
http://www.aimspress.com/journal/MBE

MBE, 19(3): 2538–2574.
DOI: 10.3934/mbe.2022117
Received: 14 November 2021
Revised: 19 December 2021
Accepted: 22 December 2021
Published: 07 January 2022

Research article

Dynamic analysis of a malaria reaction-diffusion model with periodic delays
and vector bias

Hongyong Zhao1,2,*, Yangyang Shi1,2 and Xuebing Zhang3

1 Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016,
China

2 Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles
(NUAA), MIIT, Nanjing 211106, China

3 College of Mathematics and Statistics, Nanjing University of Information Science and Technology,
Nanjing 210044, China

* Correspondence: Email: hyzho1967@126.com.

Abstract: One of the most important vector-borne disease in humans is malaria, caused by
Plasmodium parasite. Seasonal temperature elements have a major effect on the life development
of mosquitoes and the development of parasites. In this paper, we establish and analyze a reaction-
diffusion model, which includes seasonality, vector-bias, temperature-dependent extrinsic incubation
period (EIP) and maturation delay in mosquitoes. In order to get the model threshold dynamics, a
threshold parameter, the basic reproduction number R0 is introduced, which is the spectral radius of
the next generation operator. Quantitative analysis indicates that when R0 < 1, there is a globally
attractive disease-free ω-periodic solution; disease is uniformly persistent in humans and mosquitoes
if R0 > 1. Numerical simulations verify the results of the theoretical analysis and discuss the effects of
diffusion and seasonality. We study the relationship between the parameters in the model and R0. More
importantly, how to allocate medical resources to reduce the spread of disease is explored through
numerical simulations. Last but not least, we discover that when studying malaria transmission,
ignoring vector-bias or assuming that the maturity period is not affected by temperature, the risk of
disease transmission will be underestimate.
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1. Introduction

Malaria is a lethal infectious disease caused by Plasmodium parasites, which infects humans
through the bite of infected female geneus Anopheles mosquitoes. It is endemic in about 100
countries and an estimated 3.3 billion people are at risk of being infected in the word [1]. Therefore, it
is necessary to study the spread of malaria in the population. The pioneering work was given by
Ross [2] which showed that malaria is transmitted by mosquitoes and proposed the first mathematical
model of this disease. Subsequently, Macdonald promoted this [3], which plays a particularly
important role in understanding the disease. However, the Ross-Macdonald model is extremely
simplified, ignoring many critical factors of real-world ecology and epidemiology [4]. One omission
is spatial heterogeneity, for example, the distribution of urban and rural areas and the spatial
movement of mosquitoes and people, which increases the spatial transmission of malaria. Hence, in
the malaria epidemiological model, spatial heterogeneity must be considered [5–7]. In 1951, Skellam
specially examined the reaction-diffusion model of species population density in a bounded
habitat [8]. One advantage of reaction-diffusion models is that they can easily incorporate simple
rules about edge effects. Use these features of reaction-diffusion model to study how environmental
heterogeneity affects malaria [9–11]. However, in these studies, it seems that the following important
biological aspects are rarely paid, simultaneously.

First, “vector-bias” is a typical feature of malaria transmission, which describes the different
probabilities of a mosquito bitting humans. Lacroix et al. [12] proved that mosquitoes are generally
more inclined to bite infected individuals. To describe this preference, Chamchod and Britton
incorporated the vector-bias effect into malaria model [13]. Subsequently, a wealth of papers take into
account the effect of vector-bias when studying malaria transmission [14–16]. Due to the different
densities of mosquitoes in various regions, the infectivity of malaria is also different. The analysis of
vector-bias effects is of great significance for understanding the dynamics of malaria transmission.

Secondly, in recent years, climate has become more fluctuating [17], and the rise in temperature is
related to global warming. Climate warming is directly connected with the number of Anopheles, the
main vector of malaria. Because temperature affects the immature development rate, immature stage
survival rate, adult size, adult lifespan, blood feeding, and reproduction ability of mosquitoes [18]. It is
widely accepted that both the life cycle of mosquitoes and the development of parasites are extremely
sensitive to temperature. Empirical evidence indicates that the life cycle of mosquitoes experiences
four different stages: eggs, larvae, pupae and adults. The first three stages are also called aquatic
or immature stages [19]. In addition, a very important process in the development of parasites is the
extrinsic incubation period (EIP), i.e., mosquitoes may not be able to transmit the disease to humans for
a period of time after taking infected blood meal. The lifespan of female adult mosquitoes is generally
3 to 100 days, and EIP can reach 30 days [20]. These infected mosquitoes that live pass EIP will keep
infectious until they die. There is considerable evidence that temperature rise will shorten the length of
each immature stage [21] and EIP is extremely sensitive to seasonal changes in temperature [22, 23].
In view of climate change, exploring the effect of temperature in the spread of malaria is particularly
essential. Therefore, these seasonal forced EIP and mosquito life cycles need to be considered in the
malaria model.

Note that mathematical models of malaria transmission rarely consider key features such as
vector-bias, climate/seasonality, temperature-dependent mosquito life cycle and EIP in a spatially
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heterogeneous environment, simultaneously. A reaction-diffusion model with periodic delays is
proposed to study the influence of the above factors on the transmission of malaria. This work is
inspired by the following biological questions: (I) What is the impact of vector-bias on malaria
transmission? (II) What effect does the maturity and incubation period of seasonal temperature
changes have on the spread of malaria? (III) Does the movement of mosquitoes and humans have
different effects for the transmission of malaria in different areas? These issues that are closely related
to the spread and control of malaria need to be explored in more depth. How to add the
temperature-dependent maturity period to the model is the first issue we consider, and the detailed
model derivation is also the difficulty of this paper. The existence of temperature-dependent periodic
delays makes it difficult to understand the asymptotic behavior of the model. We consider the stage
structure, because the mosquitoes in the aquatic stage cannot fly, which makes it impossible for us to
directly use the theoretical results in references [22, 24]. Our theoretical results indicate the model has
a threshold parameter, the basic reproduction number R0, which determines wether the malaria can
persist or become extinct in susceptible populations.

The structure of the rest of this paper is shown below. Section 2 establishes human and mosquito
populations models and malaria transmission model. This section also gives the biological
significance of these parameters in models. Section 3 is devoted to well-posedness and some
properties of the model. In Section 4, we first define the basic reproduction number R0, and then
analyze the threshold dynamics of models in terms of R0. Section 5 gives the basic framework of the
system threshold dynamics through numerical simulation, and discusses the influence of parameters
on basic reproduction number, mosquitoes and humans in the process of malaria transmission. A brief
discussion section concludes the paper.

2. The models

2.1. Mosquito stage structure model with seasonal effect

Motivated by models in references [19, 25, 26], we introduce a seasonal stage-structured model
of malaria to explain the cross-infection between mosquitoes and individuals. In this subsection, we
first consider the mosquito population. According to the biological cycle, mosquitoes can go through
several stages and have different habits at various stages. We divide them into immature aquatic stage
M(t, x) and mature stage V(t, x) at time t ≥ 0 and location x in a spatial bounded domain Ω ∈ Rn

with smooth boundary ∂Ω. Let η(t, a, x) denote the density of the mosquito population at time t,
chronological age a ≥ 0, and location x. Metz and Diekmann [27] gave

(
∂

∂t
+
∂

∂a

)
η(t, a, x) = D(a)∆η(t, a, x) − d(t, a, x)η(t, a, x),

η(0, a, x) = ϕ̂(a, x), a ≥ 0, x ∈ Ω̄,

η(t, 0, x) = Λv(t, x), t ≥ 0, x ∈ Ω̄,

(2.1)

through the standard argument for structured populations and spatial diffusion. Here, ∆ denotes the
usual Laplacian operator. ϕ̂(·, x) represents the non-negative initial age and location distribution of
mosquitoes, the term Λv(t, x) is the recruitment rate of the immature stage, which is Hölder continuous
and nonnegative function on R× Ω̄, D(a) is the age-related diffusion coefficient, and d(t, a, x) indicates
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the death rate of mosquitoes with time t, age a and location x, which is Hölder continuous and positive
on R × Ω̄. Λv(t, ·) and d(t, ·, ·) are periodic in t and have the same period ω.

Let us first assume some age thresholds so that the growth of mosquitoes can be divided into
discrete age stages. When modeling species dynamics with a stage structure, we divide mosquitoes
into immature stage (also known as aquatic stage) and mature stage, the time delay is the mature
period. The temperature T (t) is an ω-periodic function of time t. Generally speaking, the maturity age
is determined by seasonal changes in temperature. We will use a time-dependent positive function
τ1(t) to describe the duration from newborn to adult. That is, an individual at time t becomes mature
only if its age exceeds τ1(t), in other words, the adult mosquitoes that develop at time t enter the
aquatic stage at t − τ1(t). We assume that the maximum chronological age of aquatic mosquitoes at
time t is A(t). Here and in the following, τ1(t) and A(t) are C1 (a section of continuous differentiable
functions) periodic functions of time t with the same periodic ω. The relationship between
time-dependent threshold age and time-dependent delay can be indicated as follows:

A(t) = τ1(t).

Figure 1. At time t the mosquitoes reach the threshold age A(t) and develop into the mature
stage.

Here we introduce another quantity f to describe the maturity level of mosquitoes. Let f = fM = 0,
that is, the maturity level of mosquitoes that have just entered the aquatic stage is 0. At time t, the
mosquitoes reach the maximum chronological age A(t) of the aquatic stage. At this time, the maturity
level is also the maximum, fV . Then one has

fV − fM =

∫ t

t−τ1(t)
ρ̂(r1)dr1
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where ρ̂(r1) is the proportion of maturity at time r1. Taking the derivative of the above formula with
respect to t, we can get

1 − τ′1(t) =
ρ̂(t)

ρ̂(t − τ1(t))
,

and hence 1 − τ′1(t) > 0. Recall that τ1(t) represents the time it takes for a mosquito to go from the
aquatic stage to the adult stage at time t. For the case where δ > 0 is small enough, if the mosquito is
an adult mosquito at time t, then it is still an adult mosquito at time t+ δ. Thus τ1(t+ δ) < τ1(t)+ δ, and
hence, τ′1(t) = lim

δ→0

τ1(t+δ)−τ1(t)
δ

≤ 1. This condition also makes sense biologically. 1 − τ′1(t) > 0, is called
maturation rate [26], which excludes the possibility of mosquitoes returning from the mature stage to
the immature stage unless they are born. Mathematically speaking, t − τ1(t) is strictly increased with
respect to t, that is, since the developmental rate depends only on time, it is impossible for juveniles to
reach maturity before they are born.

M(t, x) and V(t, x) denote the density of mosquitoes in the aquatic and mature stages at time t and
location x, respectively. The accumulative density between the two age thresholds can be recorded as
the population size at each stage. In particular, for the aquatic stage M and the mature stage V (for the
sake of simplicity, we use M and V instead of M(t, x) and V(t, x), respectively), we have the following
mathematical expressions:

M =
∫ A(t)

0
η(t, a, x)da, V =

∫ ∞

A(t)
η(t, a, x)da. (2.2)

Next, we put forward natural biological assumptions about birth rate, death rate and diffusion
coefficient in Eq (2.1). Since immature mosquitoes cannot fly, we assume that the diffusion coefficient
satisfies

D(a) =

0, 0 ≤ a < A(t),
Dv, a ≥ A(t).

At each age stage, all mosquitoes undergo the same birth rate and death rate which are
age-independent, then the natural death rates in the aquatic and mature stages are µm(t, x) and µv(t, x),
respectively, i.e.,

d(t, a, x) =

µm(t, x), 0 ≤ a < A(t),
µv(t, x), a ≥ A(t),

where µm(t, x) and µv(t, x) are non-negative non-trivial and Hölder continuous on R× Ω̄ and ω-periodic
in t. Differentiating the equations in system (2.2) with respect to time t on both sides yields

∂M
∂t
=

∫ A(t)

0

∂η(t, a, x)
∂t

da + η(t, A(t), x)A′(t)

= −µm(t, x)M − η(t, A(t), x) + η(t, 0, x) + η(t, A(t), x)A′(t),

and
∂V
∂t
=

∫ ∞

A(t)

∂η(t, a, x)
∂t

da − η(t, A(t), x)A′(t)

= Dv∆V − µv(t, x)V − η(t,∞, x) + (1 − A′(t))η(t, A(t), x).
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In a biological sense, because no mosquito can live forever, η(t,∞, x) = 0. η(t, 0, x) represents the
inflow rate of mosquitoes in the aquatic stage at time t, then η(t, 0, x) = Λv(t, x) is a function of t.

∂M
∂t
= Λv(t, x) − µm(t, x)M − (1 − A′(t))η(t, A(t), x),

∂V
∂t
= Dv∆V − µv(t, x)V + (1 − A′(t))η(t, A(t), x).

Mathematically, assume that the delay τ1(t) is continuously differentiable in [0,∞), bounded and
far away from zero and infinity. The expression of η(t, A(t), x) in the above system will be obtained by
integrating along characteristics. For t ≥ A(t) and t < A(t), η(t, A(t), x) has different expressions.
Without loss of generality, we study t ≥ A(t) (see, [28]), which is practicable due to the boundedness
of A(t), because we are concerned with long-term behavior of population dynamics. Here,
η(t − τ1(t), 0, ·) = Λv(t − τ1(t), ·). Let t = t0 + h, a = a0 + h, P(h, x) = η(t0 + h, a0 + h, x) and
d̂(h, x) = d(t0 + h, a0 + h, x), then

∂P(h, x)
∂h

=
∂η(t0 + h, a0 + h, x)

∂h
·

dh
dt
+
∂η(t0 + h, a0 + h, x)

∂h
·

dh
da

=

(
∂

∂t
+
∂

∂a

)
η(t, a, x) = Dv∆P(h, x) − d̂(h, x)P(h, x).

(2.3)

Integrating Eq (2.3) from h1 to h2 yields

P(h2, x) = P(h1, x)e−
∫ h2

h1
d̂(r2,·)dr2 .

For t ≥ A(t), setting t0 = t − A(t), h = A(t) and a0 = 0, we have

η(t, A(t), x) = η(t − A(t), 0, x)e−
∫ t

t−A(t) µm(r2,x)dr2 = Λv(t − τ1(t), x)e−
∫ t

t−τ1(t) µm(r2,x)dr2 .

Since we are concerned about the long-term behavior of population dynamics, the model for t ≥ A(t)
is as follows

∂M
∂t
=Λv(t, x) − µm(t, x)M − (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r2,x)dr2 , x ∈ Ω,

∂V
∂t
=Dv∆V − µv(t, x)V + (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r2,x)dr2 , x ∈ Ω,

∂V
∂ν
=0, x ∈ ∂Ω,

(2.4)

where ν is the outward unit normal vector on ∂Ω and ∂
∂ν

indicates the normal derivative along ν on ∂Ω,

e−
∫ t

t−τ1(t) µm(r2,x)dr2 represents probability surviving through natural death during aquatic stage. It is easy
to see that the equation V(t, x) is decoupled, so we can get the following system

∂V
∂t
=Dv∆V − µv(t, x)V + (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r2,x)dr2 , x ∈ Ω,

∂V
∂ν
=0, x ∈ ∂Ω.

(2.5)
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for any t ≥ A(t). Alternatively, according to biological significance, M and V can be written as integral
form. Note that τ1(t) is the maturation time of aquatic mosquitoes at time t. Thence, aquatic mosquitoes
at time t contain all newly born mosquitoes at a previous time ξ1 with ξ1 ∈ (t − τ1(t), t) and survive to
time t. Hence, one has

M =
∫ t

t−τ1(t)
Λv(ξ1, x)e−

∫ t
ξ1
µm(r2,x)dr2dξ1, ∀x ∈ Ω̄. (2.6)

Similarly, for any x ∈ Ω̄,

V =
∫
Ω

Γ(t, 0, x, y)V(0, y)dy +
∫ t

0

∫
Ω

Γ(t, ξ1, x, y)Λv(ξ1 − τ1(ξ1), y)(1 − τ′1(ξ1))e−
∫ ξ1
ξ1−τ1(ξ1) µm(r2,·)dr2dydξ1,

(2.7)
where V(0, ·) is the initial data of V(t, ·).

Figure 2. Experience of mature mosquitoes at time t, age a.

The first term in Eq (2.7) represents those mosquitoes that were adults at time 0 at position y and
are still in V class at time t at position x by diffusion. The second term in Eq (2.7) denotes the total
density of mosquitoes at time t. These mosquitoes were newly developed adults at time ξ1 and survived
until time t. These new adults developed from the aquatic stage at previous time ξ1 − τ1(ξ1), which
grown through τ1(ξ1) periodic of time and developed into adult stage at time ξ1 with “maturation rate”
1− τ′1(ξ1). Γ(t, t0, x, y) with t ≥ t0 ≥ 0 is the Green function related to ∂V

∂t = Dv∆V −µv(t, x)V that meets
the Neumann boundary condition.

2.2. The human population dynamics model

Since the incubation period of the pathogen in the human is 1–12 days, which is short compared
with the human life span, we do not consider the incubation period of the pathogen in the human
body. In this subsection, inspired by [13, 19, 20, 24, 29], we give a model of malaria transmission,
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including the mobility of mosquitoes and individuals, vector-bias, temperature-dependent maturation
delay and EIP. Because mosquitoes are the vectors of malaria transmission from person to person, the
modeling takes into account the dynamics of human and mosquito populations. One supposes that
individuals will become susceptible again after recovery. Thus, humans include two epidemiological
types: susceptible (S h) and infected (Ih) compartments. Assume that all populations walk unbiased
and random. Since climate change has almost no impact on human birth and death, according to [29],
the following reaction-diffusion equation is suitable:

∂Nh(t, x)
∂t

=Dh∆Nh(t, x) + Λh(x) − µh(x)Nh(t, x), t > 0, x ∈ Ω̄. (2.8)

Dh > 0 is the human diffusion coefficient. Suppose the dispersal pattern is random diffusion, that is,
individual walkers use a fixed step to walk randomly on the solid line [30, 31]. Λh(x) and µh(x) are the
recruitment rate and natural death rate of human at location x, respectively. In particular, we should
note that the disease dose not have a significant impact on the mobility of individuals and mosquitoes.
It is mathematically assumed that the diffusion coefficient Dh > 0 of all individuals is the same, and the
diffusion coefficient Dv > 0 of all mosquitoes is recognized as the same. Assuming that no population
flow crosses the boundary ∂Ω, therefore, the Neumann boundary condition is imposed:

∂Nh(t, x)
∂ν

= 0, t > 0, x ∈ ∂Ω, (2.9)

here, the definition of ν is same as Section 2.1. Following Theorems 3.1.5 and 3.1.6 in reference [32]
and Section 2 in reference [29], we realize that the positive steady state N(x) ∈ C

(
Ω̄,R+

)
\{0} of

systems (2.8) and (2.9) is globally attractive, where C
(
Ω̄,R+

)
is Banach space of continuous functions

from Ω̄ to R+. According to Appendix 8.1 in reference [33], it is assumed that the total human density
of at time t and location x is stable at N(x), i.e., Nh(t, x) ≡ N(x), for ∀t ≥ 0 and x ∈ Ω. Then we know
that S h = N(x) − Ih. Here and later, for the sake of simplicity, we use S h and Ih instead of S h(t, x) and
Ih(t, x), respectively.

From a biological and epidemiological point of view, immature mosquitoes do not take part in
infection, and are primarily in a waiting period, because they cannot fly and bite humans. Since adult
male mosquitoes do not eat blood meal, they cannot transmit and acquire the virus, so only adult
female mosquitoes are modeled. Mature female mosquitoes are divided into susceptible (S v(t, x)),
exposed (Ev(t, x)) and infectious (Ev(t, x)), t is time and x denotes location. The exposed mosquitoes
are already infected, but not infectious. From Section 2.1, we know that V = S v + Ev + Iv is the total
density of female adult mosquitoes and satisfies reaction-diffusion system (2.5). Here and later, for the
sake of simplicity, we use V , S v, Ev and Iv instead of V(t, x), S v(t, x), Ev(t, x) and Iv(t, x), respectively.

Vector-bias effect is a situation in which mosquitoes display the weight of preference when choosing
a host. In order to add a vector-bias term to the model, parameters p and l are introduced, which
are the probability of mosquitoes arriving at humans randomly, and select infectious and susceptible
humans, respectively [13]. Since mosquitoes are more attracted to infected humans, we assume that
the vector-bias parameter χ = p

l ≥ 1. To comprehend the influences of spatial structure and climate
change, we allow a space-dependent bite rate β(t, x) of female mosquitoes to be Hölder continuous
non-negative non-trivial on R × Ω̄ with β(t, x) . 0, representing the number of mosquitoes biting per
unit time at location x, and β(t, ·) is a ω-period function of time t. Let B represent the mosquitoes bite
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incident, and A be the event of mosquitoes reaching humans infected with malaria. Then P(A) = Ih
N(x) ,

P(Ac) = 1− Ih
N(x) , P(B|A) = p and P(B|Ac) = l. So the probability that an infectious human is chosen as

P(A|B), then one has

P(Ac|B) =
l[N(x) − Ih]

pIh + l[N(x) − Ih]
and P(A|B) =

pIh

pIh + l[N(x) − Ih]
,

which are the probability of infected individuals and susceptible individuals are bitten. Then at time t
and location x, the numbers of newly infected individuals and mosquitoes per unit time are

cβ(t, x)l[N(x) − Ih]Iv

pIh + l[N(x) − Ih]
and

αβ(t, x)pIhS v

pIh + l[N(x) − Ih]
,

respectively, where c is the probability that an infected mosquito will spread to susceptible individuals
per bite, and α is probability that an infected individual will transmission to susceptible mosquitoes per
bite.

During the malaria transmission cycle, the EIP of parasite in mosquitoes is one of the most pivotal
parameters. Mosquitoes can fly around during EIP. The malaria parasites undergo different growth
stages before migrating to the salivary glands where can spread to humans. The degree of this
development is related to environmental factors, such as temperature. EIP is exceedingly sensitive to
temperature. Therefore, it is necessary to incorporate this seasonal forced incubation period when
describing malaria transmission. We will use a time-dependent positive function τ2(t) to describe the
duration from new infection to infectiousness. That is, a mosquito is infectious at time t only if its age
of infection exceeds τ2(t), where τ2(t) is a C1 periodic function in [0,∞) with the periodic ω, and
t − τ2(t) is strictly increasing in t.

Based on the above discussions, we will pay attention to the dynamics of the following malaria
transmission reaction-diffusion model

∂M
∂t
=Λv(t, x) − (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r2,x)dr2

− µm(t, x)M, x ∈ Ω,

∂S v

∂t
=Dv∆S v + (1 − τ′1(t))Λv (t − τ1(t), x) e−

∫ t
t−τ1(t) µm(r2,x)dr2

−
αβ(t, x)pIhS v

pIh + l[N(x) − Ih]
− µv(t, x)S v, x ∈ Ω,

∂Ev

∂t
=Dv∆Ev − Em(t, x) − µv(t, x)Ev +

αβ(t, x)pIhS v

pIh + l[N(x) − Ih]
, x ∈ Ω,

∂Iv

∂t
=Dv∆Iv + Em(t, x) − µv(t, x)Iv, x ∈ Ω,

∂Ih

∂t
=Dh∆Ih − (µh(x) + ϱ(x))Ih +

cβ(t, x)l[N(x) − Ih]Iv

pIh + l[N(x) − Ih]
, x ∈ Ω,

∂S v

∂ν
=
∂Ev

∂ν
=
∂Iv

∂ν
=
∂Ih

∂ν
= 0, x ∈ ∂Ω,

(2.10)
for t > 0. Similar to the derivation in Section 2.1, we get

Em(t, x) =(1 − τ′2(t))
∫
Ω

Γ(t, t − τ2(t), x, y)
αβ(t − τ2(t), y)pIh(t − τ2(t), y)S v(t − τ2(t), y)

pIh(t − τ2(t), y) + l[N(y) − Ih(t − τ2(t), y)]
dy.
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Substituting Em(t, x) into system (2.10), one has

∂M
∂t
=Λv(t, x) − (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r,x)dr

− µm(t, x)M, x ∈ Ω,

∂S v

∂t
=Dv∆S v + (1 − τ′1(t))Λv (t − τ1(t), x) e−

∫ t
t−τ1(t) µm(r,x)dr

−
αβ(t, x)pIhS v

pIh + l[N(x) − Ih]
− µv(t, x)S v, x ∈ Ω,

∂Ev

∂t
=Dv∆Ev +

αβ(t, x)pIhS v

pIh + l[N(x) − Ih]
− µv(t, x)Ev − (1 − τ′2(t))·∫

Ω

Γ(t, t − τ2(t), x, y)
αβ(t − τ2(t), y)pIh(t − τ2(t), y)S v(t − τ2(t), y)

pIh(t − τ2(t), y) + l[N(y) − Ih(t − τ2(t), y)]
dy, x ∈ Ω,

∂Iv

∂t
=Dv∆Iv − µv(t, x)Iv + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pIh(t − τ2(t), y)S v(t − τ2(t), y)
pIh(t − τ2(t), y) + l[N(y) − Ih(t − τ2(t), y)]

dy, x ∈ Ω,

∂Ih

∂t
=Dh∆Ih − (µh(x) + ϱ(x))Ih +

cβ(t, x)l[N(x) − Ih]Iv

pIh + l[N(x) − Ih]
, x ∈ Ω,

∂S v

∂ν
=
∂Ev

∂ν
=
∂Iv

∂ν
=
∂Ih

∂ν
= 0, x ∈ ∂Ω,

(2.11)
for t > 0, where α, p, l and c are positive constants, and ϱ(x) denotes the recovery rate of humans in
position x, which is Hölder continuous and positive on Ω. Neumann boundary condition indicates that
all individuals and mosquitoes still remain in this domain Ω.

Since M(t, x) and Ev(t, x) of the system (2.11) are decoupled from the other equations, it is sufficient
to explore the system

∂u1

∂t
=Dv∆u1 − µv(t, x)u1 + (1 − τ′1(t))Λv (t − τ1(t), x) e−

∫ t
t−τ1(t) µm(r,x)dr

−
αβ(t, x)pu3u1

pu3 + l[N(x) − u3]
, x ∈ Ω,

∂u2

∂t
=Dv∆u2 − µv(t, x)u2 + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pu3(t − τ2(t), y)u1(t − τ2(t), y)
pu3(t − τ2(t), y) + l[N(y) − u3(t − τ2(t), y)]

dy, x ∈ Ω,

∂u3

∂t
=Dh∆u3 +

cβ(t, x)l[N(x) − u3]u2

pu3 + l[N(x) − u3]
− (µh(x) + ϱ(x))u3, x ∈ Ω,

∂u1

∂t
=
∂u2

∂t
=
∂u3

∂t
= 0, x ∈ ∂Ω,

(2.12)
for t > 0, where (u1, u2, u3) = (S v, Iv, Ih).

3. Well-posedness

In this section, the well-posedness of the model is proved. Let X1 := C
(
Ω̄,R3

)
be the Banach

space of continuous functions from Ω̄ to R3 the supremum norm be ∥ · ∥X, and X+1 := C
(
Ω̄,R3

+

)
. Let

τ̂1 := max
t∈[0,ω]

τ1(t), τ̂2 := max
t∈[0,ω]

τ2(t), and τ̂ := max {τ̂1, τ̂2}. Define X1 := C([−τ̂, 0],X1) to be a Banach

space, with the norm ∥ϕ∥ = max
θ∈[−τ̂,0]

∥ϕ(θ)∥X1 , ∀ϕ ∈ X1, and X+1 := C([−τ̂, 0],X+1 ). Then (X1,X
+
1 ) and
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(X1,X
+
1 ) are order Banach spaces. A function z : [−τ̂, σ) → X1 for σ > 0 is given and zt ∈ X1 is

defined by
zt(θ) = (z1(t + θ), z2(t + θ), z3(t + θ)), ∀θ ∈ [−τ̂, 0],

for any t ∈ [0, σ).
Denote Y := C

(
Ω̄,R

)
, Y+ := C

(
Ω̄,R+

)
, Yh := {φ ∈ Y+ : 0 ≤ φ(x) ≤ N(x),∀x ∈ Ω̄}. Suppose that

T1(t, s),T2(t, s) : Y→ Y, are the evolution operators associated

∂u1

∂t
= Dv∆u1 − µv(t, x)u1(t, x) := A1(t)u1,

and
∂u3

∂t
= Dh∆u3 − (µh(x) + ϱ(x))u3 := A2u3,

obey the Neumann boundary condition, respectively. Since Ti(t, s) = Ti(t − s) (i = 1, 2) and µv(t, ·)
is ω-periodic in t, [34, Lemma 6.1] indicates that Ti(t + ω, s + ω) = Ti(t, s) for (t, s) ∈ R2 with
t ≥ s. Furthermore, Ti(t, s) is compact and strongly positive [35, Section 7.1 and Corollary 7.2.3] for
(t, s) ∈ R2 with t > s (i = 1, 2). Let T (t, s) = diag{T1(t, s),T1(t, s),T2(t, s)} : X1 → X1, t ≥ s, is
a strongly continuous semigroup and A(t) = diag{A1(t), A1(t), A2}, defined on D(A(t)) = D(A1(t)) ×
D(A1(t)) × D(A2). A1(t) is defined by

D(A1(t)) : =
{
φ ∈ C2

(
Ω̄
)

:
∂φ

∂ν
= 0 on ∂Ω

}
,

A1(t)φ = Dv∆φ − µv(t, x)φ, ∀φ ∈ D(A1(t)),

and A2 is defined by

D(A2) : =
{
φ ∈ C2

(
Ω̄
)

:
∂φ

∂ν
= 0 on ∂Ω

}
,

A2φ = Dh∆φ − (µh(x) + ϱ(x))φ, ∀φ ∈ D(A2).

Set
Wh = C([−τ̂, 0],Y+ × Y+ × Yh).

Write F = (F1, F2, F3) : [0,∞) ×Wh → X1 as

F1(t, ϕ) =(1 − τ′1(t))Λv(t − τ1(t), ·)e−
∫ t

t−τ1(t) µm(r2,·)dr2
−

αβ(t, ·)pϕ3(0, ·)ϕ1(0, ·)
pϕ3(0, ·) + l[N(·) − ϕ3(0, ·)]

,

F2(t, ϕ) =(1 − τ′2(t))
∫
Ω

Γ(t, t − τ2(t), ·, y)
αβ(t − τ2(t), y)pϕ3(−τ2(t), y)ϕ1(−τ2(t), y)
pϕ3(−τ2(t), y) + l[N(y) − ϕ3(−τ2(t), y)]

dy,

F3(t, ϕ) =
cβ(t, ·)l[N(·) − ϕ3(0, ·)]ϕ2(0, ·)

pϕ3(0, ·) + l[N(·) − ϕ3(0, ·)]
,

(3.1)

for t ≥ 0, x ∈ Ω̄ and ϕ = (ϕ1, ϕ2, ϕ3) ∈ Wh. Rewrite system (2.12) as
du
∂t
= A(t)u + F(t, ut), t > 0,

u0 = ϕ,
(3.2)
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it then follows from references [36, Corollary 4 and Theorem 1] and [37, Corollary 8.1.3] that for any
ϕ ∈ Wh, a mild solution can be get as a continuous solution of the integral equation:u(t, ϕ) = T (t, 0)ϕ(0) +

∫ t

0
T (t, s)F(s, us)ds, ∀t > 0,

u0 = ϕ.

(3.3)

Lemma 3.1. For any ϕ ∈ Wh, system (2.12) has the unique solution, denoted by z(t, ·, ϕ) on its maximal
existence interval [0, tϕ) with z0 = ϕ, where tϕ ≤ ∞. Moreover, z(t, ·, ϕ) ∈ Y+ × Y+ × Yh for any
t ∈ [0, tϕ), and this solution is a classical solution of system (2.12) for all t > τ̂.

Before studying the global existence, go back to system (2.11) to make more information. We
impose the compatibility conditions based on the biological meaning of τ1(t) and τ2(t):

M(0, ·) =
∫ 0

−τ1(0)
Λv(ξ1, ·)e

−
∫ 0
ξ1
µm(r2,·)dr2dξ1, (3.4)

and

Ev(0, ·) =
∫ 0

−τ2(0)
T1(0, ξ1)

αβ(ξ1, ·)pIh(ξ1, ·)S v(ξ1, ·)
pIh(ξ1, ·) + l[N(·) − Ih(ξ1, ·)]

dξ1. (3.5)

Now we define

D :=
{
ψ ∈ C

(
[−τ̂, 0],C

(
Ω̄,R5

+

))
: ψ5(s, ·) ≤ N(·), ∀s ∈ [−τ̂, 0],

ψ1(0, ·) =
∫ 0

−τ1(0)
Λv(ξ1, ·)e

−
∫ 0
ξ1
µm(r2,·)dr2dξ1,

ψ3(0, ·) =
∫ 0

−τ2(0)
T1(0, ξ1)

αβ(ξ1, ·)pIh(ξ1, ·)S v(ξ1, ·)
pIh(ξ1, ·) + l[N(·) − Ih(ξ1, ·)]

dξ1

}
.

Next, for any ψ ∈ D, system (2.11) has the unique solution
U(t, ·) = (M(t, ·), S v(t, ·), Ev(t, ·), Iv(t, ·), Ih(t, ·)) satisfying U0 = ψ. Corollary 4 in reference [36]
implies that S v(t, x) ≥ 0, Iv(t, x) ≥ 0 and Ih(t, x) ≥ 0 on maximal existence interval. According to the
uniqueness of the solutions and the compatibility conditions (3.4) and (3.5), one has M(t, ·) (see(2.6))
and

Ev(t, ·) =
∫ t

t−τ2(t)
T1(t, ξ1)

αβ(ξ1, ·)pIh(ξ1, ·)S v(ξ1, ·)
pIh(ξ1, ·) + l[N(·) − Ih(ξ1, ·)]

dξ1. (3.6)

Hence, M(t, x) ≥ 0 and Ev(t, x) ≥ 0 on the maximal interval of existence.

Lemma 3.2. For any ϕ ∈ Wh, system (2.12) has a unique solution u(t, ·, ϕ) on [0,∞) with u0 = ϕ.
Moreover, system (2.12) generates an ω-periodic semiflow Qt : Wh → Wh, defined by Qt := ut(·),
∀t ≥ 0, i.e., Qt(ϕ)(s, x) = u(t + s, x, ϕ), ∀ϕ ∈ Wh, t ≥ 0, s ∈ [−τ̂, 0], x ∈ Ω, and Q := Qω has a strong
global attractor in Wh.

The proof of Lemma 3.2 is given in Appendix A.

4. Threshold dynamics

Here, the basic reproduction number are introduced by the theory in reference [41], and then
investigate the dynamics of system (2.12).
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4.1. Threshold dynamics

The current main work is to explore the extinction and persistence of malaria in a spatially
heterogeneous environment. The basic reproduction number R0 is one of the most necessary concepts
in epidemiology. It is usually defined as the mean number of secondary infections during the entire
period when a typical infected person is introduced into a completely susceptible population. From a
biological point of view, the basic reproduction number is a characteristic of the risk of infection.
More meaningfully, it describes the threshold behavior of many infectious disease models.

Let u2 = u3 = 0, we have the equation of mosquitoes compartment

∂u1

∂t
=Dv∆u1 + (1 − τ′1(t))Λv(t − τ1(t), x)e−

∫ t
t−τ1(t) µm(r2,x)dr2

− µv(t, x)u1, (4.1)

obeys the Neumann boundary condition. Based on reference [38, Lemma 2.1], it is easy to know that
system (4.1) has a unique globally attractive positive ω-periodic solution u∗1(t, ·) in Y+\{0}. Linearize
system (2.12) at (u∗1(t, ·), 0, 0) and consider the equations of infectious compartments,

∂w1

∂t
=Dv∆w1 − µv(t, x)w1 + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pw2(t − τ2(t), y)u∗1(t − τ2(t), y)
lN(y)

dy, x ∈ Ω,

∂w2

∂t
=Dh∆w2 + cβ(t, x)w1 − (µh(x) + ϱ(x))w2, x ∈ Ω,

∂w1

∂ν
=
∂w2

∂ν
= 0, x ∈ ∂Ω,

(4.2)

for t > 0. Denote w := (w1,w2) = (u2, u3).
Set X2 := C

(
Ω̄,R2

)
, X+2 := C

(
Ω̄,R2

+

)
, and Cω(R,X2) to be the Banach space consisting of all

ω-periodic and continuous functions from R to X2, where ∥ψ∥Cω(R,X2) := max
θ∈[0,ω]

∥ψ(θ)∥X2 for any ψ ∈

Cω(R,X2). Let X2 := C([−τ̂2, 0],X2) and X+2 := C([−τ̂2, 0],X+2 ). Write F (t) : X2 → X2 as

F (t)
(
ψ̃1

ψ̃2

)
=

 (1 − τ′2(t))
∫
Ω
Γ(t, t − τ2(t), ·, y)αβ(t−τ2(t),y)pψ̃2(−τ2(t),y)u∗1(t−τ2(t),y)

lN(y) dy
cβ(t, ·)ψ̃1(0, ·)


for any t ∈ R, ψ̃ =

(
ψ̃1, ψ̃2

)
∈ X2 and −V1(t)w = D̄∆w −W(t)w, where D̄ = diag(Dv,Dh) and

−[W(t)](x) =
(
−µv(t, x) 0

0 − (µh(x) + ϱ(x))

)
, x ∈ Ω̄.

Denote that Φ(t, s) = diag(T1(t, s),T2(t, s)) is an evolution operator related to the following system

dw
dt
= −V1(t)w, (4.3)

t ≥ s, with the Neumann boundary condition. Obviously, Φ(t, s) is a positive operator, that is,
Φ(t, s)X+2 ⊆ X

+
2 for all t ≥ s. Then −V1(t) is resolvent positive, based on reference [39, Theorem 3.12].
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The exponential growth bound of Φ(t, s) can be written as

ω̄ = inf{ω̃ : ∃L ≥ 1 suth that ∥Φ(t + s, s) ≤ Leω̃t∥, ∀s ∈ R, t ≥ 0}.

By [39, Proposition A.2], one has

ω̄(Φ) =
ln r(Φ(ω + s̄, s̄))

ω
, s̄ ∈ [0, ω].

According to Krein-Rutman theorem and [40, Lemma 14.2], one has

0 < r(Φ(ω, 0)) = max{r(T1(ω, 0)), r(T2(ω, 0))} < 1,

here, r(Φ(ω, 0)) denotes the spectral radius of Φ(ω, 0). By [39, Proposition 5.6] with s = 0, we obtain
ω̄(Φ) < 0. Obviously, F (t) and W(t) meet the assumptions: (1) F (t) : X2 → X2 is positive, i.e.,
F (t)X+2 ⊆ X

+
2 , for any t ≥ 0. (2) −W(t) is cooperative, and ω̄(Φ) < 0.

To introduce R0 of system (2.12) based on references [41] and [42], it is assumed that both human
and mosquito populations are close to (u∗1(t, ·), 0, 0). Suppose w ∈ Cω(R,X2), and w(t) = w(t) is the
initial distribution of infected mosquitoes and humans at t ∈ R. For any fixed s ≥ 0, the distribution of
newly infected mosquitoes and individuals at time t − s (t ≥ s) is F (t − s)wt−s, which is engendered
by the infectious mosquitoes and humans introduced in [t − s − τ̂2, t − s]. Thus, the distribution of
infectious who were newly infected at time t − s and keep survive at time t, is Φ(t, t − s)F (t − s)wt−s,
t ≥ s. Then, at time t, the distribution of the accumulative infectious humans and mosquitoes produced
by all people introduced to t at all previous times is∫ +∞

0
Φ(t, t − s)F (t − s)wt−sds =

∫ +∞

0
Φ(t, t − s)F (t − s)w(t − s + ·)ds.

Define the next generation operator L associated with system (2.12) as

[Lw](t) :=
∫ +∞

0
Φ(t, t − s)F (t − s)w(t − s + ·)ds, ∀t ∈ R, w ∈ Cω(R,X2).

Inspired by the definition of next generation operators in references [39,42], the basic reproduction
number of system (2.12) is defined by the spectral radius L, i.e.,

R0 := r(L). (4.4)

For any ψ̃ ∈ X2, set Q̄t to be solution map of system (4.2) on X2, i.e., Q̄t(ψ̃) = wt(ψ̃), t ≥ 0, where
wt(ψ̃)(θ)(x) = w(t + θ, x, ψ̃) = (w1(t + θ, x, ψ̃),w2(t + θ, x, ψ̃)), and w(t, x, ψ̃) is the unique solution of
system (4.2) with w(θ, x) = ψ̃(θ, x) for all θ ∈ [−τ̂2, 0], x ∈ Ω̄. Thus Q̄ := Q̄ω is the Poincaré map
related to system (4.2). r(Q̄) represents the spectral radius of Q̄. Based on reference [41, Theorem
3.7], the following result can be obtained.

Lemma 4.1. R0 − 1 has the same sign as r(Q̄) − 1.

To explore the global dynamic behaviors of system (2.12) according to R0, we demonstrate that
system (4.2) engenders an eventually strong monotone periodic semiflow on the phase space:

E1 := Y ×C([−τ2(0), 0],Y), and E+1 := Y ×C([−τ2(0), 0],Y+).
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Thus (E1,E
+
1 ) is an ordered Banach space. For every ψ̂ ∈ E+1 , w̃(t, x, ψ̂) = (w̃1(t, x, ψ̂), w̃2(t, x, ψ̂))

denotes the unique solution of (4.2) with w̃0(ψ̂)(θ, x) for x ∈ Ω̄, θ ∈ [−τ2(0), 0], where

w̃t(ψ̂)(θ, x) = w̃(t + θ, x, ψ̂) = (w̃1(t, x), w̃2(t + θ2, x)),∀θ ∈ [−τ2(0), 0],∀t ≥ 0.

Lemma 4.2. For any ψ̂ ∈ E+1 , system (4.2) has a unique nonnegative solution w̃(t, ·, ψ̂) on [0,∞) with
w̃0 = ψ̂.

The proof of Lemma 4.2 is given in Appendix B.

Remark 1. Through the uniqueness of solutions in Lemmas 3.2 and 4.2, then for any ψ̃ ∈ X+2 and
ψ̂ ∈ E+1 with ψ̃1(·) = ψ̂1(·) and ψ̃2(θ, ·) = ψ̂2(θ, ·), ∀θ ∈ [−τ2(0), 0], one has w(t, ·, ψ̃) = w̃(t, ·, ψ̂), t ≥ 0,
where w(t, ·, ψ̃) and w̃(t, ·, ψ̂) are solutions of system (4.2) meeting w0 = ψ̃ and w̃0 = ψ̂, respectively.

For every fixed t ≥ 0, let Q̃t be the solution map of system (4.2) on the space E1, i.e., Q̃t(ψ̂) = w̃t(ψ̂),
for t ≥ 0 and ∀ψ̂ ∈ E1. Thus, Q̃ := Q̃ω is the Poincaré map related to system (4.2) and r(Q̃) is the
spectral radius of Q̃. The next lemma indicates that the periodic semiflow Q̃t is eventually strongly
positive.

Lemma 4.3. For each ξ in E+1 , with ξ . 0, the solution w̃(t, ·, ξ) of (4.2) with w̃0 = ξ, meets w̃i(t, ·) > 0
(i = 1, 2) for all t > 2τ̂, therefore, Q̃tξ ≫ 0 for every t > 3τ̂.

The proof of Lemma 4.3 is given in Appendix C.
Fix an integer n0 satisfying n0ω > 3τ̂. Obviously, Q̃n0 = Q̃n0ω is strongly monotone, according to

proof of Lemma 4.3. In addition, through similar arguments in reference [43, Lemma 2.6], one can
get that Q̃n0 is compact. Apply the Krein-Rutman theorem to the linear operator Q̃n0 , and because
r(Q̃n0) = (r(Q̃))n0 , one has λ̄ = r(Q̃) > 0, among them λ̄ is the simple eigenvalue of Q̃ and there is
a eigenvector ϑ ∈ Int(E+1 ) that is strongly positive. Based on reference [22, Lemma 3.8], one has the
following lemma.

Lemma 4.4. The spectral radii of the two Poincaré maps Q̄ : X2 → X2 and Q̃ : E1 → E1 are the same
i.e., r(Q̄) = r(Q̃). Furthermore, R0 − 1 has the same sign as r(Q̃) − 1.

The fact that system has a special solution is given by the following lemma, which can be used to
study long-term dynamics. The following argument is inspired by references [29, Lemma 5] and [44,
Proposition 1.1].

Lemma 4.5. There is a positive ω-periodic function w∗(t, x), such that eµ̃tw∗(t, x) is a solution of (4.2),
where µ̃ = ln r(Q̃)

ω
.

The proof of Lemma 4.5 is given in Appendix D.
Next, we use R0 to give the threshold results of the global dynamics of system (2.12).
Denote

E2 := C([−τ2(0), 0],Y+) × Y+ ×C([−τ2(0), 0],Yh). (4.5)

Through similar arguments in Lemma 4.2, it can be concluded that for any ϕ ∈ Wh and φ̄ ∈ E2 with
ϕ1(θ, ·) = φ̄1(θ, ·), ϕ2(0, ·) = φ̄2(·), and ϕ3(θ, ·) = φ̄3(θ, ·), ∀θ ∈ [−τ2(0), 0], z(t, ·, ϕ) = z̄(t, ·, φ̄) is
established, t ≥ 0, where z(t, ·, ϕ) and z̄(t, ·, φ̄) are solutions of system (2.12) meeting z0 = ϕ and z̄0 = φ̄,
respectively. Then we get that solutions of system (2.12) on E2 exist globally on [0,+∞) and ultimately
bounded. In addition, it is easy to get the next result based on the discussion on references [22, Lemma
3.5], [43] and [45, Theorem 2.9].
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Lemma 4.6. Set Q̂t to be the solution map of system (2.12) on the space E2, i.e., Q̂t(φ̄) = ut(φ̄), for
t ≥ 0 and ∀φ̄ ∈ E2. Thus, Q̂t is an ω-periodic semiflow on E2, in this sense, one has

(i) Q̂0 = I;
(ii) Q̂t+ω = Q̂t ◦ Q̂ω, ∀t ≥ 0;
(iii) Q̂t(φ̄) is continuous in (t, φ̄) ∈ [0,∞) × E2.
Furthermore, Q̂ := Q̂ω admits a strong global attractor in E2.

Next, we prove that the solution of system (2.12) is strictly positive.

Lemma 4.7. Use u(t, ·, φ̄) = (u1(t, ·, φ̄), u2(t, ·, φ̄), u3(t, ·, φ̄)) to be the solution of (2.12) with the initial
data u0 = φ̄ ∈ E2, if there is t1 ≥ 0 such that u2(t1, ·, φ̄) . 0, and u3(t1, ·, φ̄) . 0, in that way, the solution
of system (2.12) meets

u2(t, x, φ̄) > 0, u3(t, x, φ̄) > 0, ∀t > t1, x ∈ Ω̄. (4.6)

Besides, for ∀t > 0, x ∈ Ω̄ and any initial data φ̄ ∈ E2, one has u1(t, x, φ̄) > 0, and

lim inf
t→∞

u1(t, x, φ̄) ≥ ε, unifromly for x ∈ Ω̄, (4.7)

where ε > 0 is a φ̄-independent positive constant.

Proof. According to the comparison principle for cooperative systems, we have u2(t, x) ≥ 0 and
u3(t, x) ≥ 0 for t > 0 and x ∈ Ω̄. Moreover, for a fixed φ̄ ∈ E2, it is easy to know that u2(t, x, φ̄) and
u3(t, x, φ̄) satisfy 

∂u2

∂t
≥ Dv∆u2 − µ̂vu2,

∂u3

∂t
≥ Dh∆u3 − (µ̂h + ϱ̂)u3,

∂u2

∂ν
=
∂u3

∂ν
= 0, x ∈ ∂Ω,

where µ̂v = max
t∈[0,ω],x∈Ω̄

µ(t, x), µ̂h = max
x∈Ω̄

µh(x) and ϱ̂ = max
x∈Ω̄

ϱ(x). If there exists t1 ≥ 0, such that

u2(t1, ·, φ̄) , 0 and u3(t1, ·, φ̄) , 0, one has u2(t, ·, φ̄) > 0 and u3(t, ·, φ̄) > 0, ∀t > t1 based on the strong
maximum principle [40, Proposition 13.1]. For t > 0, let n̄(t, x, φ̄2) be the solution of
∂n̄(t, x)
∂t

=Dv∆n̄(t, x) + (1 − τ′1(t))Λv(t − τ1(t), x)e−
∫ t

t−τ1(t) µm(r,x)dr
−

(
αβ(t, x)p

l
+ µv(t, x)

)
n̄(t, x), x ∈ Ω,

∂n̄(t, x)
∂ν

=0, x ∈ ∂Ω.
(4.8)

Clearly, Λv(t, x) . 0 is non-negative non-trivial and Hölder continuous on R×Ω̄. Using the comparison
principle, one has

u1(t, x) ≥ n̄(t, x) > 0, t > 0, x ∈ Ω̄.

In addition, from reference [38, Lemma 2.1], system (4.8) allows a unique globally attractive periodic
solution n̄∗(t, ·). Then

lim inf
t→∞

u1(t, x, φ̄1) ≥ ε := min
t∈[0,ω],x∈Ω̄

n̄∗(t, x), uniformly for x ∈ Ω̄.

This proof is complete. □
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For every fixed φ̄ ∈ E2, u(t, x, φ̄) is the unique solution of system (2.12) with u0 = φ̄. The following
conclusion indicates that R0 is a threshold for the transmission of disease.

Theorem 4.8. Let R0 be defined in (4.4). We have the following statements:
(i) When R0 < 1, the disease-free ω-periodic solution (u∗1(t, x), 0, 0) of system (2.12) is globally

attractive.
(ii) When R0 > 1, system (2.12) has at least one positive ω-periodic solution

(z̄∗1(t, x), z̄∗2(t, x), z̄∗3(t, x)), and there exists a constant σ̄ > 0 such that for every φ̄ ∈ E2 with φ̄2(·) . 0,
φ̄3(0, ·) . 0, on has

lim inf
t→∞

min
x∈Ω̄

ui(t, x, φ̄) ≥ σ̄, i = 1, 2, 3. (4.9)

Proof. Since Q̂t is the solution map of system (2.12) on E2, based on reference [22, Lemma 3.5], Q̂t

is an ω-periodic semiflow of system (2.12). Thence, Q̂ := Q̂ω is the Poincaré map, and {Q̂n}n≥0 is a
discrete-time system on E2. For every fixed φ̄ ∈ E2, the omega limit set of the orbit {Q̂n(φ̄)}n≥0 is ω(φ̄).
Then ω(φ̄) is an internally chain transitive set for {Q̂n} on E2.

(i) As R0 < 1, according to Lemma 4.4, one has r(Q̃) < 1, and therefore µ̃ = ln r(Q̃)
ω

< 0. For t > 0,
discuss the following system with parameter ϵ > 0,



∂wϵ
1

∂t
=Dv∆wϵ

1 − µv(t, x)wϵ
1 + (1 − τ′2(t))

∫
Ω

Γ (t, t − τ2(t), x, y)

αβ(t − τ2(t), y)p[u∗1(t − τ2(t), y) + ϵ]wϵ
2(t − τ2(t), y)

lN(y)
dy, x ∈ Ω,

∂wϵ
2

∂t
=Dh∆wϵ

2 + cβ(t, x)wϵ
1 − (µh(x) + ϱ(x))wϵ

2, x ∈ Ω,

∂wϵ
1

∂ν
=
∂wϵ

2

∂ν
= 0, x ∈ ∂Ω.

(4.10)

Denote wϵ(t, x, φ̂) = (wϵ
1(t, x, φ̂),wϵ

2(t, x, φ̂)) to be the unique solution of system (4.10) for any φ̂ ∈ E1,
with wϵ

0(φ̂)(θ, x) = (φ̂(0, x), φ̂(θ, x)) for all θ ∈ [−τ2(0), 0], x ∈ Ω̄, where

wϵ
t (φ̂)(θ, x) =wϵ(t + θ, x, φ̂) = (wϵ

1(t, x, φ̂),wϵ
2(t + θ, x, φ̂)), θ ∈ [−τ2(0), 0],∀t ≥ 0, x ∈ Ω̄.

Let Q̃ϵ
t := E1 → E1 be the solution map of system (4.10) and Q̃ϵ := Q̃ϵ

ω be the corresponding Poincaré
map, i.e., Q̃ϵ(φ̂) = wϵ

ω(φ̂), for ∀φ̂ ∈ E1, and make r(Q̃ϵ) be the spectral radius of Q̃ϵ . Then the
eventual strong monotonicity and compactness of Q̃ϵ on E1 are easy to prove, for t ≥ 3τ̂2. From the
continuity of the principle eigenvalue to parameters, one has lim

ϵ→0
r(Q̃ϵ) = r(Q̃). Allow ϵ > 0 to be small

enough, one has r(Q̃ϵ) < 1. From Lemma 4.5, a positive ω-periodic function w∗ϵ(t, x) exists such that
wϵ(t, x) = eµ̃ϵ tw∗ϵ(t, x) is a solution of system (4.10), where µ̃ϵ =

ln r(Q̃ϵ )
ω

< 0. By system (4.1), u∗1(t, ·) is
globally attractive and the comparison principle, there must be a large enough integer n1 > 0 such that
n1ω > τ̂2 and

u1(t, x) ≤ u∗1(t, x) + ϵ, ∀t ≥ n1ω − τ̂2, x ∈ Ω̄.
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Thus, as t ≥ n1ω, one has

∂u2

∂t
≤Dv∆u2 − µv(t, x)u2 + (1 − τ′2(t))

∫
Ω

Γ (t, t − τ2(t), x, y) ·

αβ(t − τ2(t), y)p[u∗1(t − τ2(t), y) + ϵ]u3(t − τ2(t), y)
lN(y)

dy, x ∈ Ω,

∂u3

∂t
≤Dh∆u3 + cβ(t, x)u2 − (µh(x) + ϱ(x))u3, x ∈ Ω,

∂u2

∂ν
=
∂u3

∂ν
= 0, x ∈ ∂Ω,

(4.11)

there exists some C1 > 0, for any given φ̄ ∈ E2, such that

(u2(t, x, φ̄), u3(t, x, φ̄)) ≤ C1(wϵ
1(t, x),wϵ

2(t, x)), t ∈ [n1ω − τ̂2, n1ω], x ∈ Ω̄.

Using systems (4.10) and (4.11), and the comparison theorem [36, Proposition 1], we have

(u2(t, x, φ̄), u3(t, x, φ̄)) ≤ C1eµ̃ϵ tw∗ϵ(t, x), ∀t ≥ n1ω, x ∈ Ω̄.

Accordingly, lim
t→∞

(u2(t, x, φ̄), u3(t, x, φ̄)) = (0, 0) uniformly for x ∈ Ω̄. Using the theory of internally
chain transitive sets [32, Section 1.2], we can prove that lim

t→∞
(u1(t, x, φ̄) − u∗1(t, x)) = 0 uniformly for

x ∈ Ω̄, where u∗1(t, x) is a globally attractive solution of system (4.1). Based on the above argument,
u1(t, ·, φ̄) meets a non-autonomous system, and this system tends to periodic system (4.1)
asymptotically. It is known that system (4.1) can produce a solution semiflow P̂t, t ≥ 0 on
C([−τ2(0), 0],Y+). Then P̂ := P̂ω is a Poincaré map related to system (4.1). Obviously, P̂ has a global
attractor in C([−τ2(0), 0],Y+).

Let J = ω(φ̄) be the omega limit set of φ̄ = (φ̄1, φ̄2, φ̄3) ∈ E2 for Q̂t. Owing to lim
t→∞

u2(t, x, φ̄) = 0

and lim
t→∞

u3(t, x, φ̄) = 0 uniformly for x ∈ Ω̄, one has J = J × {0} × {0̂}. Here, 0̂ represents function

which is identical to 0, i.e., 0̂(θ, ·) = 0, ∀θ ∈ [−τ2(0), 0]. Following Lemma 4.7, we have 0̂ < J. Based
on [32, Lemma 1.2.1], we know thatJ is an internally chain transitive set for Q̂, then J is an internally
transitive chain set for P̂. Define u0 ∈ C([−τ2(0), 0],Y+) by u0(θ, ·) = u∗1(θ, ·) for θ ∈ [−τ2(0), 0]. Since
J , {0̂} and u0 is globally attractive in C ([−τ2(0), 0],Y+) \{0̂}, one has J∩W s(u0) , ∅, where W s(u0) is
the stable set of u0. According to [32, Lemma 1.2.1], one has J = {u0}. J = {u0, 0, 0̂} is proved, thence

lim
t→∞
∥(u1(t, x, φ̄), u2(t, x, φ̄), u3(t, x, φ̄)) − (u∗1(t, ·), 0, 0)∥ = 0.

(ii) When R0 > 1, Lemmas 4.1, 4.4 and 4.5 indicate r(Q̃) > 1, consequently, µ̃ = ln r(Q̃)
ω

> 0. Let

P0 = {φ̄ ∈ E2 : φ̄2(·) . 0 and φ̄3(0, ·) . 0},

and
∂P0 = E2\P0 = {φ̄ ∈ E2 : φ̄2(·) ≡ 0 or φ̄3(0, ·) ≡ 0}.

For every φ̄ ∈ P0, Lemma 4.7 reveals that u2(t, x, φ̄) > 0 and u3(t, x, φ̄) > 0, ∀t > 0, x ∈ Ω̄. Thus,
Q̂n(P0) ⊂ P0, ∀n ∈ N. Lemma 4.6 evidences that Q̂ has a strong global attractor in E2.
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Set
M∂ := {φ̄ ∈ ∂P0 : Q̂n(φ̄) ∈ ∂P0,∀n ∈ N},

and the omega limit set of the orbit γ+ := {Q̂n(φ̄) : ∀n ∈ N} is ω(φ̄). Denote H = (u∗1(t, x), 0, 0̂). Next,
we prove that H cannot form a cycle for Q̂ in ∂P0.

Claim 1. For every ϕ̃ ∈ M∂, the omega limit set ω(ϕ̃) = H.
For every fixed ϕ̃ ∈ M∂, Q̂n(ϕ̃) ∈ ∂P0, ∀n ∈ N. Then either u2(nω, ·, ϕ̃) ≡ 0 or u3(nω, ·, ϕ̃) ≡ 0, for

each n ∈ N. Furthermore, by contradiction and Lemma 4.7, it is obvious that for each t ≥ 0, either
u2(t, ·, ϕ̃) ≡ 0 or u3(t, ·, ϕ̃) ≡ 0. If u2(t, ·, ϕ̃) ≡ 0 for t ≥ 0, then lim

t→∞

(
u1(t, x, ϕ̃) − u∗1(t, x)

)
= 0 uniformly

for x ∈ Ω̄. Thereby, the u3 equation in system (2.12) meets

∂u3

∂t
≤ Dh∆u3 − (µ̄h + ϱ̄)u3,

where ϱ̄ = min
x∈Ω̄

ϱ(x) and µ̄h = min
x∈Ω̄

µh(x). According to the comparison principle, one has

lim
t→∞

u3(t, x, ϕ̃) = 0 uniformly for x ∈ Ω̄. Suppose that u2(t2, ·, ϕ̃) , 0 for some t2 ≥ 0, in the light of

Lemma 4.7, we obtain u2(t, ·, ϕ̃) > 0, ∀t ≥ t2. Accordingly, u3(t, ·, ϕ̃) ≡ 0. From the u2 equation in
system (2.12), one has lim

t→∞
u2(t, x, ϕ̃) = 0 uniformly for x ∈ Ω̄. Consequently, the u1 equation in

system (2.12) abides by a nonautonomous system, which is asymptomatic to the periodic system
(4.1). The theory of asymptomatically periodic system [32, Section 3.2] implies that
lim
t→∞

(u1(t, x, ϕ̃) − u∗1(t, x)) = 0 uniformly for x ∈ Ω̄. Therefore, ω(ϕ̃) = H for any ϕ̃ ∈ M∂, and H can not

form a cycle for Q̂ in ∂P0.
For t > 0, study the time-periodic parabolic system with parameter δ̄ > 0

∂wδ̄
1

∂t
=Dv∆wδ̄

1 − µv(t, x)wδ̄
1 + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)p
[
u∗1(t − τ2(t), y) − δ̄

]
wδ̄

2(t − τ2(t), y)

pδ̄ + lN(y)
dy, x ∈ Ω,

∂wδ̄
2

∂t
=Dh∆wδ̄

2 +
cβ(t, x)l

[
N(x) − δ̄

]
wδ̄

1

pδ̄ + lN(x)
− (µh(x) + ϱ(x))wδ̄

2, x ∈ Ω,

∂wδ̄
1

∂ν
=
∂wδ̄

2

∂ν
= 0, x ∈ ∂Ω.

(4.12)

For every φ̂ ∈ E1, set wδ̄(t, x, φ̂) = (wδ̄
1(t, x, φ̂),wδ̄

2(t, x, φ̂)) to be the unique solution of system (4.12)
with wδ̄

0(φ̂)(θ, x) = (φ̂1(0, x), φ̂2(θ, x)) for all θ ∈ [−τ2(0), 0], x ∈ Ω̄, where

wδ
t (φ̂)(θ, x) = wδ̄(t + θ, x, φ̂) =

(
wδ̄

1(t, x, φ̂),wδ̄
2(t + θ, x, φ̂)

)
,

for any t ≥ 0 and x ∈ Ω̄. Let Q̃δ̄
t : E1 → E1 be the solution map of system (4.12), i.e., Q̃δ̄

t (φ̂) = wδ̄
t (φ̂),

and Q̃δ̄ := Q̃δ̄
ω be the corresponding Poincaré map, for ∀φ̂ ∈ E1. Let r(Q̃δ̄) be the spectral radius of Q̃δ̄.

Because lim
δ̄→0

r(Q̃δ̄) = r(Q̃) > 1, a fully small δ̄ > 0 can be selected, such that

δ̄ < min
{

min
t∈[0,ω],x∈Ω̄

u∗1(t, x), min
x∈Ω̄

N(x)
}
, and r(Q̃δ̄) > 1.

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2538–2574.



2557

For the certain δ̄ > 0, according to the continuous dependence of the solution on the initial data,
there must be a constant δ∗ > 0 such that for all φ̄with ∥φ̄−H∥ < δ∗, which leads to ∥Q̂t(φ̄)−Q̂t(H)∥ < δ̄
for all t ∈ [0, ω].

Claim 2. For any φ̄ ∈ P0, then lim sup
n→∞

∥Q̂n(φ) − H∥ ≥ δ∗.

Assuming for some φ̄0 ∈ P0, one has lim sup
n→∞

∥Q̂n(φ̄0)−H∥ < δ∗, by contradiction. So there is n2 ≥ 1

such that ∥Q̂n(φ̄0) − H∥ < δ∗ for all n ≥ n2. For each t ≥ n2ω, set t = nω + t′ with n = [t/ω] and
t′ ∈ [0, ω), one has

∥Q̂t(φ̄0) − Q̂t(H)∥ = ∥Q̂t′(Q̂n(φ̄0)) − Q̂t′(H)∥ < δ̄. (4.13)

Following system (4.13) and Lemma 4.7, we can receive

u∗1(t, x) − δ̄ < u1(t, x, φ̄0) < u∗1(t, x) + δ̄, 0 < u2(t, x, φ̄0) < δ̄, 0 < u3(t, x, φ̄0) < δ̄,

for each t > n2ω − τ̂2, and x ∈ Ω̄. As t ≥ n2ω, u2(t, x, φ̄0) and u3(t, x, φ̄0) meet

∂u2

∂t
≥Dv∆u2 − µv(t, x)u2 + (1 − τ′2(t))

∫
Ω

Γ (t, t − τ2(t), x, y) ·

αβ(t − τ2(t), y)p
[
u∗1(t − τ2(t), y) − δ̄

]
u3(t − τ2(t), y)

pδ̄ + lN(y)
dy, x ∈ Ω,

∂u3

∂t
≥Dh∆u3 +

cβ(t, x)l
[
N(x) − δ̄

]
u2

pδ̄ + lN(x)
− (µh(x) + ϱ(x))u3, x ∈ Ω,

∂u2

∂ν
=
∂u3

∂ν
= 0, x ∈ ∂Ω.

(4.14)

Based on u(t, x, φ̄0) ≫ 0 for every t ≥ 0 and x ∈ Ω̄, there must be a constant C2 > 0, such that

(u2(t, x, φ̄0), u3(t, x, φ̄0)) ≥ C2eµ̃δ̄tu∗
δ̄
(t, x),∀t ∈ [n2ω − τ̂2, n2ω], x ∈ Ω̄,

where u∗
δ̄
(t, x) is a positive ω-periodic function and eµ̃δ̄tu∗

δ̄
(t, x) is a solution of system (4.12), then

µ̃δ̄ =
ln r(Q̃δ̄)

ω
> 1. By system (4.14) and the comparison theorem

(u2(t, x, φ̄0), u3(t, x, φ̄0)) ≥ C2eµ̃δ̄tu∗
δ̄
(t, x), ∀t ≥ n2ω, x ∈ Ω̄.

Obviously, µ̃δ̄ > 0, then u2(t, ·, φ̄0) → +∞ and u3(t, ·, φ̄0) → +∞ as t → +∞, which leads to a
contradiction.

With the above claim, it is easy to obtain that H is an isolated invariant set for Q̂ in E2, and W s(H)∩
P0 = ∅, where W s(H) is the stable set of H for Q̂. For every integer n and nω > τ̂2, Q̂n := Q̂nω is
compact, then Q̂ is compact, and Q̂ is asymptotically smooth on E2. Moreover, similar to Lemma 4.6,
we get that Q̂ has a global attractor on E2. According to reference [45, Theorem 3.7], Q̂ has a global
attractor A0 in P0. Based on the acyclicity theorem on uniform persistence for map [32, Theorem 1.3.1
and Remark 1.3.1], we obtain that Q̂ is uniformly persistent with respect to (P0, ∂P0), in this sense,
there exists an γ1 > 0, such that

lim inf
n→∞

d(Q̂n(φ̄), ∂P0) ≥ γ1, ∀φ̄ ∈ P0. (4.15)
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Now, the practical persistence are derived. Following A0 = Q̂(A0), we obtain that φ̄2(·) > 0 and
φ̄3(0, ·) > 0 for any φ̄ ∈ A0. Set B :=

⋃
t∈[0,ω]

Q̂t(A0). Obviously, we have B ⊂ P0 and lim
t→∞

d(Q̂t(φ̄),B) = 0,

∀φ̄ ∈ P0. The continuous function q : E2 → R+ is defined by

q(φ̄) := min
{

min
x∈Ω̄

φ̄2(0, x),min
x∈Ω̄

φ̄3(0, x)
}
, ∀φ̄ ∈ (φ̄1, φ̄2, φ̄3) ∈ E2.

Because B is a compact subset of P0, we obtain that inf
φ̄∈B

q(φ̄) = min
φ̄∈B

q(φ̄) > 0. Consequently, there is

an γ2 > 0 such that

lim inf
t→∞

q(Q̂t(φ̄)) = lim inf
t→∞

min
(
min
x∈Ω̄

u2(t, x, φ̄),min
x∈Ω̄

u3(t, x, φ̄)
)
≥ γ2, ∀φ̄ ∈ P0.

Furthermore, according to Lemma 4.7, there must be an γ3 ∈ (0, γ2) such that

lim inf
t→∞

min
x∈Ω̄

u j(t, x, φ̄) ≥ γ3, ∀φ̄ ∈ P0 ( j = 1, 2, 3).

By references [29, Lemma 8] and [32, Theorem 3.5.1], for every t > 0, the solution map Qt :=
Wh → Wh of system (2.12), defined in Lemma 3.2, is a κ-contraction about an equivalent norm on Wh,
where κ is Kuratowski measure of noncompactness. Define

W0 = {ϕ ∈ Wh : ϕ2(0, ·) . 0 and ϕ3(0, ·) . 0} ,

and
∂W0 = Wh/W0 = {ϕ ∈ Wh : ϕ2(0, ·) = 0 or ϕ3(0, ·) = 0} .

For any ϕ ∈W0, Q is ρ-uniformly persistent with ρ(ϕ) = d(ϕ, ∂W0) is easily attainable. It then follows
from [45, Theorem 4.5], applicable to Q, that system (2.12) has an ω-periodic solution
(z∗1(t, ·), z∗2(t, ·), z∗3(t, ·)) with (z∗1t, z

∗
2t, z

∗
3t) ∈ W0. Let z̄∗1(θ, ·) = z∗1(θ, ·), z̄∗2(0, ·) = z̄∗2(0, ·) and

z̄∗3(θ, ·) = z∗3(θ, ·) where θ ∈ [−τ2(0), 0]. Combing the uniqueness of solutions and Lemma 4.7, we have
that (z̄∗1(t, ·), z̄∗2(t, ·), z̄∗3(t, ·)) is periodic solution system (2.12) and it is also strictly positive. □

Next, we prove the asymptomatic behaviour of M and Ev in system (2.11). By Eq (2.6), and
Λv(t, x) . 0 is nonnegative and Hölder continuous function for t > 0 and x ∈ Ω̄. Then there is a unique
positive ω-periodic solution M∗(t, x) which is globally attractive. From Eq (3.6) and Theorem 4.8(i),
when R0 < 1, one has lim

t→∞
Ev(t, ·) = 0. With the arguments similar to those above, we can prove that

if R0 < 1, then lim
t→∞

(Ev(t, x), Iv(t, x), Ih(t, x)) = (0, 0, 0) and lim
t→∞

(
(M(t, ·), S v(t, x)) − (M∗(t, x), u∗1(t, x))

)
=

0, uniformly for x ∈ Ω̄. By Eq (2.12), Theorem (4.8)(ii) and Eqs (2.6) and (3.6), then if R0 > 1, for any
φ̄ ∈ E2 with φ̄2(·) . 0 and φ̄3(0, ·) . 0, one has

lim inf
t→∞

S v(t, x) ≥ γ3, lim inf
t→∞

Iv(t, x) ≥ γ3, lim inf
t→∞

Ih(t, x) ≥ γ3,

uniformly for x ∈ Ω̄. Since Λv(t, x) is Hölder continuous and non-negative function for t > 0 and x ∈ Ω
from Eq (2.6), then there exists γ4 > 0 such that

lim inf
t→∞

M(t, x) ≥ γ4,
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uniformly for x ∈ Ω̄ with M(0, x) satisfies compatibility condition (3.4). By the integral form Eq (3.6),
then exists γ5 > 0 such that

lim inf
t→∞

min
x∈Ω̄

Ev(t, x) ≥ γ5,

with Ev(0, x) satisfies compatibility condition (3.5). In addition, if (S v(t, ·), Iv(t, ·), Ih(t, ·)) is ω-periodic
in t, then Ev(t, ·) is ω-periodic is easy to be checked. Therefore, the following result is obtained.

Theorem 4.9. Let R0 be defined as in (4.4). Set U(t, x, ψ) to be the solution of system (2.11) with U0 =

ψ, where (U1(t, x),U2(t, x), U3(t, x),U4(t, x),U5(t, x)) = (M(t, x), S v(t, x), Ev(t, x), Iv(t, x), Ih(t, x)). One
has:

(i) When R0 < 1, the disease-free ω-periodic solution (M∗(t, ·), u∗1(t, ·), 0, 0, 0) of system (2.11) is
globally attractive.

(ii) When R0 > 1, system (2.11) has at least one positive ω-periodic solution Ū(t, x), where
Ū2(t, x) = z̄∗1(t, x), Ū4(t, x) = z̄∗2(t, x), Ū5(t, x) = z̄∗3(t, x) and there is a constant γ6 = max{γ3, γ4, γ5} > 0
that makes for every ψ ∈ D with ψ4(·) . 0, ψ5(0, ·) . 0, we have

lim inf
t→∞

min
x∈Ω̄

Ūi(t, x, ψ) ≥ γ6, i = 1, 2, 3, 4, 5, 6. (4.16)

5. Numerical

In this part, we use numerical simulations to clarify the impact of spatial heterogeneity, periodic
delays, seasonality, and vector-bias on the spread of malaria, to show how to derive some understanding
of epidemiology from our analysis results.

5.1. Numerical confirmation of theoretical results

Here, some simulations to support the analysis results built in Section 4 are provided. More
precisely, the potential dynamics outcomes of system (2.11) are given. For convenience, we will focus
our attention on the domain Ω, which is one-dimensional, denoted by [0, π] to simulate the long-time
behavior of system (2.11). The basic reproduction number R0 often (but not always) controls the
extinction and persistence of the disease. Specifically, system (2.11) applies to the transmission of
malaria in Maputo Province, Mozambique, a sub-Saharan African country where malaria is at risk of
spreading in the country. The WHO report shows that the number of confirmed malaria cases has
been increasing in recent years, and the condition deteriorated severely in 2014.

According to reference [24], suppose the total population density N(x) = N̄ = 53 (km2)−1. The unit
of time is month. Set the periodic ω = 1 year = 12 months. We set ϱ = a1(2.05 − cos(2x)) Month−1,
where a1 = 0.0187 means that people living in urban areas (near the center area) can get better medical
services (number of doctors and hospitals, advanced medical equipment, supply of medicines) than
people in rural areas. This results in a higher recovery rate near the center. See Appendix E for the
values and definitions of other parameters.

To compute R0, we use the numerical method proposed in reference [41, Lemma 2.5 and Remark
3.2]. Using the above parameters set, the basic reproduction number can be numerically calculate as
R0 = 1.2233 > 1, which implies that in mosquito and human populations, the disease persist. Figure 3
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shows numerical plots of humans and mosquitoes compartments with initial data

û(θ, x) =


500 − 5 cos 2x
300 − 5 cos 2x
32 − 5 cos 2x
40 − 5 cos 2x
5 − 2 cos 2x


, ∀θ ∈ [−τ̂, 0], x ∈ [0, π],

where û(t, x) := (M, S v, Ev, Iv, Ih). This conforms to the conclusion of Theorem 4.9(ii). The time
interval can be truncated [20, 30] to prove that the existence of the positive periodic solution.

Reduce the bite rate to 0.5β(t), and increase the death rate of mosquito to 1.5µv(t), which can be
achieved by using insecticide-treated nets, then R0 = 0.2983 < 1. Thus, immature mosquitoes and
susceptible adult mosquitoes show periodic fluctuations. The exposed adult mosquitoes, infectious
adult mosquitoes and infectious humans converge to 0 (Figure 4). This is coincident with the
conclusion of Theorem 4.9(i).

(a) The evolution of juvenile mosquitoes (b) The evolution of susceptible adult
mosquitoes

(c) The evolution of exposed adult
mosquitoes

(d) The evolution of infectious adult
mosquitoes

(e) The evolution of infectious humans

Figure 3. The long-term behavior of the solutions of system (2.11) when R0 > 1.
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(a) The evolution of juvenile mosquitoes (b) The evolution of susceptible adult
mosquitoes

(c) The evolution of exposed adult
mosquitoes

(d) The evolution of infectious adult
mosquitoes

(e) The evolution of infectious humans

Figure 4. The long-term behavior of system (2.11) solution, when R0 < 1.

5.2. Effects of parameters on R0

We are interested in how system parameters affect the disease risk R0. In this section, we choose
the parameters that are consistent with those in Section 5.1.

5.2.1. The impact of periodic maturity delay on disease transmission

In this subsection, we explore the impact of mature period affected by seasonal climate change on
malaria transmission. The results are given in Figure 5, the green one represents the time-averaged
value of maturation delay [τ1] in system (2.11), where [τ1] = 1

ω

∫ ω

0
τ1(t)dt = 0.5605 Month, and the

red one indicates system (2.11) is under a time-periodic maturation delay. An intuitive result is that in
these four cases, the green line is always below the red line, which fully indicates that the time-average
maturity delay will underestimate the risk of malaria transmission, so the impact of climate change
cannot be ignored. In the following subsections, we analyze in detail the sensitivity of R0 to these four
parameters.

5.2.2. The relationship between R0 and l/p

Looking at Figure 5, we let l/p vary in [0, 1], and other parameters are same as those in Figure 3
and explore the impact of the vector-bias effect, l/p are used to represent the relative attractiveness
of susceptible to infected humans. From Figure 5(a), it can be easily seen that R0 is an increasing
function of l/p. Therefore, ignoring the vector-bias effect will ultimately underestimate the risk of
disease transmission. And this conclusion is valid regardless of whether the periodic or the time-
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average maturation delay is considered.
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(a) The relationship between R0 and l/p
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(b) The relationship between R0 and Dh
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(c) The relationship between R0 and a1
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(d) The relationship between R0 and and δ1

Figure 5. The relationship between R0 and parameters. There are two curves. The green one
represents the time-average maturity delay [τ1], and the red one represents τ1(t) affected by
the periodic temperature.

5.2.3. The impact of interventions on R0

In this subsection, we examine the impact of interventions on R0. Note that in Figure 3(e), the
population density of infected individuals in urban (central) areas is less than in rural (border) areas,
which prompts us to explore the relationship between human recovery rate ϱ and disease risk R0 in a
heterogeneous space. Since medical resources (advanced medical equipment, the number of hospitals
and doctors, medicine supply) are abundant in urban areas than in rural areas, humans can get better
medical services in urban areas with a higher recovery rate.

In this subsection, we analyze the impact of medical resources on the spread of malaria, including
two aspects: (i) the impact of increasing medical resources; (ii) for fixed medical resources, the
impact of different allocation measures on disease transmission. In Figure 5(b), we let a1 in ϱ vary in
[0.02, 0.5], and the other parameters are same as those in Figure 3. It proposes a strategy, i.e., in the
current allocation of the medical resources, the recovery rate can be improved through efforts to
develop new drugs. Figure 5(b) shows that increasing medical resources can reduce R0 to less than 1,
which means that the disease can be controlled. In this paper, we use the recovery rate

∫ π

0
ϱ(x)dx of
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the entire region to represent medical resources.
In the case of fixed medical resources, we explore the impact of different allocation on the spread

of disease. Choose a1 = 0.058 and a new parameter δ1 is added to ϱ, i.e., ϱ(x) = 0.058 × (1 − (1 −
δ1) cos(2x)), where δ1 ∈ [0, 1], which measures the difference in the allocation of urban and rural
medical resources. Other parameters are the same as those in Figure 3. When δ1 = 0, the gap between
rural and urban medical resources is the largest, and the recovery rate in urban area is the highest (near
the center of space area, i.e., x = π

2 ). As δ1 changes from 0 to 1, medical resources are allocated to
nearby rural area (near x = 0 and x = π), and the gap in medical conditions between rural and urban
areas gradually narrows, and is eventually evenly distributed in space. Through calculation, it can be
found that if δ1 = 0, in order to make R0 less than 1, a1 ≥ 0.0637 is needed, but if δ1 = 1, the medical
resources only need 0.0576, which can make R0 < 1. From Figure 5(c), we come to an interesting
conclusion that in the case of limited medical resources, the spatial heterogeneity of the distribution of
medical resources increases the risk of disease transmission. This result indicates that the distribution
of medical resources dose play an important role in the design of malaria control programs.

5.2.4. The influence of Dh on the R0

We explore the impact of human mobility on the transmission of malaria in a heterogeneous space.
Let Dh vary in [0.02, 0.5] and other parameters are consistent with those in Figure 3. The result is
shown in Figure 5(d), which describes the relationship between R0 and Dh. It can be directly observed
from Figure 5(d) that R0 decreases with respect to Dh. When Dh is very small, R0 will drop sharply
and as Dh continues to increase, the rate of decline of R0 will slow down. This seems to indicate
that malaria cannot be controlled if no protective measures are taken and only by improving a high
diffusion to avoid mosquito bites without taking any protective measures [49] systematically analyzes
this problem.

5.3. The impact of diffusion on the final size of malaria

In Section 5.2.4, we explore the impact of diffusion on R0, and study the impact of diffusion on the
final size of disease transmission. Set ϱ(x) = 0.04(2.05 − cos(2x)) and other parameters are consistent
with those in Figure 3. When Dh = 0.1 and Dv = 0.0125, calculate R0 = 0.8448, the disease is extinct.
However, without considering the movement of mosquitoes and humans, that is, when the diffusion
coefficients are Dh = 0 and Dv = 0, it is found that R0 = 1.1635 is greater than 1, and the disease is
persistent. Then, we will get the result shown in Figure 6, which shows some interesting phenomena.
Under this set of parameters, if the diffusion of mosquitoes and humans is not considered, then the
disease is extinct in urban areas, and is persistent in rural areas. The reason for this result is that we
study spatial heterogeneity. Due to urban environment is not suitable for mosquitoes to survive, the
number of mosquitoes is relatively small, and the medical resources are relatively large, so the urban
disease control is better. Compared with the right column of Figure 6, the movement of mosquitoes
and humans will reduce the risk of disease transmission to a certain extent, which is consistent with
the conclusions in Figure 5(d) and reference [24]. There are two explanations: (i) The existence of
diffusion indicates that the infected humans in rural areas can be treated in cities with better medical
conditions. (ii) As mentioned in reference [24], to a certain extent, it is difficult for mosquitoes to take
a blood meal among moving humans.
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(a) Ev(t, x) without diffusion (b) Ev(t, x) with diffusion (c) Iv(t, x) without diffusion

(d) Iv(t, x) with diffusion (e) Ih(t, x) without diffusion (f) Ih(t, x) with diffusion

Figure 6. The evolution of infection compartments of humans and mosquitoes with/without
diffusion.

6. Discussion

As we all know, in the study of malaria transmission, the combined effects of temperature-dependent
EIP and maturation delay, vector-bias, spatial structure and seasonal variation are worth studying.
Here, we establish and analyze a reaction-diffusion model of malaria, including periodic delays and
vector-bias in a heterogeneous environment.

Using the theory proposed by Liang et al. [41] and Zhao [42], the basic reproduction number R0

can be introduced. We first prove that in a defined phase space, linear system (4.2) generates a
periodic semiflow which is eventually strongly monotonic. Then, we describe R0 as a threshold for
the extinction and persistence of malaria. It is proved that if R0 < 1, then malaria will be eliminated.
When R0 > 1, there admits at least one positive ω-periodic solution.

In the numerical part, data for exploring the transmission of malaria in Maputo Provence,
Mozambique have been published. The numerical simulation is divided into three parts. First, we give
some simulation conclusions to support the theoretical analysis. Second, we discuss the sensitivity of
R0 to the parameters in the model. (I) Our numerical results show that if we only consider the
time-average maturation delay, we can underestimate the risk of malaria transmission assessed by R0.
(II) It is easy to know that R0 is decreasing with respect to l/p. Thence, if the impact of vector-bias
effect on malaria transmission is ignored, the risk of transmission will be underestimated. (III) We
analyze the impact of intervention measures on R0 from two aspects: (i) the impact of increasing
medical resources. This case is mainly due to the uneven distribution of medical resources in rural
and urban areas, which increases the impact of medical resources on R0; (ii) for fixed medical
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resources, the impact of different allocation measures on disease transmission. Through the analysis
of this case, we find that in the case of limited medical resources, narrowing the gap in the allocation
of medical resources between rural and urban areas can better reduce the risk of malaria transmission.
Third, we explore the impact of diffusion on R0 in a spatially heterogeneous environment, assuming
that the distribution of medical resources and the initial data of mosquitoes and humans depend on
space. Biologically speaking, we understand this spatial heterogeneity as the difference between rural
and urban areas. In addition, we also study the impact of diffusion on the final size of malaria. We
find that under the set parameters, if the diffusion of mosquitoes and humans is not considered, the
disease will become extinct in urban areas, and persist in rural areas. But under this set of parameters,
the disease will become extinct if the diffusion is not considered.
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Appendix

A. Proof of Lemma 3.2

Proof. Firstly, the local existence of the unique mild solution is proved. Clearly, F is locally Lipschitz
continuous. It is necessary to show

lim
θ̂→0

dist
(
ϕ(0, ·) + θ̂F(t, ϕ),X+1

)
= 0,∀(t, ϕ) ∈ [0,+∞) ×Wh. (A.1)

For all (t, ϕ) ∈ [0,+∞) ×Wh and θ̂ ≥ 0, because p ≥ l > 0, one has

ϕ(0, x) + θ̂F(t, ϕ)(x)

=


ϕ1(0, x) + θ̂

(
(1 − τ′1(t))Λv(t − τ1(t))e−

∫ t
t−τ1(t) µm(r,x)dr

−
αβ(t,x)pϕ3(0,x)ϕ1(0,x)

pϕ3(0,x)+l[N(x)−ϕ3(0,x)]

)
ϕ2(0, x) + θ̂(1 − τ′2(t))

∫
Ω
Γ(t, t − τ2(t), x, y)αβ(t−τ2(t),y)pϕ3(−τ2(t),y)ϕ1(−τ2(t),y)

pϕ3(−τ2(t),y)+l[N(y)−ϕ3(−τ2(t),y)] dy
ϕ3(0, x) + θ̂ cβ(t,x)l[N(x)−ϕ3(0,x)]ϕ2(0,x)

pϕ3(0,x)+l[N(x)−ϕ3(0,x)]


≥


ϕ1(0, x) + θ̂

(
(1 − τ′1(t))Λv(t − τ1(t))e−

∫ t
t−τ1(t) µm(r,x)dr

−
αβ(t,x)pϕ3(0,x)ϕ1(0,x)

lN(x)

)
ϕ2(0, x) + θ̂(1 − τ′2(t))

∫
Ω
Γ(t, t − τ2(t), x, y)αβ(t−τ2(t),y)pϕ3(−τ2(t),y)ϕ1(−τ2(t),y)

lN(y) dy
ϕ3(0, x) + θ̂ cβ(t,x)l[N(x)−ϕ3(0,x)]ϕ2(0,x)

pN(x)


≥


ϕ1(0, x)

(
1 − θ̂αβ̂pϕ3(0,x)

lÑ

)
ϕ2(0, x)

ϕ3(0, x)
(
1 − θ̂ cβ̂lϕ2(0,x)

pÑ

)
 ,

for t ≥ 0 and x ∈ Ω̄, where β̂ = max
t∈[0,ω],x∈Ω̄

β(t, x) and Ñ = min
x∈Ω̄

N(x), and

N(x) − [ϕ3(0, x) + θ̂F3(t, ϕ)(x)] =[N(x) − ϕ3(0, x)]
[
1 −

θ̂cβ(t, x)lϕ2(0, x)
pϕ3(0, x) + l[N(x) − ϕ3(0, x)]

]
≥[N(x) − ϕ3(0, x)]

[
1 −

θ̂cβ(t, x)ϕ2(0, x)
N(x)

]
.

This implies that

lim
θ̂→0

dist
(
ϕ(0, ·) + θ̂F(t, ϕ),Y+ × Y+ × Yh

)
= 0, ∀(t, ϕ) ∈ [0,+∞) ×Wh.

Consequently, by reference [36, Corollary 4] with K = Y+ × Y+ × Yh and S (t, s) = T (t, s), system
(2.12) has a unique mild solution u(t, ·, ϕ) on its maximum existence interval t ∈ [0, tϕ) and u0 = ϕ

where tϕ ≤ ∞, u(t, ·, ϕ) ∈ Y+ × Y+ × Yh. In addition, when t > τ̂, u(t, ·, ϕ) is a classical solution, based
on the analyticity of T (t, s), s, t ∈ R and t > s.

Analyze the following time-periodic reaction-diffusion equation
∂ŵ(t, x)
∂t

=Dv∆ŵ(t, x) − µv(t, x)ŵ(t, x) + (1 − τ′1(t))Λv(t − τ1(t), x)e−
∫ t

t−τ1(t) µm(r,x)dr
, x ∈ Ω,

∂ŵ(t, x)
∂ν

=0, x ∈ ∂Ω.
(A.2)
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By reference [38, Lemma 2.1], system (A.2) has a unique globally attractive positive ω-periodic
solution u∗1(t, x) in Y+. Since system (A.2) can dominate the first equation of (2.12), there is a B1 > 0
such that for any ϕ ∈ Wh, a positive integer l1 = l1(ϕ) > 0 exists and meets u1(t, x, ϕ) ≤ B1 for all
t ≥ l1ω and x ∈ Ω̄.

Next, similar to reference [46, Theorem 2.1], the ultimate boundedness of solutions can be proved.
Set

Λ̃v = max
t∈[0,ω]

∫
Ω

Λv(t, x)dx,

for any ϕ ∈ Wh, let (u1(t, x), u2(t, x), u3(t, x)) := (u1(t, ϕ)(x), u2(t, ϕ)(x), u3(t, ϕ)(x)), t ≥ 0, x ∈ Ω̄, and
ūi(t) =

∫
Ω

ui(t, x)dx where i = 1, 2, 3. Using the Green’s formula and integrating the first equation of
system (2.12), one has

dū1(t)
dt
=

∫
Ω

(1 − τ′1(t))Λv (t − τ1(t), x) e−
∫ t

t−τ1(t) µm(r,x)drdx

−

∫
Ω

αβ(t, x)pu3u1

pu3 + l[N(x) − u3]
dx −

∫
Ω

µv(t, x)u1dx

≤Λ̃v − µ̄vū1(t) −
∫
Ω

αβ(t, x)pu3u1

pu3 + l[N(x) − u3]
dx,

that is, ∫
Ω

αβ(t, x)pu3u1

pu3 + l[N(x) − u3]
dx ≤ Λ̃v − µ̄vū1(t) −

dū1(t)
dt

, t > 0. (A.3)

By system (A.3), the property of the fundamental solutions [47] and Green’s formula, the second
equation of (2.12) are integrated to get

dū2(t)
dt
= −

∫
Ω

µv(t, x)u2dx + (1 − τ′2(t))
∫
Ω

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pu3(t − τ2(t), y)u1(t − τ2(t), y)
pu3(t − τ2(t), y) + l[N(y) − u3(t − τ2(t), y)]

dydx

≤ − µ̄vū2(t) − k1ū2(t − τ2(t)) − k2
dū1(t − τ2(t))

dt
+ k3, ∀t ≥ l1ω + τ̂,

(A.4)

where k1, k2 and k3 are positive numbers independent of ϕ. Select k1 ≤ µ̄vk2 in system (A.4), so that

d
dt

[ū2(t) + k2ū1(t − τ2(t))] ≤ −µ̄vū2(t) − k1ū1(t − τ2(t)) + k3 ≤ −
k1

k2
ū2(t) − k1ū1(t − τ2(t)) + k3

≤ −
k1

k2
[ū2(t) + k2ū1(t − τ2(t))] + k3, ∀t ≥ l1ω + τ̂,

which yields ū2(t) + k2ū1(t − τ2(t)) ≤ k2k3
k1
+ 1 for t ≥ l′1ω + τ̂, where l′1 > l1 is some integer. Hence,

ū2(t) = ∥u2(t, ·)∥L1(Ω) ≤
k2k3

k1
+ 1, t ≥ l′1ω.

Integrating the third equation on model (2.12), and applying Green’s formula, we have

dū3(t)
dt
=

∫
Ω

cβ(t, x)l[N(x) − u3(t, x)]u2(t, x)
pu3(t, x) + l[N(x) − u3(t, x)]

dx −
∫
Ω

(µh(x) + ϱ(x))u3(t, x)dx ≤ cβ̂ū2(t) − (µ̄h + ϱ̄)ū3(t).
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Thus,

ū3(t) ≤

(
k2k3
k1
+ 1

)
cβ̂

µ̄h + ϱ̄
,

for t ≥ l2ω + τ̂, (l2 ≥ l1) and x ∈ Ω̄. Therefore, we have tϕ = ∞ for each ϕ ∈ Wh.
Let {Qt}t≥0 be a family of operators on Wh and Qt(ϕ)(s, x) = ut(s, x, ϕ) = u(t + s, x, ϕ) for t ≥

0, s ∈ [−τ̂, 0], x ∈ Ω and ϕ ∈ Wh. Similar to the proof of Lemma 2.1 in reference [38], we can
show that {Qt}t≥0 is an ω-periodic semiflow on Wh. From the above proofs, we conclude that Qt :
Wh → Wh is point dissipative. Moreover Q := Qω is κ-contraction, where κ is Kuratowski measure of
noncompactness, and hence, Q is asymptotically smooth. By references [48, Theorem 2.4.7] and [32,
Theorem 1.1.2], it follows that Q has a global compact attractor.

□

B. Proof of Lemma 4.2

Proof. Let τ̄2 = min
t∈[0,ω]

τ2(t). For all t ∈ [0, τ̄2], since t − τ2(t) strictly increase with respect to t, one has

−τ2(0) = 0 − τ2(0) ≤ t − τ2(t) ≤ τ̄2 − τ2(τ̄2) ≤ τ̄2 − τ̄2 = 0,

and therefore, w̃2(t − τ2(t), ·) = ψ̂2(t − τ2(t), ·). Thus, for any t ∈ [0, τ̄2], there holds

∂w̃1

∂t
=Dv∆w̃1 − µv(t, x)w̃1 + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pψ̂2(t − τ2(t), y)u∗1(t − τ2(t), y)
lN(y)

dy, x ∈ Ω,

∂w̃2

∂t
=Dh∆w̃2 + cβ(t, x)w̃1 − (µh(x) + ϱ(x))w̃2, x ∈ Ω,

∂w̃1

∂ν
=
∂w̃2

∂ν
= 0, x ∈ ∂Ω.

Fix ψ̂ ∈ E+1 , for t ∈ [0, τ̄2], the solution (w̃1(t, ·), w̃1(t, ·)) of the above linear system exists uniquely.
To put this another way, one has z1(θ3, ·) = w̃1(θ3, ·), where θ3 ∈ [0, τ̄2] and z2(θ4, ·) = w̃2(θ4, ·),
θ4 ∈ [−τ2(0), τ̄2].

By repeating the above step to [nτ̄2, (n + 1)τ̄2], we see that the solution with initial date ψ̂ ∈ E+1
exists uniquely for all t ≥ 0.

□

C. Proof of Lemma 4.3

Proof. Similar to the proof of Lemma 4.2, on each interval [nτ̄2, (n+1)τ̄2], n ∈ N, one easily obtain that
w̃i(t, ·) ≥ 0, (i = 1, 2) for all t ≥ 0. Select a K > max{µ̂v, µ̂h + ϱ̂}, such that for every t ∈ R, g1(t, ·, w̃1) :=
−µv(t, ·)w̃1 + Kw̃1 is strictly increasing with respect to w̃1, and g2(t, ·, w̃2) := −(µh(·) + ϱ(·))w̃2 + Kw̃2 is
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increasing in w̃2. Then, for t > 0, both w̃1 and w̃2 meet the following system

∂w̃1

∂t
=Dv∆w̃1 − Kw̃1 + g1(t, ·, w̃1) + (1 − τ′2(t))

∫
Ω

Γ(t, t − τ2(t), x, y)·

αβ(t − τ2(t), y)pw̃2(t − τ2(t), y)u∗1(t − τ2(t), y)
lN(y)

dy, x ∈ Ω,

∂w̃2

∂t
=Dh∆w̃2 − Kw̃2 + g2(t, ·, w̃2) + cβ(t, x)w̃1, x ∈ Ω,

∂w̃1

∂ν
=
∂w̃2

∂ν
= 0, x ∈ ∂Ω.

Therefore, for a fixed ξ̄ ∈ E+1 , one has

w̃1(t, ·, ξ̄) =T̃1(t, 0)ξ̄1(0) +
∫ t

0
T̃1(t, s)g1(s, ·, w̃1(s, ·))ds +

∫ t

0
T̃1(t, s)(1 − τ′2(t))·∫

Ω

Γ(s, s − τ2(s), ·, y)
αβ(s − τ2(s), y)pw̃2(s − τ2(s), y)u∗1(s − τ2(s), y)

lN(y)
dyds,

w̃2(t, ·, ξ̄) =T̃2(t, 0)ξ̄2(0) +
∫ t

0
T̃2(t, s)g2(s, ·, w̃2(s, ·))ds +

∫ t

0
T̃2(t, s)cβ(s, ·)w̃1(s, ·)ds,

(C.1)

where T̃1(t, s), T̃2(t, s) := Y → Y are evolution operators related to ∂w̃1
∂t = Dv∆w̃1 − Kw̃1 and ∂w̃2

∂t =

Dh∆w̃2 − Kw̃2 with Nuemann boundary condition. Since m(t) := t − τ2(t) are increasing in t ∈ R,
it easily follows that [−τ2(0), 0] ⊆ m([0, τ̂2]). Generally, we assume that ξ2 > 0. Then there exists
an (θ, x0) ∈ [−τ2(0), 0] × Ω such that w̃2(θ, x0) > 0. According to the equation of (C.1), we have
w̃1(t, ·, ξ) > 0 for all t > τ̂2. If s > 2τ̂2, then s − τ2(s) > 2τ̂2 − τ̂2 = τ̂2. It is easy to know that
∀t ≥ 0, w̃2(t, ·, ξ) > 0 for all t > 2τ̂2 according to the second equation of (C.1). This means that there is
w̃i(t, ·) ≥ 0 for all t > 2τ̂2, i = 1, 2, so the solution map Q̃t is strongly positive for all t > 3τ̂2.

□

D. Proof of Lemma 4.5

Proof. For every ψ̂ ∈ E+1 , let w̃(t, x, ψ̂) = (w̃1(t, x, ψ̂), w̃2(t, x, ψ̂)) be the solution of (4.2) with w̃0(ψ̂) = ψ̂.
Since ψ̂ ≫ 0, we get w̃t(ψ̂) ≫ 0 for all t ≥ 0 will be a piece of cake. Denote

w∗1(t, x) = e−µ̃tw̃1(t, x, ψ̂), t ≥ 0, x ∈ Ω̄,

w∗2(t, x) = e−µ̃tw̃2(t, x, ψ̂), t ≥ −τ2(0), x ∈ Ω̄.

Then w∗(t, x) = (w∗1(t, x),w∗2(t, x)) ≫ 0 for t ≥ 0, x ∈ Ω̄, and w∗(t, x) meets the linear-periodic system
with µ̃ :

∂w∗1(t, x)
∂t

=Dv∆w∗1(t, x) − (µv(t, x) + µ̃)w∗1(t, x) + (1 − τ′1(t))
∫
Ω

Γ (t, t − τ2(t), x, y) ·

αβ(t − τ2(t), y)pu∗1(t − τ2(t), y)e−µ̃τ2(t)w∗2(t − τ2(t), y)
lN(y)

dy, x ∈ Ω,

∂w∗2(t, x)
∂t

=Dh∆w∗2(t, x) + cβ(t, x)w∗1(t, x) − (µh(x) + ϱ(x) + µ̃)w∗2(t, x), x ∈ Ω,

∂w∗1(t, x)
∂ν

=
∂w∗2(t, x)
∂ν

= 0, x ∈ ∂Ω,

(D.1)
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for t > 0. Hence, for all θ ∈ [−τ2(0), 0], x ∈ Ω̄, w∗(t, x) is the solution of the ω-periodic system (D.1)
with w∗0(θ, x) = (w∗1(0, x),w∗2(θ, x)) =

(
ψ̂1(x), e−µ̃θψ̂2(θ, x)

)
, where w∗t (·, ·) =

(
w∗1(t, ·),w∗2t(·, ·)

)
for each

t ≥ 0 with

w∗1(t, x) = e−µ̃tw̃1(t, x, ψ̂), ∀x ∈ Ω̄,

w∗2t(θ, x) = w̃∗2(t + θ, x) = e−µ̃(t+θ)w̃2(t + θ, x, ψ̂), ∀(θ, x) ∈ [−τ2(0), 0] × Ω̄.

For every θ ∈ [−τ2(0), 0], x ∈ Ω̄, one has

w∗1(ω, x) =e−µ̃ω(Q̃(ψ̂))1(θ, x) = e−µ̃ωr(Q̃)ψ̂1(x) = ψ̂1(x) = w∗1(0, x),
w∗2(ω + θ, x) =e−µ̃(ω+θ)(Q̃(ψ̂))2(θ, x) = e−µ̃(ω+θ)r(Q̃)ψ̂2(θ, x) = e−µ̃θψ̂2(θ, x) = w∗2(θ, x).

Consequently, w∗0(θ, ·) = w∗ω(θ, ·) for all θ ∈ [−τ2(0), 0], and by the existence and uniqueness of system
(D.1), one has

w∗1(t, x) = w∗1(t + ω, x), ∀t ≥ 0, x ∈ Ω̄,

w∗2(t, x) = w∗2(t + ω, x), ∀t ≥ −τ2(0), x ∈ Ω̄.

Thus, w∗(t, x) is an ω-periodic solution of (D.1) and eµ̃tw∗(t, x) is a solution of (4.2). □

E. Parameter definition and value

The authors in reference [20] discussed the impact of seasonality on the spread of malaria including
assessing the seasonal related bite rate β(t), periodic maturity delay τ1(t), periodic EIP τ2(t), periodic
death µv(t) and recruitment rate Λv(t) of mosquitoes , where

β(t) =6.983 − 0.0709 sin(πt/2) − 1.993 cos(πt/6) − 0.128 cos(πt/2) − 0.007642 sin(πt/3)
− 0.4247 cos(πt/3) + 0.05452 sin(2πt/3) − 1.459 sin(πt/6) − 0.04095 cos(2πt/3)
+ 0.0005486 cos(5πt/6) − 0.06235 sin(5πt/3) Month−1,

(E.1)

τ1(t) =0.5605 − 0.03366 cos(πt/6) + 0.01178 sin(πt/6) − 0.0008135 cos(πt/2) − 0.00266 cos(2πt/3)
− 0.0001281 cos(5πt/6) + 0.005958 cos(πt/3) + 0.01178 sin(πt/6) − 0.001072 sin(2πt/3)
− 0.001936 sin(πt/2) − 0.0001059 sin(πt/3) + 0.005026 sin(5πt/6) Month,

(E.2)
τ2(t) =1/30.4(17.25 + 4.806 sin(πt/6) − 0.3257 cos(πt) + 8.369 cos(πt/6) + 2.857 sin(πt/3)

+ 1.197 cos(πt/2) + 0.03578 cos(2πt/3) + 0.6354 sin(5πt/6) + 1.035 sin(2πt/3)
− 0.3505 cos(5πt/6) + 1.963 sin(πt/2) + 3.27 cos(πt/3) + 0 sin(πt)) Month,

(E.3)

µv(t) =3.086 + 0.01942 cos(πt/3) + 0.0007665 cos(2πt/3) + 0.007133 cos(πt/2)
+ 0.04788 cos(πt/6) − 0.001459 cos(5πt/6) + 0.005687 sin(2πt/3) + 0.01819 sin(πt/3)
+ 0.01135 sin(πt/2) + 0.02655 sin(πt/6) + 0.003198 sin(5πt/3) Month−1,

(E.4)

Λv(t) = k̂ × β(t) (km2Month)−1, where k̂ = 53.13 × 5. (E.5)

µm(t) = 9.0288
(
1 + 0.08 cos

(
π

6
t
))

Month−1. (E.6)
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Other parameter values are defined as

Dv = 0.0125 km2Month−1, Dh = 0.1 km2Month−1, α = 0.64,
c = 0.21, µh = 0.001574, p = 0.8, l = 0.6.

Table A1. Parameter definitions and values.

Parameter Definition Value(range) References
Nh Total human population number 53 (km2)−1 [24]
µh Natural mortality rate of humans 0.00157 Month−1 [20]
ϱ Constant recovery rate of humans (0.04256,0.5168) Month−1 [24]
l/p Vector-bias parameter (0, 1) [13]

c
Transmission probability
from infectious mosquitoes to humans

(0.01,0.27) [50]

Dh Diffusion rate of humans 0.1 km2Month−1 [24]
Dv Diffusion rate of mosquitoes 0.0125 km2Month−1 [24]

α
Transmission probability from
infectious humans to mosquitoes per bite

(0.072,0.64) [50]

β Biting rate of mosquitoes (E.1) [20]
µv Death rate of mosquitoes (E.4) [20]

τ1
Maturation delay of
mosquitoes in the aquatic stage

(E.2) [51]

τ2 EIP of mosquitoes (E.3) [24]
Λv Recruitment rate of mosquitoes (E.5) [24]
µm Natural death rate for the aquatic stage (E.6) [52]
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