λ

µ

)
e−(µ+x)ae−

∫ a
0 α(τ)dτcos(ya)da + (1 − p)β

Λ

µ
− (d + µ + γ) = 0,

y +

∫ ∞

0
α(a)

(
γ + pβ

Λ

µ

)
e−(µ+x)ae−

∫ a
0 α(τ)dτsin(ya)da = 0.

And because 0 = −x +
∫ ∞

0
α(a)

(
γ + pβΛ

µ

)
e−(µ+x)ae−

∫ a
0 α(τ)dτcos(ya)da + (1 − p)βΛ

µ
− (d + µ + γ) ≤ H(x)

then 0 = H(λ) ≤ H(x) which stands for x < λ∗, where λ∗ is the unique real root of H(λ) = 0. Thus if
and only if R0 ≤ 1, all the roots of system (2.6) have negative real part.

Theorem 2.2. If R0 > 1, the unique endemic equilibrium E∗ is locally asymptotically stable.

Proof. The perturbation variables are as follows

y1(t) = S (t) − S ∗, y2(t, a) = e(t, a) − e∗(a), y3(t) = I(t) − I∗.
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Linearizing system (2.1) at E∗ and assuming the form of solution is as follows

y1(t) = y0
1eλt, y2(t, a) = y0

2(a)eλt, y3(t) = y0
3eλt, (2.7)

where y0
1, y

0
2(a), y0

3 will be determined. we get

0 = (λ + βI∗ + µ)y0
1 + βS ∗y0

3,
dy0

2(a)
da

= −(λ + µ + α(a))y0
2(a),

y0
2(0) = pβy0

1I∗ + pβy0
3S ∗ +

γ

(1 + mI∗)2 y0
3,

λy0
3 =

∫ ∞

0
α(a)y0

2(a)da + (1 − p)β(y0
1I∗ + y0

3S ∗)

−
γ

(1+mI∗)2 y0
3 − (d + µ)y0

3.

(2.8)

By calculating, we can get the following eqution

[λ +
γ

(1 + mI∗)2 + (d + µ) − (1 − p)βS ∗]y0
3 − (1 − p)βI∗y0

1

= pβI∗y0
1W(λ) + (pβS ∗ +

γ

(1 + mI∗)2 )y0
3W(λ),

(2.9)

where W(λ) =
∫ ∞

0
α(a)e−(λ+µ)a−

∫ ∞
0 α(τ)dτda satisfies the following properties

W(0) = θ, lim
λ→−∞

W(λ) = +∞, lim
λ→+∞

W(λ) =
∫ ∞

0
α(a)da.

From the first equation of system (2.8) and the Eq (2.9), we obtain the following characteristic equation

(λ + µ + βI∗)(λ + µ + d) =(λ + µ + βI∗){(W(λ) − 1)
γ

(1 + mI∗)2

+ [(1 − p)β + pβW(λ)]
Λ

βI∗ + µ
}

−
βΛ

βI∗ + µ
[(p − 1)βI∗ − pβI∗W(λ)]

(2.10)

Note M is the right side of the Eq (2.10). Assuming λ > 0, M satisfies the following inequality

| M |≤ R0(λ + βI∗ + µ + 1)(γ + d + µ). (2.11)

which is equivalent to
h(λ) = λ2 + Pλ + Q ≤ 0.

where
P = βI∗ + 2µ + d − R0(γ + d + µ),
Q = (βI∗ + µ)(d + µ) − R0(βI∗ + µ + 1)(γ + d + µ).

Since λ > 0 , therefore
(βI∗+µ)(d+µ)

(βI∗+µ+1)(γ+d+µ) > R0.

Let A =
(βI∗+µ)(d+µ)

(βI∗+µ+1)(γ+d+µ) , easily know A < 1, i.e. R0 < 1 which is contradict with R0 > 1. then we can
get λ < 0.
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2.3. Uniform persistence

Theorem 2.3. If R0 > 1, there exists ε > 0, such that for each ∀ y ∈ M0, lim
t→+∞

in f d(U(t)y, ∂M0) ≥ ε.
Furthermore, there exists a compact subset H0 ⊂ M0 which is a global attractor for {U(t)}t≥0 in M0.

Proof. Define M0 = {(S , I, 0, e)T ∈ X0+ : T (t) = I +
∫ ∞

0
e(a)da > 0}, and ∂M0 = X0+\M0. Firstly,

let (S 0, I0, 0, e0) ∈ M0, we can get T ′(t) ≥ −max{d + µ, µ+ αmax}T (t), where αmax = ess supa∈(0,∞) α(a),
easily know U(t)M0 ⊂ M0. Secondly, if (S 0, I0, 0, e0) ∈ ∂M0, with the help of system (2.4), we
know if t ≥ 0, we get I(t) = 0 and

∫ ∞
0

e(t, a)da → 0, for t → +∞. Therefore U(t)∂M0 ⊂ ∂M0.
Let (S 0, I0, 0, e0) ∈ ∂M0, we get

dI(t)
dt

=

∫ ∞

0
α(a)e(t, a)da + (1 − p)βS I − f (I) − (d + µ)I,

∂e(t, a)
dt

+
∂e(t, a)

da
= −(µ + α(a))e(t, a),

e(t, 0) = pβS I + f (I),
I(0) = I0, e(0, a) = e0(a)

Since S (t) ≤ S 0 as t → +∞, we get I(t) ≤ Ĩ(t), e(t, a) ≤ ẽ(t, a), where

dĨ(t)
dt

=

∫ ∞

0
α(a)ẽ(t, a)da + (1 − p)βS 0 Ĩ − γĨ − (d + µ)Ĩ,

∂ẽ(t, a)
dt

+
∂ẽ(t, a)

da
= −(µ + α(a))ẽ(t, a),

ẽ(t, 0) = pβS 0 Ĩ + γĨ,
Ĩ(0) = Ĩ0, ẽ(0, a) = ẽ0(a)

(2.12)

By the system (2.4), we have

ẽ(t, a) =


(
pβS 0 Ĩ(t − a) + γĨ(t − a)

)
K0(a), t > a ≥ 0,

ẽ0(a − t)
K0(a)

K0(a − t)
, a ≥ t ≥ 0,

(2.13)

where K0(a) = e−
∫ a

0 ε(τ)dτ. Substituting system (2.13) into system (2.12), we obtain
dĨ(t)

dt
= T1 + T2 + (1 − p)βS 0 Ĩ − γĨ − (d + µ)Ĩ

Ĩ(0) = 0
(2.14)

where
T1 =

∫ t

0
α(a)

(
pβS 0 Ĩ(t − a) + γĨ(t − a)

)
K0(a)da,

T2 =
∫ +∞

t
α(a)ẽ0(a − t) K0(a)

K0(a−t)da.

It’s simple to know that if T2 = 0, we get that system (2.14) has an only solution Ĩ(t) = 0. From
the system (2.13), we can get ẽ(t, 0) = 0, t → +∞. Through comparison, we get (I(t), e(t, a)) → (0, 0)
for t → +∞.

Since E0 = (S 0, 0, 0, 0L1) is globally asymptotically stable in ∂M0, next we only need to proof that
W s(E0)

⋂
M0 = Θ, where W s(E0) = {z ∈ X0+, lim

t→+∞
U(t)z = E0}. Assume there exists z ∈ W s(E0)

⋂
M0,
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it follows that there exists t0 > 0 such that I(t0) +
∫ ∞

0
e(t0, a)da > 0. Using the method in [18], we have

e(t, a) > 0 for (t, a) ∈ [0,∞) × [0,∞), I(t) > 0 for t ≥ 0. By means of the method of Braueretal [19],
the following function is defined

H(a) =

∫ ∞

a
α(s)e−

∫ s
a ε(τ)dτds

for ∀ a > 0, H(a) ≥ 0, and H(0) = θ. Furthermore, for ∀a ≥ 0,H′(a) = −α(a) + ε(a)H(a). Let

Φ(t) = I(t) +

∫ ∞

0
H(a)e(t, a)da

which satisfies
dΦ(t)

dt
=

I(d + µ)
1 + mI

( (θp + 1 − p)βS (1 + mI) + (θ − 1)γ
(d + µ)

− 1
)
.

If R0 > 1, there exists t0 > 0 such that Φ(t) ≥ Φ(t0) for all t ≥ t0. Since Φ(t0) > 0, this prevents that
(I(t), e(t, a)) → (0, 0L1 , 0L1), which is contradiction with S (t) converges to S 0 and I(t) converges to 0,
for t → ∞. We get the semiflow {U(t)}t≥0 is uniformly persistent with respect to the pair (∂M0,M0).
Besides, there exists a compact subset H0 ⊂ M0 which is a global attractor for {U(t)}t≥0 in M0.

2.4. Global asymptotic stability

Theorem 2.4. Assume α(a) is an bounded function, if R0 < 1, the infection-free equilibrium E0 is
globally asymptotically stable. Note ᾱ = lim

a∈[0,+∞)
supα(a) .

Proof. Consider systems(2.1)–(2.4) we get∫ ∞

0
α(a)e(t, a)da ≤

∫ t

0
α(a)[pβS (t − a)I(t − a) + γI(t − a)]K0(a)da

+ ᾱ ‖ e ‖L1 e−µt
(2.15)

where ‖ e ‖L1=
∫ +∞

0
e0(a)da. Take the limit of both sides of the inequality (Eq 2.15), since S ≤

Λ
µ

and lim
t→+∞

e−µt = 0 , we get

lim
t→+∞

sup
∫ ∞

0
α(a)e(t, a)da ≤

∫ +∞

0
α(a)pβ

Λ

µ
K0(a)da lim

t→+∞
sup I(t)

+

∫ ∞

0
γα(a)K0(a)da lim

t→+∞
sup I(t).

(2.16)

With the help of Taylor’s formula and the third equation of system (2.1), we get

dI(t)
dt
≤

∫ ∞

0
α(a)e(t, a)da + (1 − p)βI

Λ

µ
− (γ + d + µ)I. (2.17)

By solving inequality (Eq 2.17) and taking the limit of both sides, we can get

lim
t→+∞

sup I(t) ≤ R0 lim
t→+∞

sup I(t)
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Therefore, when R0 < 1, lim
t→+∞

sup I(t) = 0. By using inequality (Eq 2.16) and system (2.1)

respectively, we get lim
t→+∞

sup e(t, a) = 0 and lim
t→+∞

sup S (t) = Λ
µ

. Therefore, if R0 < 1, the disease-free
equilibrium point E0 is global attraction. Further, with the help of Theorem 2.1, we have the
disease-free equilibrium point is global asymptotically stable.

Theorem 2.5. If R0 > 1, the unique endemic equilibrium E∗ is globally asymptotically stable.

Proof. The Lyapunov functional V∗(t) is constructed

V∗(t) = WS + We + WI , (2.18)

where

WS (t) = (1 − p)S ∗g(
S
S ∗

), We(t) =

∫ ∞

0
W(a)e∗(a)g(

e(t, a)
e∗(a)

)da, WI(t) = I∗g(
I
I∗

).

for W(a) =
∫ +∞

a
α(s)e−

∫ s
a (µ+α(τ))dτ, g(x) = −1 + x − ln x, de∗(a)

da = −ε(a)e∗(a). Calculating the derivative
of the V∗(t) along with the solutions of system (2.18), yields

dV∗(t)
dt

=(1 − p)µS ∗(2 −
S
S ∗
−

S ∗

S
) + (1 − p)βS ∗I∗(1 −

S ∗

S
−

S I
S ∗I∗

+
I
I∗

)

−W(a)e∗(a)g(
e(t, a)
e∗(a)

)|∞ + θe∗(0)g(
e(t, 0)
e∗(0)

) −
∫ ∞

0
α(a)e∗(a)g(

e(t, a)
e∗(a)

)

+

∫ ∞

0
α(a)e∗(a)(1 −

I
I∗
−

I∗e(t, a)
Ie∗(a)

+
e(t, a)
e∗(a)

)da

+ (1 − p)βS ∗I∗(1 −
S ∗

S
+

S I
S ∗I∗

−
I
I∗

)

=(1 − p)µS ∗(2 −
S
S ∗
−

S ∗

S
) + (1 − p)βS ∗I∗(2 −

S ∗

S
−

S
S ∗

) −W(a)e∗(a)g(
e(t, a)
e∗(a)

)|∞

+

∫ ∞

0
α(a)e∗(a)(1 −

I
I∗
−

I∗e(t, a)
Ie∗(a)

+
e(t, a)
e∗(a)

+ 1 −
e(t, a)
e∗(a)

+ ln
e(t, a)
e∗(a)

)da

+ θe∗(0)g(
e(t, 0)
e∗(0)

)

=(1 − p)µS ∗(2 −
S
S ∗
−

S ∗

S
) + (1 − p)βS ∗I∗(2 −

S ∗

S
−

S
S ∗

) −W(a)e∗(a)g(
e(t, a)
e∗(a)

)|∞

−

∫ ∞

0
α(a)e∗(a)(g(

I
I∗

) + g(
I∗e(t, a)
Ie∗(a)

)da + θe∗(0)g(
e(t, 0)
e∗(0)

)

if I
I∗ > 1 and S ∗

S > 1, or 0 < I
I∗ < 1 and 0 < S ∗

S < 1, we have

θe∗(0)g(
e(t, 0)
e∗(0)

) =

∫ ∞

0
α(a)e∗(a)g(

e(t, 0)
e∗(0)

) ≤
∫ ∞

0
α(a)e∗(a)g(

I
I∗

)da
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Hence,

dV∗(t)
dt

==(1 − p)µS ∗(2 −
S
S ∗
−

S ∗

S
) + (1 − p)βS ∗I∗(2 −

S ∗

S
−

S
S ∗

) −W(a)e∗(a)g(
e(t, a)
e∗(a)

)|∞

−

∫ ∞

0
α(a)e∗(a)(g(

I
I∗

) + g(
I∗e(t, a)
Ie∗(a)

)da +

∫ ∞

0
α(a)e∗(a)g(

I
I∗

)da

= (1 − p)µS ∗(2 −
S
S ∗
−

S ∗

S
) + (1 − p)βS ∗I∗(2 −

S ∗

S
−

S
S ∗

) −W(a)e∗(a)g(
e(t, a)
e∗(a)

)|∞

−

∫ ∞

0
α(a)e∗(a)g(

I∗e(t, a)
Ie∗(a)

)da

For g(x) ≥ 0, x ∈ R, therefore dV∗(t)
dt ≤ 0 is always true, furthermore the strict equality holds if and only

if S = S ∗, e(t, a) = e∗(a), I = I∗. Therefore when R0 > 1 the endemic equilibrium E∗ is globally
asymptotically stable.

3. Simulations and summary of results

In the work, an age structure epidemic SEI model with fast and slow progression is considered.
The basic reproduction number R0 is obtained as R0 =

pβΛθ+γµθ+(1−p)βΛ

(γ+d+µ)µ . We have proved the globally
asymptotically stable for disease-free and endemic equilibrium respectively. In the following, we also
give some numerical simulations to illustrate the global stability. Let Λ = 1; β = 0.055; γ = 0.7; µ =

0.063; d = 0.04; p = 0.8; m = 0.02; S (0) = 30, e(0, a) = 6e−0.4a, I(0) = 10. and

α(a) =

{
0.4, a ≥ τ

0, τ ≥ a ≥ 0
.

In Figure 1, we choose τ = 12 , then R0 < 1, it can be seen that E0 is globally asymptotically stable.
While in Figure 2, we choose τ = 1, then R0 > 1, it can be seen that E∗ is globally asymptotically
stable. The figures show the series of S (t) and I(t) which converge to their equilibrium values, in
addition the age distribution of e(t, a).
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Figure 1. The time series of S (t) and I(t), and the age distributions of e(t, a) when τ = 12.
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Figure 2. The time series of S (t) and I(t), and the age distributions of e(t, a) when τ = 1.

4. Discussion

COVID-19 has spread rapidly around the world since 2020 with a high fatality rate. Today the
epidemic in some countries is still unable to be effectively controlled, and social and economic life
has been greatly disrupted. COVID-19 trend prediction has become a major research focus. Current
trend prediction methods include epidemic disease prediction model, COVID-19 trend prediction
model based on deep learning, etc. These models have effectively assisted medical experts and
scientific research institutions to efficiently predict COVID-19. The countermeasures and suggestions
for strengthening epidemic prevention and control are put forward, which have a good guiding role
for accurate epidemic prevention and control.

The large-scale epidemic of COVID-19 in China has basically ended, but there are still occasional
imported cases or local outbreaks caused by cold chain pollution which prevention and control enters
a new phase of normalization. Since the outbreak of COVID-19, a large number of researchers have
conducted extensive studies on infectious disease dynamics and prevention and control measures
through various models and data analysis methods. Many scholars have built traditional dynamics
models based on warehouses to explore the development trend of COVID-19 and provide scientific
basis for epidemic prevention and control.

5. Conclusions

According to transmission characteristics of infectious diseases, the paper proposed the methods of
fast and slow transmission, which more effectively reveals the transmission mechanism for infectious
diseases. The global asymptotic stability of the system has analyzed with the help of the principle
of dynamics, and abtained the threshold of infectious disease control. The greater the rate of slow
progression of an infectious disease, the fewer the threshold results. The world is now being vaccinated
which cannot provide lifelong immunity, but can reduce the mortality of those infected. By vaccinating,
the rate of patients entering slow progression increases and the threshold is correspondingly reduced.
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Therefore, vaccination can effectively control the transmission of Coronavirus.
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