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Abstract: While transcription often occurs in a bursty manner, various possible regulations can lead 
to complex promoter patterns such as promoter cycles, giving rise to an important question: How do 
promoter kinetics shape transcriptional bursting kinetics? Here we introduce and analyze a general 
model of the promoter cycle consisting of multi-OFF states and multi-ON states, focusing on the 
effects of multi-ON mechanisms on transcriptional bursting kinetics. The derived analytical results 
indicate that burst size follows a mixed geometric distribution rather than a single geometric 
distribution assumed in previous studies, and ON and OFF times obey their own mixed exponential 
distributions. In addition, we find that the multi-ON mechanism can lead to bimodal burst-size 
distribution, antagonistic timing of ON and OFF, and diverse burst frequencies, each further 
contributing to cell-to-cell variability in the mRNA expression level. These results not only reveal 
essential features of transcriptional bursting kinetics patterns shaped by multi-state mechanisms but 
also can be used to the inferences of transcriptional bursting kinetics and promoter structure based on 
experimental data. 
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1. Introduction  

Transcription is a core step of gene-expression processes. For most genes in eukaryotic cells, 
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transcription often occurs in a bursty fashion characterized by mRNA synthesis in short periods of 
activity followed by typically longer periods of inactivity. Single-cell experimental observations have 
provided evidence for such transcription bursting [1–4]. This variability, which potentially gives rise 
to cell-to-cell variability in gene expression levels [5–7], can propagate to downstream proteins or 
target genes through a network. It is believed that the expression noise can not only contribute to 
alternative cellular fates [8] but also maintain cellular functioning [9–11]. Revealing the mechanism 
of transcriptional bursting using mathematical models is an important step toward understanding 
fundamental cellular processes. 

Transcriptional bursting kinetics is often characterized by two parameters: burst size and burst 
timing (or burst frequency). The former is defined as the number of transcripts produced during an 
active period, whereas the latter involves waiting times between transcription initiation events. For 
rate-limiting transcription or for transcription with exponential waiting times, mRNA burst sizes follow 
geometric distributions, which were also observed in early experiments [1,3,10,12]. However, 
transcription is a complex process involving many regulatory proteins and molecular factors, such as 
transcription factors, RNA polymerase, and chromatin remodeling complexes [13–16]. Recent 
experiments have shown that these factors or processes can result in non-exponential waiting-time 
distribution for genes’ active (ON) and inactive (OFF) durations [17–20]. In addition, some 
experimental studies have also suggested complex promoter structures [21–23], which often involve 
nucleosomes competing with or being removed by transcription factors [24], and epigenetic regulation 
via histone modifications [25–27]. For example, Dunham et al. [28] found that the transcriptional 
deactivation occurs with graded, stepwise decreases in transcription rate, implying that the gene 
promoter has variable transcription states. Sepúlveda et al. [29] demonstrated that the lysogeny 
maintenance promoter of phage lambda switches between multiple promoter states. Neuert et al. [30] 
showed that the transcription is a multistate process for the osmotic stress response pathway in 
Saccharomyces cerevisiae. In a word, transcription is finished not in a simple single-step manner but 
often in a complex multistep fashion [31–34]. 

It has been verified that mathematical models are a powerful tool for estimating the impacts of 
molecular mechanisms on transcriptional bursting. In past decades, many theoretical models have been 
developed to characterize transcriptional bursting kinetics including burst size, burst frequency, and 
variability in the mRNA abundance [35,36]. Of these models, the most widely used model is the two-
state model [17,37–40], where the promoter is assumed to switch between transcriptionally active (ON) 
and inactive (OFF) states with constant switching rates. Queuing models have also been proposed to 
analyze the impact of transcription regulation on bursting kinetics [31,41–43], where waiting-time 
distributions are general (either exponential or non-exponential). For example, Schwabe et al. used 
Erlang-distributed times to model ON-phase and transcription ignition, and found that burst sizes 
peaked distribution [44]. Kumar et al. derived steady-state moments of mRNA distribution and 
estimated burst parameters for non-geometric burst distribution [45]. Multistate gene models such as 
multi-OFF models [46,47], and multi-ON models [48,49], have been proposed to analyze transcription 
dynamics. Recently, Zoller et al. [50] combined mathematical modeling with experimental 
measurement to estimate burst parameters in a multi-OFF promoter cycle. In contrast, Rybakova et 
al. [51] used stochastic and ordinary differential equation models to estimate burst parameters in a 
multi-ON promoter cycle. In addition, Daigle et al. [52] inferred the number and configuration of 
promoter topologies from single-cell gene expression data. In spite of these efforts, how promoter 
kinetics affect transcription bursting kinetics remains poorly understood. Neither gene models with 
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multi-ON states or with cyclic promoter structure, whose prototypes can be found in natural and 
synthetic systems [53], have been systematically studied, nor analytical results on burst size and timing 
have been reported. 

In this paper, we introduce and analyze a model of stochastic transcription with cyclic promoter 
structure (i.e., ON and OFF states constitute a cycle), focusing on analysis of the effect of multi-ON 
mechanism on transcriptional bursting kinetics. Interesting results are obtained, e.g., burst size follows 
a mixed geometric distribution rather than a single geometric distribution that was assumed often in 
previous studies; each of ON and OFF times obeys a mixed exponential distribution; and the multi-
ON mechanism can lead to bimodal burst-size distribution, antagonistic timing of ON and OFF. While 
our results reveal essential characteristics of transcriptional bursting kinetics, our analysis provides a 
framework for studying more complex transcription processes. 

2. Methods 

2.1. Model hypothesis 

Here we introduce a biologically reasonable model for transcription bursting (Figure 1(A)), which 
considers the effects of many processes (or factors) such as recruitment of various polymerases and 
transcription factors, assembly of the pre-initiation complexes, chromatin remodeling, and histone 
modifications [13–15]. Then, we map this model into a theoretical model of multistate promoter cycle 
(Figure 1(B)) where the promoter proceeds sequentially through several reversible active (ON) states 
and inactive (OFF) states and returns to the active (ON) state, forming a cycle. We assume that 
transcription occurs in a bursting manner at each active state but is prohibited at the inactive states 
(Figure 1(C)). Specifically, we assume that the gene promoter has N  states in total, which consists 
of L   active states and K   inactive states. We call L   and K   as active and inactive indexes, 
respectively. Denoted by 1, ,  LA A   ON states and by 1, ,  KI I   OFF states. The corresponding 

biochemical reactions are listed in Table 1. 

 

Figure 1. Multistate promoter cycle model for transcriptional bursting. (A) Schematic 
diagram for a reversible promoter cycle involving recruitments of polymerases and 
transcription factors, chromatin remodeling, and histone modifications. (B) The reversible 
promoter cycle in (A) is mapped into a theoretical model, where the blue and red cycles 
represent transcription active (ON) and inactive (OFF) states, respectively. (C) 
Representative time series for mRNA expression and gene activity, where the gene 
transcribes in the ON state in a bursting manner. 
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Note that both 1L    and 2N   correspond to the multi-OFF model (i.e., the promoter has 
more than one OFF state but only one ON state), and both 1K   and 2N  correspond to the multi-
ON model (i.e., the promoter has more than one ON state but only one OFF state). Therefore, the 
model introduced here includes transcription models that were previously studied [46–49], and can be 
used to model general transcription dynamics generated by gene promoters with multiple states. We 
point out that for the multi-OFF and multi-ON models, some analytical results on steady-state mRNA 
distribution and noise have been obtained [46,48], but for multistate promoter models, the analytical 
expressions on transcription bursting kinetics, such as distributions of burst size and timing, have not 
been derived so far. 

Table 1. Biochemical reactions for the transcription model to be studied. 

Reactions Description 
, 1

1,
1A A , 1, 2, , 1










    
i i

i i
i i i L  Transitions between active states 

, 1

1,
1I I , 1, 2, , 1





  

  


    
L j L j

L j L j
j j j K  Transitions between inactive states 

1, , 1

,1 1,
1 1A I , A I

 

 





  
N L L

N L L
K L  Transitions between active and inactive states 

A A mRNA, 1,2, ,i i i L   
 

Transcription 

mRNA  mRNA degradation 

2.2. Analysis framework 

2.2.1. Burst-size distribution 

Let U  represent the promoter’s active state, which is a time-dependent random variable, i.e., 
   1 , ,   LU t u A A  ,  B t   be burst size, i.e.,   ,  0,1, 2,  B t n n  , and T   represent the exit 

time (i.e., burst termination time) from an active state. We assume that at time 0t  , the promoter 
begins to switch to active state 1A  from inactive state KI , or to active state LA  from inactive state 

1I . Let  ,n uS t  represents the survival probability that n  mRNAs are produced per burst in state 

u   at time t  . Then, the transcriptional system’s state at time t   can be described as 

    , Pr ob ( ) ,n uS t T t B t n U t u    , where we stipulate    , 0 0n uS t n  . Note that the probability 

that burst termination time T  falls within an infinitesimal interval  ,t t t   can be expressed as 

      
1, 1, , , 1Pr ob ( ) ,

Ln A N n A L LT t B t n U t u S t t S t t         .             (1) 

Therefore, the joint probability density function  burst ,P n t   for burst size  B t   (a discrete 

random variable) and burst termination time T  (a continuous random variable) includes all incoming 
fluxes driving the system from active state 1A   to inactive state KI  , or from active state LA   to 

inactive state 1I  , that is,      
1burst 1, , , 1 ,, .   

LN n A L L n AP n t S t S t
  

Then, the steady-state probability 

distribution for burst size B  is calculated according to 
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       
1burst burst 1, , , 1 ,0 0 0

,  
  

     LN n A L L n AP n P n t dt S t dt S t dt .             (2) 

The key question is how  
1,n AS t  and  , Ln AS t  are obtained. However, if we rewrite  , ln AS t

 
as 

 ,n lS t  for convenience, the master equation for survival probability  ,n lS t  can be described as 

       

       

,
1, ,1 , ,1 , 1 , 1 ,

,1 1, , 1 , 1, , 1

1

1 1 ,

      

   

  

   

       

   

n l
n l l l N l l l l l n l

l l l n l k L l l n l

dS t
S t S t

dt

S t S t

              (3) 

where , i j  is a Kronecker delta. Note that this equation can be solved by introducing probability-

generating functions. Specifically, defining    ,
0

,




  n
l n l

n

G z t S t z   ( 1 l L  ) and denoting 

      1, , , , , 
T

Lz t G z t G z tG , we can derive a linear partial differential equation group of the form: 

     , ,  z t t z z tG H G  [54,55], where the coefficient matrix ( )zH  is a tridiagonal matrix with 

the diagonal elements taking the form      ,1 , ,1 , 1 , 11 1           l l l N l l l l lh z z  (1 l L ) (seeing 

Appendix A for details). 

2.2.2. Dwell-time distributions and burst frequency 

Note that the distribution of the time that the promoter dwells on active (or inactive) state, denoted 
by  ONf t  (or  OFFf t ), is equal to the sum of the times dwelling on all ON (or OFF) states. In order 

to calculate  ONf t   and  OFF ,f t   we introduce two column vectors       ON ON ON
1 , , 

T

Lt S t S tS
 

and       OFF OFF OFF
1 , , 

T

Kt S t S tS , where  ON
lS t  and OFF ( )kS t are the survival probabilities that the 

promoter is still at t hl  ON state and t hk  OFF state, respectively. 

Now, we establish the master equation for  ON
lS t  and OFF ( )kS t . Denote by ONT ( L L  matrix) 

and OFFT  ( K K  matrix) the transition matrices of promoter among the active states and among the 
inactive states, respectively. Then, the master equations of the survival probability for ON and OFF 
states can take the following unified form 

( )
( )

d t
t

dt


 

S
T S ,                             (4) 

where ON   or OFF . 
Equation (4) is a linear equation group and is easily solved. In order to derive the analytical 

expression of ( ),tS  we first introduce two matrices  ON ON ON
1diag , ,    LΛ

  
and 

 OFF OFF OFF
1diag , ,    KΛ  , where 

ON
l   and OFF

k   are eigenvalues of matrices ONT   and 
OFF ,T  respectively. Then, we introduce two diagonal matrices  ON ON ON

1diag , , ,L   R   where 

ON
1 1    and ON

, 1 1,
2

   



l

l i i i i
i

  ( 2  l L  ), and  OFF OFF OFF
1diag , , ,K    R   where OFF

1 =1   and 
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OFF
, 1 1,

2

       



k

k L i L i L i L i
i

  ( 2  k K  ). In addition, we define ( ) ( )   t tS R S   and 

  1    
T R T R , where ON   or OFF . Note that there is an orthogonal matrix V  such that 

 T     V T V Λ . Then, vector ( ) tS  for the survival probabilities can be analytically expressed as 

    1
( ) exp (0)      

   T
t tS R V Λ V R S ,                      (5) 

where (0)S  is the vector of initial survival probabilities determined by the steady-state distribution 

of the promoter states. To that end, the dwell-time distribution at the active and inactive states can be 
calculated according to  

   
   j

j

dS t
f t

dt
,                              (6) 

where ON   or OFF . 
After having obtained two dwell-time distributions at ON and OFF states, we can separately 

calculate the mean ON and OFF times, denoted by 
ON  and 

OFF . In addition, the ON dwell-

time noise (denoted by 
2
ON ) and OFF dwell-time noise (denoted by 

2
OFF ) can also be calculated 

according to
 
Eq (6). Furthermore, the mean burst frequency (BF) can be formally expressed as  

OFF ON

1
BF

 



.                            (7) 

2.2.3. mRNA mean and noise 

Note that the master equation for mRNA is different from that for burst size. Here we first 
establish the master equation for the former and then calculate the mean and noise of mRNA. 

Let  ;sP m t  (1 s N ) represent the probability that the number of mRNA molecules is m  

at state 1 1, , , , , L KA A I I  at time t , respectively. Set       T

1; ; , , ;Nm t P m t P m t   P , and denote by 

 ,k lA =  the N N  transition matrix of a promoter. Note that , 0k l   means that there is no 

transition occurrence from state k   to state l  . Let  diag , , , , 0, 0, , 0        Ω   represent the 

transcription matrix. Then, the corresponding chemical master equation describing the mRNA 
dynamics takes the following form: 

           1;
; ; ;

d m t
m t m t m m t

dt
          

P
AP Ω E I P E I P ,             (8) 

where 1, E E  are shift operators and I  is the identity operator. 

Equation (8) can be solved using the binomial moment (BM) method that we previously 
developed [56]. The framework of this method is stated below. If the factorial BM for the probability 
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 ;sP m t  is defined as      ;


 
  

 
s

i s
m i

m
a t P m t

i
 (1 s N ), then the total BM for the total probability 

defined as     
1

; ;
N

ss
P m t P m t t


   is calculated by    ( )

1 i

N s
i s

b t a t


  . Note that  0 1b t   due to 

conservative condition:  
0

; 1



m

P m t  . Furthermore, if we introduce column vector 

          1 , , 
T

N
i i it a t a ta , it follows from Eq (8) that  

       1i i i

d
t i t t

dt
    I A Ωa a a ,                       (9) 

which is a linear ordinary differential equation group and is easily solved. Once all 
   s
ia t  and 

further the total BMs  ib t
 are obtained, the mRNA probability distribution can be reconstructed 

according to 

     ; 1
i m

i
i m

i
P m t b t

m




 
   

 
 .                          (10) 

In addition, if the mRNA noise is quantified by the ratio of the variance over the squared mean 

(called noise intensity and denoted by 
mRNA

2 ), then 
mRNA

2  is calculated according to 

mRNA

2
2 2 1 1

2
1

2b b b

b


 
 .                            (11) 

3. Analytical results 

Here we present analytical results, obtained according to the above analysis framework, to help 
understand the mechanism of how the cyclic promoter structure affects transcriptional bursting kinetics. 

3.1. General results 

First, we present analytical results for burst-size distribution. Let (0)
sP  represent the steady-state 

probability that the promoter is in state s  , where 1,2, , ,s N    then these probabilities can be 
analytically derived (see Appendix B for details). Interestingly, we find that initial conditions  , 0n lS  

are directly related to the steady-state distributions at the OFF states. Specifically, 
   (0) (0) (0)

0,1 ,1 ,1 1 1,0 ,N N N N L L LS P P P          (0 ) (0 ) (0 )
0 , 1 1, ,1 1 1,0 ,L L L L N N L L LS P P P         and  , 0 0n lS    for other 

subscripts. Owing to the special structure of matrix ( )zH  , generating function  ,lG z t   can be 

analytically expressed as 

  1

1 1

(0) ON (0) ON
,1 1 1 1,

ON (0) (0) (0) (0)
1 ,1 1, ,1 1,

1
,    

    


 

 

  

 
     


 


h
N L j

N L N L

h hL
N j L L Lj L th

l l j
j l N L L N L L

P V P V
G z t V e

P P P P
,            (12) 

where  1h
l l L     are eigenvalues of matrix  zΗ   and thus are functions of z  , and 
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 1 ,h
l jV l j L    are the elements of orthogonal eigenvector  1 2= , , ,

Th h h h
l l l LlV V VV      associated with the 

eigenvalues h
l  . Furthermore, generating function  burstG z   for burst-size distribution  burstP n  

can be expressed as 

  1

1 1

(0) ON (0) ON
,1 1 1 1, 1, 1 , 1

burst (0) (0) (0) (0) ON ON
1 ,1 1, ,1 1, 1

     
       



 

 

  

  
          


   
N L

N L N L

h h h hL
N j L L Lj L N j L L Lj

h h
j N L L N L L j L j

P V P V V V
G z

P P P P
.        (13) 

Thus, burst-size distribution  burstP n  can be given via      burst burst 0
1 !


 n n

z
P n n d G z dz .  

Second, we present analytical results for dwell-time distributions. Note that  ON
lS t   and 

 OFF
kS t   for survival probabilities at the thl   active state and at the thk   inactive state can be 

respectively expressed as 
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where  ON 1 ,l jV l j L   and  OFF 1 ,k jV k j K 
  are the elements of matrices  ON ON

l jVV    and 

 OFF OFF
k jVV  , respectively. 

Using Eqs (14a) and (14b), the dwell-time distributions are thus expressed as  
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                               (15) 

where if ON  , then  

1

1 1

(0) ON ON (0) ON ON
,1 1 1 1,ON ON

ON (0) (0) (0) (0)
1 ,1 1, ,1 1,

1
,N L

N L N L

L
N j L L L j L

j k j
k k N L L N L L

P V P V
c V

P P P P

   
    



 



  

 
     


 
  1 j L , 

and if OFF  , then  
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Equation (15) indicates that the dwell-time distribution at ON or OFF states is in general the sum 
of exponential distributions. 

Third, we present analytical results for BMs. We find that the steady-state total BMs take the 
following form 
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a
,                         (16) 
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where  1,1, ,1N   u   is an N  dimensional row vector,  *
i I A  and  det i I A   are 

respectively the adjacency matrix and the determinant of matrix   ,i I A  and the initial vector 0a  

is the steady-state distribution of promoter states (see Appendix B). 
In particular, the first-order binominal moment, i.e., the mRNA mean is given by (see Appendix C) 

(0)
1

1

mRNA ,
L

s
s

b P

 

                               (17) 

and the second-order binomial moment takes the form  
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，                            (18) 

where (1)
klW   represents a determinant of an    1 1N N    matrix that is the left part of matrix 

  I A  by crossing out its 
thk  row and thl  column elements, and 

1

(1) ,  
2

(1) ,  
1

(1),
N




     are 

the nonzero eigenvalues of matrix A . Then, we can show that the Fano factor for mRNA, defined 

as the ratio of the variance over the mean, is in general not equal to one, implying that the mRNA 
distribution is in general not Poissonian but may be super-Poissonian or sub-Poissonian. 

We point out that all the above analytical results are formal and tell us the finite information on 
the effect of the cyclic promoter structure on transcriptional bursting kinetics. In order to clearly see 
how the cyclic promoter structure affects transcriptional bursting kinetics, we will consider special 
cases. 

3.2. Specific results 

Here we consider two representative cases: (1) multi-OFF mechanism [46], i.e., 1L   and 
1 K N ; (2) mixture mechanism where all the forward (i.e., clockwise) transition rates of active 

states are identical (denoted by f ) and all the backward (i.e., counterclockwise) transitions of active 

states are also identical (denoted by b ); and all the forward transition rates of inactive states are the 

same (denoted by f f   with f  being a common forward ratio) whereas all the backward transition 

rates of inactive states are also the same (denoted by b b   with b  being a common backward ratio). 

For the multi-OFF mechanism, according to general formula Eq (13), it is not difficult to show that 
the generating function for burst size is given by  
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burst
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 
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Thus, the burst-size distribution takes the form 
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n

N N

N N
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which is a geometric distribution. These results are in agreement with previous assumptions [44]. 
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For the mixture mechanism, we denote 



 f

b

a  and 
 
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 f f

b b

b . Using general formula Eq (15) 

and noting the fact:  2
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where 1, 2, , j L , and  
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where 1, 2, , j K . Correspondingly, generating function  burstG z  for burst size is given by (see 

Appendix D for derivation) 
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where  
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Thus, the burst-size distribution takes the form 
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where 0,1, 2,n   , and 
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Equation (23) indicates that burst-size distribution is a mixture of geometric distributions. At the 
same time, the mean burst size is given by 
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 
   

2
burst

2
11 1 2 cos 1

L
j b

jz

qG z
BS

z a a j L

 




 

   
 .                (24) 

In addition, we can also calculate the burst-size noise, which is given by 
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where    1 2 cos 1    j br a a j L . The corresponding noise will contribute to the mRNA noise. 

4. Analytical results 

In contrast to previous studies that focused on the effect of multi-OFF mechanisms on gene 
expression, here we numerically demonstrate influences of multi-ON mechanisms on transcriptional 
bursting kinetics. 

4.1. Multi-ON mechanism can lead to bimodal burst-size distribution 

Bursting kinetics is commonly characterized by burst size (BS) and burst frequency (BF). Here, 
we analyze how the multi-ON mechanism affects burst size and its distribution. Previous studies of 
the two-state gene model assumed that burst size follows a geometrical distribution [1,12], but 
whether or not this assumption is reasonable is unclear. In particular, it is not clear whether the burst 
size still obeys a geometric distribution in the case of multi-ON mechanisms. By performing 
numerical calculations, we find that multi-ON mechanism can induce bimodal distribution of burst 
sizes, referring to Figure 2(A)–(C). Figure 2(A),(B) show two representative unimodal and bimodal 
burst-size distributions, respectively, and Figure 2(C) shows how the number of the most probable 
mRNA molecules obtained by a statistical method depends on active index L . In Figure 2(A),(B), 
histograms show stochastic simulations obtained using the Gillespie stochastic simulation algorithm 
(SSA) [57], and solid lines are theoretical predictions. Figure 2(C) shows that the bimodal mRNA 
distribution exists for a large range of L . Specifically, the burst-size distribution is unimodal at the 
origin with 1L   (i.e., multi-OFF model), a geometric distribution as predicted by Eq (20). Then, 
the burst-size distribution becomes a single peak away from the origin if we increase L  , e.g., 

2,3L  . Finally, the burst-size distribution becomes bimodal with one peak at the origin and another 

peak away from the origin for larger L  with 4L  . These results imply that burst-size distribution 
in the case of the multi-ON mechanism is non-geometric but a mixture of geometric distributions as 
predicted by Eq (23). 
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Figure 2. Influence of multi-ON mechanism on burst size. (A) and (B) Two representative 
burst-size distributions corresponding to 2L   and 8L  ; (C) Dependence of the most 
probable mRNA numbers on active index L  , where the color bar represents the BS 
probability at the most probable mRNA numbers. In (A)–(C), 0.5,f  2.b   (D), (E) 

and (F) Dependence of mean BS (red) and BS noise (blue) on active index L  for three 
representative cycles with 1,f  1b    (D), 0.5,f  2b    (E), and 2, 0.5f b    

(F), where the solid lines represent theoretical results and circles are numerical results 
obtained by SSA [57]. Parameter values are set as 0.1,f  0.5,b  1,  0.1, 

11.N   

Next, we analyze the influences of the multi-ON mechanism on mean burst size and burst-size 
noise, referring to Figure 2(D)–(F), where three representative promoter loops are shown. In all loops, 
we observe that mean burst size is always a monotonically increasing function of the active index, 
implying that more active states can lead to a larger burst size. In addition, we observe that burst-size 
noise is a monotonically decreasing function of the active index in the loops where the forward ratio 
is equal to the backward ratio, and the forward ratio is smaller than the backward ratio. However, there 
is a non-monotonic relationship between the active index and burst-size noise if the forward ratio is 
larger than the backward ratio. These results indicate that burst-size noise in the case of the multi-ON 
mechanism can exhibit different characteristics. 

Previous studies showed that genes with a multistep mechanism could have peaked burst-size 
distribution and reduce noise in burst size [44]. Here, we point out that the multi-ON mechanism can 
induce more complex behaviors of burst size, such as bimodal burst-size distribution and non-
monotonic burst-size noise. 
  



3325 

Mathematical Biosciences and Engineering  Volume 19, Issue 4, 3313–3336. 

4.2. Multi-ON mechanism can lead to antagonistic timing of ON and OFF 

 

Figure 3. Influence of multi-ON mechanism on burst timing. (A) and (B) Two 
representative OFF dwell-time distributions corresponding to 1L    and 9L   ; (C) 
Dependence of the time for peak appearance in OFF dwell-time distributions on active 
index L  ; (D) and (E) Two representative ON dwell-time distributions for 1L    and 

9L  ; (F) Dependence of the time for peak appearance in ON dwell-time distributions on 

active index L . In (A)–(F), 0.5,f  2.b   (G) Dependence of the mean OFF time 

and OFF time noise on active index L ; (H) Dependence of mean ON time and ON time 
noise on L  ; (I) Dependence of mean BF on active index L   for three representative 
loops: 

1,f  1b    (green line), 0.5,f  2b    (blue line), and 2,f  0.5b   

(read line). In (G) and (H), the solid lines represent theoretical results and circles are 
numerical results obtained by SSA [57]. Parameter values are set as 0.1,f  0.5,b 

1,  0.1,  11.N   

Here we focus on analyzing how the multi-ON mechanism influences burst timing between 
transcription initial events by performing numerical calculations, referring to Figure 3. The first and 
second rows of Figure 3 show two representative OFF dwell-time distributions (Figure 3(A),(B)) and 
ON dwell-time distributions (Figure 3(D),(E)), as well as how the times for peak appearance in OFF 
dwell-time distribution (Figure 3(C)) and ON dwell-time distribution (Figure 3(F)) depend on active 
index L , respectively. First, we observe that OFF dwell-time distribution changes from unimodality 
to bimodality, whereas ON dwell-time distribution varies from bimodality to unimodality with the 
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increase of active index L  (Comparing Figure 3(A)–(C) with Figure 3(D)–(F)). For example, the 
OFF dwell-time distribution is bimodal with one peak at the origin and another peak away from the 
origin for a broad range of L  with 1 8L  , and then this distribution becomes unimodal with a 
single peak away from the origin if 9L   and further becomes unimodal with a peak at the origin if 

10L   (see Figure 3(C)). However, for the ON dwell time, the distribution is unimodal with a peak 
at the origin if 1L  , and is an exponential distribution corresponding to a multi-OFF model. The 
distribution changes from unimodality with one single peak away from the origin if 2L    to 
bimodality with one peak at the origin and another peak away from the origin for a broader range of 
L : 3 10L   (see Figure 3(F)). 

The bottom row of Figure 3 shows the mean and noise of OFF dwell time (Figure 3(G)) and ON 
dwell-time (Figure 3(H)), respectively, as well as mean burst frequency for three representative loops 
(Figure 3(I)). We observe that with the rise of the active index, the mean OFF time decreases whereas 
mean ON time increases, but the OFF time noise increases and ON time noise decreases. In addition, 
we find that with increasing the active index, the mean burst frequency can exhibit different 

characteristics, such as no change with 1,f b     decrease with 0.5, 2,f b     and increase 

with 2, 0.5f b   . 

The above analysis implies that the multi-ON mechanism can give rise to antagonistic timing of 
ON and OFF, and induce different characteristics of burst frequency, hinting that the multi-ON 
mechanism has a considerable influence on transcriptional bursting timing. 

4.3.   Propagation of bursting kinetics to mRNA variability 

Single-molecule experiments have verified that mRNAs are produced often in a bursting 
manner [1,2]. It is of interest to understand how bursting kinetics affect the variations in mRNA levels. 
Previous studies focused on the influence of burst parameters such as mean burst size and burst 
frequency on gene expression levels and noise by analyzing queuing models [32,33,44,45]. However, 
how the burst size and timing affect gene expression dynamics in a multistate promoter remains elusive 
(see Figure 1(C)). Here, we explore the influences of burst-size distribution and dwell-time distribution 
on mRNA distribution, and the numerical results are shown in Figure 4(A)–(H). 

From Figure 4(A),(B), we first observe that the burst-size distribution, OFF dwell-time 
distribution, and ON dwell-time distribution are bimodal, and the mRNA distribution is also bimodal. 
From Figure 4(C),(D), we find that the burst-size distribution, OFF dwell-time distribution, and ON 
dwell-time distribution are unimodal, but the mRNA distribution is bimodal. These results indicate that 
both unimodal and bimodal distributions of burst size and dwell time can lead to bimodal mRNA 
distribution. On the other hand, we find that the bimodal or unimodal distributions of burst size, OFF 
dwell time, and ON dwell time can lead to unimodal mRNA distribution, referring to Figure 4(E)–(H). 
A previous study showed that unimodal or bimodal gene expression has important biological 
implications, i.e., a cause of phenotypic diversity in a population of genetically identical cells [58]. 
These results indicate that the variation in the distributions of burst size and dwell-time can give rise 
to variability in the distribution of gene expression production and further phenotypic variation. 
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Figure 4. Influence of transcriptional bursting kinetics on gene expression dynamics. (A), 
(C), (E) and (G) Burst-size distribution (the first column), OFF dwell-time distribution (the 
second column), ON dwell-time distribution (the third column) for different parameter 
values; (B), (D), (F) and (H) mRNA distribution (the last column) for different parameters. 
Parameter values are set as: 1,   0.1   0.5,f   3,b   11.N   Other parameters 

are: (A, B) 0.01,f    0.05,b    7;L    (C, D) 0.08,f    0.06,b    3;L    (E, F) 

0.1,f   0.5,b   5L  ； (G, H) 0.02,f   0.08,b   1.L   

Next, we analyze the influence of burst-size noise, OFF dwell-time noise, and ON dwell-time 
noise on mRNA noise, with numerical results shown in Figure 5. We observe that the changes in 
burst-size noise, OFF dwell-time noise, and ON dwell-time noise have different characteristics such 
as increasing, decreasing, and non-monotonic with the increase of active index L  , referring to 
Figure 5(A),(C), and (E). However, the mRNA noise is always a monotonically decreasing function 
of active index L  (see the last column of Figure 5). These results indicate that the integration of the 
burst-size noise and dwell-time noise may reduce gene expression noise. Our previous study also 
showed this by analyzing multi-OFF models [46]. Together, the results imply that a multistep process 
is a universal mechanism of reducing gene expression noise. 

The above analysis shows that the multi-ON mechanism can induce complex transcription 
kinetics, e.g., unimodal or bimodal distribution of mRNA counts, different burst sizes and timing, and 
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different characteristics of noise. The obtained results imply that the propagation of bursting kinetics 
to gene expression is complex, and would be important for understanding cellular processes and 
variation in cell populations. 

 

Figure 5. Influence of multi-ON mechanism on four kinds of noise for different parameter 
values. (A), (C) and (E) Burst-size noise (the first column), OFF dwell-time noise (the 
second column), ON dwell-time noise (the third column); (B), (D) and (F) Gene expression 
noise. Parameter values are set as: (A, B) 0.1,f   0.5,b   1,f   1;b   (C, D) 

0.08,f    0.06,b    2.5,f    2.5;b    (E, F) 0.4,f    0.8,b    0.5,f   

1.5.b   Other parameter values are 10,   0.1,   11.N   

5. Discussion and conclusions 

Transcription is an inherently stochastic process and often occurs in a bursting fashion. Because 
of involving recruitment of TFs and DNA polymerases, chromatin remodeling, and sequence of 
transitions between activity states of the promoter, the kinetics of transcriptional bursting is poorly 
understood. Previous studies showed that mRNA burst-size distribution is geometric with exponential 
waiting time for two-state promoter models [38,40], but how transcription burst size and timing in 
multistate promoter models remains unclear.  

In the present work, we have analyzed a gene model that corporate the complexity of promoter 
structure, focusing on the effects of multi-ON mechanisms on transcriptional bursting kinetics. By 
establishing the survival probability master equations for mRNA bursting production and promoter 
dwelling at ON/OFF states, we have successfully derived analytical expressions for burst-size 
distribution and ON/OFF waiting time distributions, and have found that the burst size is a mixed 
geometric distribution and the ON/OFF dwell time is a mixed exponential distribution in the case of 
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the mixture mechanism. These obtained distributions can be used to analyze transcriptional burst size 
and timing for arbitrarily complex promoter structure shown in Figure 1. 

While previous studies on multi-OFF models [47] and multi-ON models [48] focused on analysis 
of mRNA distribution and transcriptional noise, in the present work we have explored the effects of 
the multi-ON mechanism on transcriptional bursting kinetics. We have shown that this mechanism can 
lead to bimodal burst-size distribution and different patterns of burst-size noise, which is different from 
previous results that the multistep mechanism can give rise to a peaked burst-size distribution and a 
reduction in the noise of burst size [44]. In addition, we found that the multi-ON mechanism can lead 
to antagonistic timing of ON and OFF. For example, the OFF waiting time distribution changes from 
bimodality to unimodality, whereas the ON waiting time distribution changes from unimodality to 
bimodality, as the active index increases. Finally, by exploring the distributions and noise for burst 
size, OFF/ON dwell time, and mRNA copy-number, we found that the propagation of bursting 
kinetics to mRNA variability is complex. In contrast to previous studies on two-state gene models, 
which showed that the lower expression noise could result from higher burst frequency, or smaller 
burst size [35,40,59], here we showed that the qualitative conclusions no longer hold in multistate 
promoter models. More specifically, we find that mRNA noise always reduces, but the burst-size noise, 
OFF/ON dwell-time noise, and burst frequency can exhibit complex behaviors in the case of the multi-
ON mechanism. 

Recently, many studies aimed at the inference of kinetic parameters from experimental data on 
single cells [50,52]. In a previous study, we showed that different ON/OFF waiting time distributions 
can exhibit identical steady-state mRNA distributions [48], implying that when one infers a gene 
system based on transcription dynamics obtained by measurements of fluctuations of mRNA levels, 
caution must be kept. However, our results obtained here would be used to infer the promoter structure 
and investigate the variability of the transcription output based on the experimental data. It should be 
pointed out that the intermediate processes of gene expression such as the partitioning of mRNA at cell 
division [60], the alternative splicing [61], and the feedback loop [62], would additionally influence 
the obtained results, but they are neglected in our study. How details of these factors affect 
transcriptional bursting kinetics is worth further investigation. 
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Appendix 

A. Expression for coefficient matrix ( )zH  

According to the definition of generating function and Eq (3) in the main text, we can show the 
expression for the coefficient matrix 
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B. Derivation of steady-state probability for promoter state 

According to Table 1 in the main text, we can establish the following master equation for promoter 
kinetics 

( )
( ),

d t
t

dt


P
AP                               (B1) 

where       T

1 2( ) , , , Nt P t P t P tP   with  kP t  being the time-dependent probability of promoter 

at state ,k  and A  is the transcription matrix of promoter state. Our interest is in deriving the steady-

state probability         0 0 0 0
1 2, , , NP P PP 

 
satisfying the condition:  0 0AP . 

First, note that the transition matrix A  is an M-matrix (i.e., the sum of every column elements 
is equal to zero). So we can assume the eigenvalues of the matrix A   as 1 2 10, , , N         with 

0s  , and the eigenvalues of the matrix kA  (i.e., crossing out the thk  row and thk  column entry 

of matrix A ) as      
1 2 1, , ,k k k

N       with   0k
s  . This assumption implies that the characteristic 

polynomial of A  and kA  takes the following form, respectively  
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Note that Laplace’s formula for the M-matrix A  gives 
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Since the null space of A  is one-dimensional, we have         T0
1 2det ,det , ,det N   P A A A . 

From the conservative condition  0 1N u P  with  1,1, ,1N    u  being a row vector, we can 

obtain 
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From Eq (B2), we have 
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where “tr” represents the trace of a matrix. The combination of both yields the equality 
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every state  
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C. Derivation of mRNA mean and noise 

First, we compute the binomial moments (BMs). Let ( )i
klW   represent a determinant of a 

   1 1N N     matrix, which is from matrix  i I A   by crossing out its 
thk   row and thl  
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Therefore, it is easy to get the following expression  
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In addition, the determinant is 
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and (C3) into expression 
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can obtain the expressions of the factorial BMs  
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Finally, we can get the expression of the total BMs 

   
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
 
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                           (C5) 

Equations (C4) and (C5) imply that the vectors of BMs ia   and total BMs ib   can be 

analytically given based on 0a , i.e., on the steady-state probabilities of promoter states. 
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D. Derivation the explicit expression of generating function for the mixture loop model 

For the mixture loop model, matrix  zΗ  becomes 
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where    1 f bh z z      . Note that matrix  zΗ  has eigenvalues 1 2, , ,h h h
L      with 

( ) 2 cos , 1, 2, .
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j
h z j L

L
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                    (D2) 

In addition, the eigenvectors associated with the eigenvalues 
h
j   are given by 
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j j L jV VV
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. If denoting by  1 , , , h h h

LV V V then we have 
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   V H V Λ    Making the transform ON= ,h hV R V   and we obtain the 

orthogonal matrix   h h
l jVV   with 
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L L
  Substituting this expression and Eq (D2) 

into Eq (13) in the main text, we obtain the explicit expression of generating function in the case of 
the mixture mechanism. 
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