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Abstract: Diffusion-driven instability and Turing pattern formation are a well-known mechanism by
which the local interaction of species, combined with random spatial movement, can generate sta-
ble patterns of population densities in the absence of spatial heterogeneity of the underlying medium.
Some examples of such patterns exist in ecological interactions between predator and prey, but the con-
ditions required for these patterns are not easily satisfied in ecological systems. At the same time, most
ecological systems exist in heterogeneous landscapes, and landscape heterogeneity can affect species
interactions and individual movement behavior. In this work, we explore whether and how landscape
heterogeneity might facilitate Turing pattern formation in predator–prey interactions. We formulate
reaction-diffusion equations for two interacting species on an infinite patchy landscape, consisting of
two types of periodically alternating patches. Population dynamics and movement behavior differ be-
tween patch types, and individuals may have a preference for one of the two habitat types. We apply
homogenization theory to derive an appropriately averaged model, to which we apply stability analy-
sis for Turing patterns. We then study three scenarios in detail and find mechanisms by which diffusion-
driven instabilities may arise even if the local interaction and movement rates do not indicate it.

Keywords: reaction-diffusion system; Turing pattern formation; diffusion-driven instability;
interface conditions; population dynamics

1. Introduction

Spatial patterns are ubiquitous in ecological systems and are widely investigated using reaction-
diffusion equations that account for the random motion and population dynamics of the species in-
volved. When the landscape itself is heterogeneous, e.g., in the distribution of abiotic conditions, it
seems plausible that the distribution of the species that respond to these conditions is also heteroge-
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neous, following the abiotic conditions. Turing’s surprising discovery was that even in a perfectly
homogeneous landscape, spatially patterned species distributions can arise from the interplay between
species interaction and movement in space [1]. In fact, Turing gave conditions under which a spatially
homogeneous steady state of two interacting species is stable in the absence of diffusion but becomes
unstable in the presence of diffusion. This effect is often called diffusion-driven instability (DDI), and
the resulting patterns are known as Turing patterns. The crucial ingredient in Turing’s theory is the
sign pattern of the interaction matrix (Jacobian matrix) of the two species at the homogeneous steady
state: only if the sign pattern is of activator–inhibitor, i.e.,[

+ −

+ −

]
, (1.1)

or of positive feedback type [2, 3], can DDI arise. It only does arise if the inhibitor species has a much
higher diffusion rate than the activator.

Although Turing’s study described chemical reactions, his ideas were soon applied to biological
systems, in particular to developmental biology and animal-coat patterns [2]. Relatively few applica-
tions to ecology exist, because some of the conditions seem quite restrictive for ecological systems.
An order of magnitude difference in dispersal rates between species is not easy to satisfy. And the
Rosenzweig–MacArthur model, the most commonly used predator–prey model, cannot not exhibit
DDI because its Jacobian matrix cannot have one of the required sign structures [4]. Nonetheless,
examples exist, some of which we mention below. More recently, the search for Turing patterns in
ecological systems has seen a revival [5, 6]. In this work, we investigate how spatial heterogeneity
in landscape characteristics (e.g., abiotic) can alter the conditions for pattern formation in an ecolog-
ical predator–prey system. We find mechanisms that can lead to DDI and patterns in heterogeneous
landscape where none would exist in a homogeneous landscape.

Segel and Jackson were the first to find DDI in ecological dynamics [7]. They chose the Lotka-
Volterra predator–prey model with an additional Allee effect for the prey and a self-limitation term for
the predator. For a certain range of parameters, the sign structure of the Jacobian matrix at the positive
steady state for this model is of activator-inhibitor type with the prey as an activator. As a result, this
model can give rise to Turing patterns if the prey disperse sufficiently less than the predator. Turing’s
mechanism was also invoked by Levin and Segel to explain the emergence of patchy population dis-
tributions of oceanic plankton [8]. If biological interactions between phytoplankton and herbivores
reduce the efficiency of herbivory as phytoplankton density increases and if differential dispersal rates
favour higher herbivore mortality, such patterns arise.

While the Rosenzweig–MacArthur model does not lead to Turing patterns, several other predator–
prey models do, such as the Beddington–DeAngelis model [9], the ratio-dependent model [10] and the
May model [11]. More precisely, if diffusion is added to these models, they can give rise to DDI and
Turing patterns if the prey disperse sufficiently less than the predator [12–14]. Alternatively, certain
variants of the Rosenzweig–MacArthur model can exhibit DDI and Turing patterns. Fasani and Rinaldi
included various aspects of predator behavior into this model and gave conditions for when DDI can
result [15]. Specifically, they chose small perturbations that would lead to a required sign pattern, in
this case the positive feedback structure [2, 3]. Consequently, DDI and Turing-pattern formation are
possible when the predator disperses sufficiently less than the prey.

By way of example, we make these considerations more concrete based on the May model [11],
which we also use later in our examples. In this model, the prey species u = u(t) grows logistically and
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is preyed upon with a Holling type II functional response by a predator species v = v(t). The predator
species grows logistically with carrying capacity proportional to the prey density. The nondimensional
equations read

u′ = u(1 − u) −
uv

b + u
, v′ = sv

(
1 −

v
qu

)
. (1.2)

Here, b denotes the half-saturation constant in the functional response [16,17], s is the intrinsic growth
rate of the predator, and qu its carrying capacity. All three parameters are assumed positive.

Eq (1.2) has a unique positive steady state, given by

u∗ =
1
2

(
1 − b − q +

√
(1 − b − q)2 + 4b

)
, v∗ = qu∗. (1.3)

The Jacobian matrix at this steady state is

J =

 1 − 2u∗ − b(1−u∗)
b+u∗ − u∗

b+u∗

sq −s

 . (1.4)

Since the entries in the second column of this matrix are negative, the predator inhibits its own
and the prey’s growth at steady state. Since the (2,1) entry is positive, the prey activates the predator’s
growth at steady state. The (1,1) entry can change sign. If it is positive, the prey also activates its own
growth, and we have the required activator–inhibitor sign pattern with the prey as the activator and the
predator as the inhibitor. If it is negative, DDI is impossible [2, 3].

Let us choose q as our parameter of interest and fix the other two. Then the (1,1) entry is positive if

q > qA = −
(b + 1)2

2(b − 1)
. (1.5)

For DDI, we also require that the positive steady state of the nonspatial model be stable. Since the
determinant of the Jacobian matrix in Eq (1.4) is positive, the steady state of the May model is stable
if the trace is negative. The resulting calculations are tedious but not difficult. One finds that if s is
small enough, then the trace is positive for some range qH,1 < q < qH,2, where the thresholds qH,i can
be calculated explicitly. Otherwise, the trace is negative and the steady state is stable. More details can
be found in [18, 19].

To consider spatial effects in the May model, we denote by u = u(x, t) and v = v(x, t) the densities
of prey and predator in a one-dimensional spatial domain and we add diffusion terms to each of the
variables in Eq (1.2). We denote the diffusion rates of the two species by Du and Dv, respectively.
The steady state (u∗, v∗) of the nonspatial model above becomes a spatially constant steady state of the
spatial model. This state is stable with respect to spatially constant perturbations but can be unstable
with respect to spatial perturbations of certain wavelengths if the Jacobian matrix has the sign patterns
indicated above and if Dv � Du. Specifically, there exists a threshold Dc > 1, such that DDI occurs
for Dv/Du > Dc [2, 3]; see also below.

The study of DDI and Turing patterns in spatially heterogeneous landscapes is much less devel-
oped and general insights are relatively rare. In part, this is because of the myriad of possibilities
in which spatial heterogeneity can present itself in the model. In the simplest case, a heterogeneous
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landscape consists of only two patches with an abrupt change at the interface between them. Then the
model parameters are piecewise constant, i.e., assume one value on each patch.

Benson et al. [20, 21] considered such a scenario and studied Turing-pattern formation in em-
bryological and ecological models with a general two-species reaction-diffusion model in one space
dimension, where the domain is composed of two parts. They required that population densities and
fluxes are continuous at the patch interface. Their analysis provides an understanding of how envi-
ronmental heterogeneities can modulate the pattern-forming capabilities of reaction-diffusion systems.
While Benson et al. concentrated on diffusion coefficients changing in space, Page et al. focused on
the case of kinetic parameters varying in space [22]. They showed that a step-function heterogeneity
in a kinetic parameter of a reaction–diffusion system can lead to spatial pattern formation outside the
classical Turing parameter regime for patterning. They found that the resulting patterns are spatially
localised around the parameter discontinuity because the discontinuity in the steady state values acts
like a local perturbation and can induce pattern formation if the homogeneous steady state on either
side of the boundary is unstable. In [23], Page et al. extended their model to smoothly varying kinetic
parameters, either spatially monotone or periodic. More recently, Kozák and coauthors expanded the
analysis of pattern formation with a step-function heterogeneity in the kinetic parameters and found
different frequency and amplitude patterns on the two sides of the discontinuity [24].

Sheffer et al. studied the interaction between patterns that arise in response to landscape hetero-
geneity and patterns that arise from DDI [25]. They used theoretical and empirical approaches for the
formation of patterned vegetation in semi-arid regions.They showed that both mechanisms significantly
affect the pattern-formation process, with their relative contribution depending on water availability.
They explored the effect of spatial scales on pattern formation by comparing the length scale of the
spatial extent of landscape feature to the length scale on which biological feedbacks operate.

Cobbold et al. studied how extrinsic factors, environmental variation and intrinsic interaction can
lead to spatial patterns in a predator–prey model in a heterogeneous landscape [18]. Their landscape
consists of discrete patches of two different types that alternate in space. Population dynamics follow
ordinary differential equations on each patch (e.g., the May model above) and movement is modeled by
discrete, not necessarily symmetric, diffusion between patches. With a finite number of patches, they
found a large number of patterns, often stably coexisting, and complex bifurcation diagrams through
a numerical bifurcation analysis. With infinitely many patches, they derived the dispersion relation of
the spatially homogeneous steady state and the corresponding pattern formation conditions.

We use a reaction-diffusion system to study these questions in a continuous space and time set-
ting. Hence, our study is in some sense a continuous-space version of the model by Cobbold et al. [18].
Working with continuous space, however, makes our work not only closer to Turing’s original ideas, it
also allows us to explore several additional features, such as the influence of patch sizes, and use addi-
tional techniques, such as homogenization. Specifically, we consider periodically alternating patches
of two types on the real line. On each patch, we consider a system of reaction-diffusion equations of
predator and prey. Between adjacent patches, we have conditions that match population densities and
fluxes across the interface. While population fluxes are continuous across an interface, their densities
need not be if they represent certain movement behavior at the interface [26, 27]. Our methods are
completely different from those used in [18] as we employ averaging theory to derive a homogenized
model under the assumption that the landscape period is small [28, 29]. We derive the DDI conditions
for this homogenized model. We use numerical evaluation to analyze and visualize the DDI condi-
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tions. We also simulate the homogenized model to test the prediction of the DDI conditions. Since
parameter space is fairly large in our model, we carefully select three instructive scenarios to study
how the interaction of spatial heterogeneity, movement behavior and population dynamics can lead to
pattern formation in ranges of parameter space where we would not expect them (Sections 3–5). We
note that some reaction-diffusion systems support patterned states that do not arise via bifurcations
from a homogeneous state; we do not study such patterns.

2. The model set-up and method

We present a general predator–prey model in a one-dimensional heterogeneous landscape that
contains infinitely many patches: patches of Type 1, or “good patches”, and patches of Type 2, or
“bad patches”, which are periodically alternating. We denote by L1 and L2 the length of good and bad
patches, respectively, and by L = L1 + L2 the spatial period. We also denote l1 = L1

L as the fraction of
good patches and l2 = L2

L as the fraction of bad patches, so that l1 + l2 = 1. Without loss of generality,
we choose a good patch to be located at (−L1, 0) and other good patches L-periodic from thereon.
Accordingly, bad patches are located at (0, L2) and L-periodic from thereon. The population densities
for prey and predator on patch i are denoted by ui(x, t) and vi(x, t), respectively. Then we describe the
population dynamics and individual movement in our predator–prey model for each species on each
patch as follows:



∂u1(x, t)
∂t

= Du
1
∂2u1(x, t)
∂x2 + f1(u1, v1), t > 0,

∂v1(x, t)
∂t

= Dv
1
∂2v1(x, t)
∂x2 + g1(u1, v1), t > 0,

∂u2(x, t)
∂t

= Du
2
∂2u2(x, t)
∂x2 + f2(u2, v2), t > 0,

∂v2(x, t)
∂t

= Dv
2
∂2v2(x, t)
∂x2 + g2(u2, v2), t > 0.

(2.1)

The equations for u1 and v1 hold on all good patches, i.e., for x ∈ (−L1, 0) + LZ, and analogously
for u2 and v2 on bad patches. We denote the diffusion coefficients on patch type i for species u and
v by Du

i ,D
v
i , respectively. The interaction functions on patch type i are given by fi and gi. We have

two types of interfaces between adjacent patches: At x = 0 we have a good patch on the left and a
bad patch on the right; at x = L2, the situation is reversed. Since the landscape is periodic, so are the
interface locations. We need to impose matching conditions for population densities and fluxes at these
interfaces. We choose the formulation by Ovaskainen and Cornell [26], discussed in detail by Maciel
and Lutscher [27]. We denote by pu

i and pv
i the probabilities for prey and predator, respectively, that

an individual at an interface moves to the patch of Type i (with pu,v
1 = 1 − pu,v

2 ). Then the matching
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conditions read:

u1(0, t) = kuu2(0, t), v1(0, t) = kvv2(0, t), t > 0,

Du
1
∂u1(0, t)
∂x

= Du
2
∂u2(0, t)
∂x

, Dv
1
∂v1(0, t)
∂x

= Dv
2
∂v2(0, t)
∂x

, t > 0,

u1(L2, t) = k−1
u u2(L2, t), v1(L2, t) = k−1

v v2(L2, t), t > 0,

Du
1
∂u1(L2, t)

∂x
= Du

2
∂u2(L2, t)

∂x
, Dv

1
∂v1(L2, t)

∂x
= Dv

2
∂v2(L2, t)

∂x
, t > 0,

(2.2)

where ku =
pu

1
pu

2

Du
2

Du
1

and kv =
pv

1
pv

2

Dv
2

Dv
1

are dimensionless parameters. Since they are in general different from
unity, the population densities are discontinuous across an interface (first and third line in Eq (2.2)).
Continuity of the fluxes, however, is guaranteed by the matching conditions in the second and fourth
line in Eq (2.2).

The above model is quite difficult to study. Mathematically, the discontinuity at the interfaces
requires careful consideration for the existence of solutions of the nonlinear problem [30] and eigen-
values for the linearized problem [31]. Biologically, the number of parameters prohibits a complete
qualitative analysis of the model. We therefore simplify the task somewhat by assuming that dispersal
is relatively large compared to landscape period. This assumption allows us to apply homogeniza-
tion to Eq (2.1) and then follow the steps of deriving DDI conditions in a homogeneous landscape to
determine instability conditions for the homogenized equations.

The homogenized model is given by
∂U(x, t)
∂t

= D̂u∂
2U(x, t)
∂x2 + f̂ (U,V),

∂V(x, t)
∂t

= D̂v∂
2V(x, t)
∂x2 + ĝ(U,V),

(2.3)

where x ∈ R. The derivation follows Yurk and Cobbold [28] and is quite lengthy and technical; see
also [19, 29] for details and alternative formulations. In this model, the locally averaged population
densities for prey and predator are denoted by U(x, t) and V(x, t), respectively. The homogenized
diffusion coefficients for prey and predator are given by

D̂u =

(
pu

2l1 + pu
1l2

l1 + l2

)−1 (
ru

1l1 + ru
2l2

l1 + l2

)−1

, (2.4)

and

D̂v =

(
pv

2l1 + pv
1l2

l1 + l2

)−1 (
rv

1l1 + rv
2l2

l1 + l2

)−1

. (2.5)

Here, ru
i and rv

i are the residence indices [32] for prey and predator on patches of Type i, given by

ru
1 =

1
Du

1 pu
2
, ru

2 =
1

Du
2 pu

1
, (2.6)
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and
rv

1 =
1

Dv
1 pv

2
, rv

2 =
1

Dv
2 pv

1
. (2.7)

In homogenized Eq (2.3), f̂ (U,V) and ĝ(U,V) are the homogenized reaction terms for prey and
predator, whose expressions are

f̂ (U,V) =
f1

( ru
1U
〈ru〉
,

rv
1V
〈rv〉

)
l1 + f2

( ru
2U
〈ru〉
,

rv
2V
〈rv〉

)
l2

l1 + l2
, (2.8)

and

ĝ(U,V) =
g1

( ru
1U
〈ru〉
,

rv
1V
〈rv〉

)
l1 + g2

( ru
2U
〈ru〉
,

rv
2V
〈rv〉

)
l2

l1 + l2
. (2.9)

Here, 〈ru〉 and 〈rv〉 denote the average residence indices for prey and predator, given by

〈ru〉 =
l1ru

1 + l2ru
2

l1 + l2
=

l1
pu

2Du
1

+ l2
pu

1Du
2

l1 + l2
, (2.10)

and

〈rv〉 =
l1rv

1 + l2rv
2

l1 + l2
=

l1
pv

2Dv
1

+ l2
pv

1Dv
2

l1 + l2
, (2.11)

respectively.
We now follow the usual steps of a linear stability analysis for the homogenized Eq (2.3). We

assume that the system has a spatially constant positive steady state, which we denote by (U∗,V∗). We
speak of diffusion-driven instability (DDI) if (i) the homogenized steady state is linearly stable with re-
spect to spatially constant perturbations, and (ii) it is unstable to certain spatially varying perturbations;
see [2, 3]. The DDI conditions for the general homogenized Eq (2.3) are given as follows:

f̂U + ĝV < 0, (DDI 1)

f̂U ĝV − f̂V ĝU > 0, (DDI 2)

D̂uĝV + D̂v f̂U > 0, (DDI 3)(
D̂uĝV + D̂v f̂U

)2
−

(
f̂U ĝV − f̂V ĝU

)
4D̂uD̂v > 0. (DDI 4)

(2.12)

The first two of these conditions ensure stability with respect to homogeneous perturbations; the
last two guarantee instability to certain spatial perturbations. In the Appendix, we give the expressions
of these DDI conditions in terms of the patch-level quantities.

We had mentioned in the introduction that the spatial Rosenzweig–MacArthur predator–prey
model cannot support Turing patterns. The reason is that the equation for the predator is linear in
the predator density, so that the (2,2) entry in the Jacobian matrix is zero and the required activator–
inhibitor sign pattern is impossible (see Introduction). The following lemma generalizes this ob-
servation and shows that spatial heterogeneity alone cannot generate Turing patterns in a spatial
Rosenzweig–MacArthur model of this type.

Lemma 1. If function gi(ui, vi) is linear in vi on both patches, then it is impossible to get Turing-pattern
formation in the homogenized model.
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Proof. Since gi(ui, vi) is linear in vi on both patches, in homogenized Eq (2.3), ĝ(U,V) is lin-
ear in V . Hence, we can write ĝ(U,V) = G(U)V . At steady state then, we necessarily have
G(U∗) = 0. The (2, 2) entry of the Jacobian matrix at this steady state is ∂V ĝ(U∗,V∗) =

G(U∗) = 0. Hence, we do not have the required activator–inhibitor sign structure from Eq (1.1) in the
model to support the existence of DDI.

Condition (DDI 4) is a quadratic equation in the ratio D̂v/D̂u. It can therefore be solved explicitly
to get the condition that DDI can only occur if the ratio of the diffusion coefficients exceeds a critical
ratio, namely,

D̂v/D̂u > D̂c =
−(2 f̂V ĝU − f̂U ĝV) +

√
(2 f̂V ĝU − f̂U ĝV)2 − ( f̂U ĝV)2

( f̂U)2
. (2.13)

At first sight, this expression is exactly the same as for the homogeneous problem. In particular,
it appears that one can choose population dynamic parameters in such a way that the sign pattern re-
quirement of the Jacobian matrix is satisfied and then choose diffusion constants so that the instability
conditions are satisfied. However, the homogenized quantities on the right-hand side of Eq (2.13) al-
ready contain all model parameters, including the patch-level diffusion coefficients, as can be seen in
the explicit expressions above. Hence, we cannot choose population dynamics and movement param-
eter separately. We will return to this issue later.

At the onset of DDI, when the inequality in Eq (2.13) is an equality, perturbations of a certain
critical wave number will begin to grow. This critical wave number, k2

c , is given by

k2
c =

D̂c f̂U + ĝV

2D̂v
, (2.14)

and the corresponding critical wavelength, wc, is

ωc =
2π
kc

= 2π
(

D̂c f̂U + ĝV

2D̂v

)−1/2

. (2.15)

Since in our simulations, we set D̂u = 1, we have D̂v = D̂c and can evaluate the critical wavelength
with the above formula.

For our particular application, we use the May model as the reaction term on good patches; see
Introduction and [11,33]. On bad patches, we replace the logistic growth of the prey by a simple linear
death term. All other terms remain unchanged. In particular, predation still occurs in bad patches.
Then the model is given by Eqs (2.1) and (2.2), where

f1 = u1(1 − u1) −
u1v1

b + u1
, g1 = sv1

(
1 −

v1

qu1

)
,

f2 = −mu2 −
u2v2

b + u2
, g2 = sv2

(
1 −

v2

qu2

)
.

(2.16)

Here, parameter m denotes the prey’s mortality rate on bad patches. As before, b denotes the half-
saturation constant of the Holling type II functional response [16, 17], s is the low-density growth rate
of the predator, and q is the proportionality factor between prey density and predator carrying capacity.
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Remark 1. The May model is not defined when the prey density is zero. Since the positive steady state
for the v-equation is v = qu, one can set g(0, v) = 0, and thereby allow (0, 0) to be a biologically
reasonable steady state: in the absence of prey, the predator cannot survive. However, we will only be
interested in the positive coexistence steady state. Hence, our results will not be affected by singularity
in the predator equation at zero.

If the landscape was homogeneous with reaction terms f1 and g1, we could choose parameter
values so that the DDI conditions were satisfied and Turing patterns would form. If the landscape was
homogeneous with reaction terms f2 and g2, the only spatially homogeneous steady state of the model
would be the trivial state (0, 0). Since DDI implies that the resulting pattern varies around the steady
state and since the system preserves positivity, no DDI-induced patterns could possibly form there. In
fact, for this case, any patterned steady states can be excluded since f2(u, v) ≤ −mu, so that u → 0
irrespective of the value of v.

The homogenized reaction terms for the heterogeneous May model are explicitly given by

f̂ (U,V) =
1

l1 + l2

[
l1

(
ru

1U
〈ru〉

(
1 −

ru
1U
〈ru〉

)
−

ru
1U
〈ru〉

rv
1V
〈rv〉

b +
ru

1U
〈ru〉

)
− l2

(
m

ru
2U
〈ru〉

+

ru
2U
〈ru〉

rv
2V
〈rv〉

b +
ru

2U
〈ru〉

)]
, (2.17)

and

ĝ(U,V) =
1

l1 + l2

[
l1s

rv
1V
〈rv〉

(
1 −

rv
1V
〈rv〉

q ru
1U
〈ru〉

)
+ l2s

rv
2V
〈rv〉

(
1 −

rv
2V
〈rv〉

q ru
2U
〈ru〉

)]
. (2.18)

A spatially constant positive steady state, (U∗,V∗) = (〈ru〉Ũ, 〈rv〉Ṽ), is given by

qŨ

 l1rv
1 + l2rv

2
l1(rv

1)2

ru
1

+
l2(rv

2)2

ru
2

 =
l1ru

1 − l1(ru
1)2Ũ − l2ru

2m
l1ru

1rv
1

b+ru
1Ũ

+
l2ru

2rv
2

b+ru
2Ũ

(2.19)

and

Ṽ = qŨ

 l1rv
1 + l2rv

2
l1(rv

1)2

ru
1

+
l2(rv

2)2

ru
2

 . (2.20)

While the equation for Ṽ closely resembles the corresponding Eq (1.3), the equation for Ũ is a
cubic, except in the special case where ru

1 = ru
2. The coefficients of the cubic depend on too many

parameters to make meaningful statements about the roots in general. What can be said is that if
l1ru

1− l2ru
2m < 0, then the sequence of coefficients of the cubic has no sign change and therefore there is

no positive real root by Descartes’ rule of signs. When the reverse inequality holds, then there is either
one or three sign changes, which means that there exists at least one positive real root. The inequality
is equivalent to the prey species not being able to grow at low density, see Eq (3.1). We solved for the
roots numerically and checked that in all cases that we simulated there was at most one real root and
hence only one positive steady state. We used this steady state to evaluate the DDI conditions. We
simulate the reaction-diffusion system in Eq (2.3) to test the prediction of the DDI conditions. We give
details on the numerical aspects in Section 6, where we also compare the solution of the homogenized
and the nonhomogenized model.
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Our model is too complex to determine all possible cases of DDI and pattern formation. Instead,
we study several carefully chosen scenarios that illustrate several fundamental mechanisms by which
landscape heterogeneity can enhance or reduce the likelihood of DDI in our predator–prey system.

Scenario 1 We choose parameters on patches of Type 1 such that all DDI conditions are satisfied
on a homogeneous landscape of Type 1. As we mentioned above, no patterns can form on a
homogeneous landscape of Type 2. We then expect that patterns emerge or disappear as we
change the proportion of the two types of patches in the landscape.

Scenario 2 We choose parameters such that the DDI conditions are not satisfied on patches of Type 1.
Since no pattern formation is possible on patches of Type 2, there is no obvious reason to believe
that patterns could form on a landscape with both patch types mixed. However, we shall show
that patterns are possible on some mixed landscapes. We consider two subcases, depending on
which pattern formation conditions are violated on patches of Type 1.

(a) Here, we assume that the Jacobian matrix has an activator–inhibitor sign pattern but the ratio
of the diffusion coefficients is below the critical ratio in patches of Type 1.

(b) Here, we assume that both diagonal entries of the Jacobian matrix are negative on patches of
Type 1 so that there is no activator–inhibitor sign pattern.

In each scenario, we consider three different aspects of heterogeneity: (i) only population dynam-
ics vary between patches, diffusion rates are constant in the landscape, and there is no preference for a
particular type of patch; (ii) population dynamics and movement behaviour vary between patches but
there is no preference for a particular type of patch; (iii) population dynamics vary between patches
and there is preference for a patch type, but movement behaviour does not vary.

Table 1. Model parameters and their interpretation.

parameter meaning
u, v densities of prey and predator on the local scale
Li, L length of patch of type i, period L = L1 + L2

li fraction of patch length li = Li/L
Du

i ,D
v
i diffusion coefficient of species u, v in patch type i

fi, gi kinetics of species u, v in patch type i
pu

i , pv
i probability of an individual of species u, v to move to patch type i at an interface

ku, kv dimensionless parameter ku =
pu

1Du
2

pu
2Du

1
.

U,V locally averaged densities of prey and predator
D̂u, D̂v homogenized diffusion coefficients of species U,V; see Eqs (2.4) and (2.5)
ru

i , r
v
i residence index for species u, v in patch i; see Eqs (2.6) and (2.7)

f̂ , ĝ homogenized kinetics for species u, v; see Eqs (2.8) and (2.9)
〈ru〉, 〈rv〉 average residence index species u, v; see Eqs (2.10) and (2.10)
b half-saturation constant of predation
m prey mortality rate on bad patches
s low-density growth rate of the predator
q proportionality factor between prey density and predator carrying capacity
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For the convenience of the reader, we summarize all parameters of the local and the homogenized
model in Table 1.

3. Analysis of Scenario 1

We choose population dynamics parameters such that on patches of Type 1 (good patches), we
have an activator–inhibitor sign-pattern, whereas on patches of Type 2 (bad patches), we have no
positive coexistence state. Then, we can choose diffusion coefficients in patches of Type 1, such that
Turing patterns would form on an infinite homogeneous landscape (l2 = 0) of this type. No Turing
patterns are possible on an infinite homogeneous landscape of Type 2 (l2 = 1). By continuity, we
expect that patterns will form for small enough l2 and will not form for large enough l2 in homogenized
Eq (2.3), where f̂ (U,V) and ĝ(U,V) are defined in Eqs (2.17) and (2.18), respectively. These values
will depend on the other model parameters. We shall see that, in some cases, there is a unique threshold
value of l2 that separates the two cases, whereas in other cases, there are intermediate regions of pattern
formation.

For this section, we choose the population dynamics parameters to be b = 0.1, s = 0.2 and q = 0.8,
so that an activator–inhibitor sign pattern arises on patches of Type 1. On patches of Type 2, we choose
m = 0.6. In the following section, we set the movement parameters equal in both patches; in later
sections, we consider spatially varying movement and patch preferences.

3.1. Patchiness in terms of population dynamics

In this section, only population dynamics but not movement behaviour change between patch
types. For the population dynamics parameters in patches of Type 1, we calculate the critical diffusion
ratio for pattern formation on an infinite landscape of this type to be Dc ≈ 28.6. We choose diffusion
rates for prey and predator on patches of Type 1 such that their ratio exceeds this critical ratio. Since
the movement behaviour does not change between patches, we choose the same values for diffusion
coefficients in patches of Type 2. Specifically, for simulations we set Dv

1 = Dv
2 = 40 and Du

1 = Du
2 = 1.

We assume that there is no patch preference for either species, so that pu
1 = pv

1 = 0.5.
A minimum requirement for pattern formation is that there will be a coexistence state. Explicitly

evaluating the steady-state expressions in Eqs (2.19) and (2.20) is tedious if not impossible. A weaker,
necessary condition is that the prey can persist in the system. The prey can persist if they can grow
at low density. To evaluate this condition, we linearize the first equation of Eq (2.3) at the trivial
equilibrium and derive conditions for which f̂U is positive. We find that f̂U > 0 if and only if

l2 <
1

1 + m Du
1

Du
2

(
pu

2
pu

1

) . (3.1)

This value serves as an upper bound for the threshold that we are looking for.
To find the actual range of values for l2 where pattern formation is possible, we evaluate conditions

DDI 3 and DDI 4 numerically as functions of l2 in the range where DDI 1 and DDI 2 are satisfied. We
plot the left-hand side of DDI 3 in Eq (2.12) as a function of l2 (red curve in Figure 1). For this reason,
DDI 3 is satisfied wherever the curve is positive. For DDI 4, we plot the critical value of Eq (2.13)
of the homogenized diffusion coefficients, D̂c, as a function of l2 (black solid in Figure 1). We also
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plot the actual ratio of the homogenized diffusion coefficients, D̂v

D̂u , as a function of l2 (black dashed in
Figure 1). Since the movement rates are identical between patches, this value is constant with respect
to l2. Then DDI 4 is satisfied when the black solid curve is below the black dashed line. The threshold
value of l2 for pattern formation is the smaller of the two values; in this case, it is the value where DDI
4 turns into an equality.

Figure 1. Illustrating the pattern formation conditions for Scenario 1 when movement rates
are constant in space. The left-hand side of DDI 3 is plotted in red hence, DDI 3 is satisfied
when the red curve is positive. The black curve is the critical ratio of the homogenized diffu-
sion coefficients, D̂c, whereas the dashed line is the actual value of that ratio, D̂v

D̂u . Condition
DDI 4 is satisfied where D̂v

D̂u > D̂c. The DDI conditions hold for the actual range of values
l2 ∈ [0, 0.43].

We check this result by simulating the homogenized model in Eq (2.3). We fix all biological
parameters as above. According to Figure 1, pattern formation can occur for l2 < 0.43. We choose
l2 = 0.3 for our simulations. With these parameter values, the steady state is given by (U∗,V∗) ≈
(0.1198, 0.0958) and the critical value of Eq (2.13) of the homogenized diffusion coefficient is D̂c ≈ 12.
Figure 2 shows a periodic spatial pattern as the steady-state profile of our system. From it, we calculate
wc ≈ 24 as the critical wavelength.

Now we investigate how the characteristics of the patterns depend on the size of bad patches,
l2. More precisely, we compare how the critical wave number and wavelength that arise from DDI 4
(when all other conditions are satisfied) depend on l2. Since we have chosen the diffusion coefficients
independent of patch type and the patch preferences to equal 1/2 (i.e., there is no patch preference),
neither the diffusion coefficients nor the patch preferences affect the averaged reaction terms f̂ and ĝ.
Also, the averaged diffusion coefficients equal the actual diffusion coefficients. Hence, the diffusion
coefficients are independent parameters in the DDI conditions, just as they were in [2, 3], and we can
find the critical values. The situation will change in later sections.

We plot the critical wave number and wavelength as the red and blue curves, respectively, in
Figure 3. For easier comparison, we include the critical values for a homogeneous landscape of Type
1 as the black dashed and solid lines. We observe that the critical wavelength is a concave up function
of l2. Compared to a homogeneous Type 1 landscape, the critical wavelength first decreases as the
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size of Type 2 patches increases. Then there is a minimal value, and when bad patches become even
larger, the critical wavelength of the pattern increases. It appears that patterns are lost when the critical
wavelength approaches infinity.

Figure 2. The periodic spatial pattern is the steady-state profile of Eq (2.3) in Scenario 1,
where f̂ (U,V) and ĝ(U,V) are defined in Eqs (2.17) and (2.18), respectively, for the prey (red)
and predator (blue). The figure was obtained using the Crank–Nicolson scheme. Biological
parameters are b = 0.1, s = 0.2, q = 0.8, m = 0.6, Du

1 = Du
2 = 1, Dv

1 = Dv
2 = 40,

pu
1 = pu

2 = 0.5, and the domain length is L = 3wc ≈ 72. The initial conditions are a small
perturbation of the steady state. Here, a small perturbation was obtained by a random number
generator with a maximal absolute value of 0.01.

(a) (b)

Figure 3. The critical wave number (a) and critical wavelength (b) as a function of the size of
bad patches. The black solid and dashed lines are the corresponding values in a homogeneous
Type 1 landscape for comparison. Parameters are the same as in Figure 2.
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3.2. Patchiness in terms of movement rates

In the previous section, movement behaviour was identical between the two patch types and there
was no patch preference. Therefore, the homogenized diffusion coefficients were independent of the
size of the two habitat types. There is ample evidence that individuals adjust their movement behaviour
to their environment and do show preference for certain habitat types [34]. In this section, we explore
how differences in movement rate affect pattern formation, in particular through Conditions DDI 3
and DDI 4. In the next section, we study the effect of patch preference. Similar considerations in a
discrete-patch model showed that spatially varying movement rates can significantly affect parameter
ranges for DDI [18].

For the population dynamics parameters in patches of Type 1, the critical diffusion ratio for pattern
formation on an infinite landscape of this type is Dc ≈ 28.6. We choose diffusion coefficients for both
species in patches of Type 1 to be the same as Section 3.1. In our first scenario, we vary only the
diffusion coefficient of species v on patches of Type 2. We set Dv

1 = 40 and Du
1 = Du

2 = 1 as above
and evaluate DDI conditions in the two-parameter plane of Dv

2 and l2. Our second scenario is the same,
except that we vary the diffusion coefficient of species u on patches of Type 2. For both scenarios, we
assume that there is no patch preference for either species, so that pu

1 = pv
1 = 0.5.

The two plots in Figure 4 show the regions in parameter space where the four DDI conditions are
or are not satisfied. As in the previous section, there is a threshold value of l2, above which the prey
cannot persist. This threshold is indicated as the ‘Extinction Boundary’ (pink color). In the left plot,
this threshold is a vertical line, because the critical value in Eq (3.1) does not depend on Dv

2. In the
right plot, it is a curve, since the threshold does depend on Du

2. To the right of the extinction boundary,
no patterns can form, because the prey cannot even persist. To the left of the boundary, all pattern-
formation conditions are satisfied in the red area. Patterns cease to exist because DDI 4 is not satisfied
(blue area). In the white area, Conditions DDI 3 and 4 are both not satisfied, whereas in the green area,
only DDI 3 is violated. Conditions DDI 1 and 2 are satisfied throughout the region where the prey can
persist in the left plot, but there is a tiny region (orange) in the right plot, where DDI 1 is violated.
Hence, there are (at least) two unstable modes in this case: the zero mode of a spatially constant
perturbation with a pair of complex conjugate eigenvalues with positive real part, and a nonzero mode
with positive real part for the usual diffusion-driven instability. We also see that when Dv

2 is large
enough or small enough, there is a unique threshold value of l2 that separates pattern formation from
no pattern formation. For some intermediate values of l2, however, there are two distinct intervals with
respect to l2 for which patterns can form.

We simulated the non-spatial system in the orange region of parameter space and found that, in-
deed, the coexistence state was unstable and temporally oscillating solutions emerged (Figure 5(a)).
These solutions correspond to spatially constant, time-periodic solutions of the reaction-diffusion sys-
tem in Eq (2.3), because of the no-flux boundary conditions. We also simulated the reaction-diffusion
system for the same parameter values with the initial condition a small random perturbation of the
spatially constant coexistence state. Those simulations show the emergence of spatial patterns (Figure
5(b)).
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(a) (b)

Figure 4. Regions where DDI conditions do and do not hold when a diffusion coefficient de-
pends on patch type. See text for color scheme. The pink curve shows the extinction bound-
ary of the prey according to Eq (3.1).Parameters are as in Figure 2 unless otherwise noted.

(a) (b)

Figure 5. Plot (a) shows a periodic orbit of the non-spatial system when DDI 1 is violated
(orange area in Figure 4(b)). Densities of prey (red) and predator (blue) are plotted as func-
tions of time. Plot (b) shows that a spatially periodic, temporally constant pattern emerges
for the same parameter values in the reaction-diffusion system when the initial conditions
are small perturbations of the (unstable) coexistence steady state. Only the prey density is
shown. Parameters chosen from the orange region are (l2,Du

2)=(0.13, 0.72). Other parame-
ters are as in Figure 4(b). Plot (b) was obtained with the Matlab’s pdepe program with the
same numerical parameters as in Section 6. The domain length is L = 100.

Finally, we take a closer look at the region where pattern formation occurs by including informa-
tion about the critical wavelength, similar to Figure 3. In Figure 6 and similar figures to follow, the
white curve delineates the region where all DDI conditions are satisfied (blue to yellow colours) from
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where they are not (uniform blue colour). Where the DDI conditions are satisfied, colours indicate
the level sets of the critical wavelength with lighter colours indicating longer wavelengths (see side
bar). The critical wavelength was computed as follows: for a given set of parameters, the homoge-
neous steady state was calculated and the Jacobian matrix was evaluated there. The critical wavelength
is then computed from the critical wave number, where Condition DDI 4 becomes an equality. We
emphasize that this value generally depends on the diffusion coefficients and the patch preferences
through the averaging process. In particular, even if the Jacobian matrix has the required sign pattern,
the choice of movement parameters may lead to DDI 4 not being satisfied. This is in contrast to the
spatially homogeneous theory, where the Jacobian matrix is independent of the diffusion coefficients.
In that case, as long as the Jacobian matrix has an appropriate sign pattern, one can always choose
movement parameters so that Condition DDI 4 is satisfied.

We see from Figure 6 that the pattern in Figure 3 is quite common: along a horizontal transect,
the critical wavelength is a concave up function of l2: it decreases for small l2 and increases for larger
l2. The largest wavelengths occur as one approaches the boundary where pattern formation is possible.
For the left plot in Figure 6, we note that there is an interval for Dv

2 where pattern formation occurs
for very small values of l2 and again for intermediate values, but not in between. For the right plot in
Figure 6, we note that the small region where the homogeneous steady state is unstable is shown with
the white boundary.

From Figures 4 and 6, we see that it is possible to get patterns even for small values of Dv
2 and

for larger values of Du
2. As long as patches of Type 2 are small enough, the homogenized diffusion

coefficient is still large enough so that the DDI conditions are satisfied.

(a) (b)

Figure 6. Level sets of the critical wavelength as a function of l2 and Dv
2 (left plot) or Du

2
(right plot) for Scenario 1. Parameters, the black region and the extinction boundary are as
in Figure 4.

3.3. Patchiness in terms of patch preferences

In this section, we study the second aspect of movement behaviour in a patchy landscape: patch
preference. We keep the diffusion coefficients constant in space. While it seems more reasonable to
assume that organisms who can adjust their movement behaviour to local habitat conditions would
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adjust movement rate and patch preference, we consider each aspect separately to disentangle the
different effects.

Given the population dynamics parameters in patches of Type 1, the critical diffusion ratio for
pattern formation on an infinite landscape of this type remains the same as in the previous two sections,
Dc ≈ 28.6. We choose diffusion rates for prey and predator on patches of Type 1 such that their ratio
exceeds this critical ratio. Since the movement behaviour does not change between patches, we choose
the same values for the diffusion coefficients in both patches. Specifically, for simulations, we set
Dv

1 = Dv
2 = 40, Du

1 = Du
2 = 1. In our first scenario, we vary only the patch preference of the prey

species (u) and set pv
1 = 0.5 as above. In the second scenario, we vary patch preference for the predator

(v) but not for the prey (pu
1 = 0.5). We evaluate the DDI conditions and illustrate our results in two-

parameter planes of the preference of Type 1 patches of prey (see Figure 7(a) with pu
1 = 1 − pu

2) and
predator (see Figure 7(b) with pv

1 = 1 − pv
2).

(a) (b)

Figure 7. Level sets of the critical wavelength as a function of l2 and pu
1 (left plot) or pv

1 (right
plot) for Scenario 1. The pink extinction boundary and the black region to the right of it are
defined as in the preceding figures. Parameters are the same as in Figure 2 unless otherwise
noted.

Several conclusions that can be drawn from this figure are similar to those in the preceding figure.
For example, for a fixed value of pu

1 or pv
1, the critical wavelength is typically a concave-up function of

l2, and patterns disappear as the wavelength becomes large. At the boundary (white curve), condition
DDI 4 becomes an equality and then fails to hold so that no patterns form. Also, pattern formation is
possible for quite a wide range of parameter values. Interestingly, the pattern formation boundary is
almost a horizontal line in plot (a): the critical value of pu

1 is nearly constant for a range of l2 between
0.1 and 0.5. In plot (b), on the other hand, the boundary is nearly vertical near l2 ≈ 0.45 where pv

1 can
range from around 0.3 to around 0.7 with no visible change in the pattern formation boundary.

In the middle of the turquoise region of Figure 7(a), we see a small white region. This occurs as
before where condition DDI 1 is violated and the non-spatial system has a periodic orbit. The situation
here is the same as in the corresponding situation in the previous section.
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4. Analysis of Scenario 2a

In Scenario 1, the two patch types were chosen such that pattern formation occurred in a homoge-
neous landscape of Type 1 but not of Type 2. By shifting parameter l2, which controls the relative size
of the patch types, we could obtain patterns or have them disappear. In Scenario 2, we choose both
patch types such that no patterns form on the corresponding homogeneous landscapes. Yet we will find
that patterns can form for intermediate ratios of the two patch types in a heterogeneous landscape. We
split this scenario into two cases:
(a) we assume that the Jacobian matrix on patches of Type 1 has the correct sign pattern (activator–
inhibitor), but the ratio of the diffusion rates is too small to generate patterns;
(b) we assume that the sign pattern of the Jacobian matrix does not allow pattern formation on either
patch type in isolation.

In this section, we choose parameters for population dynamics such that on patches of Type 1
(good patches), we have an activator–inhibitor sign-pattern and Conditions DDI 1 and DDI 2 are sat-
isfied, whereas on patches of Type 2 (bad patches), we have no positive coexistence state. Then we
calculate the critical diffusion ratio on patches of Type 1, where Conditions DDI 3 and DDI 4 are sat-
isfied, and choose a ratio smaller than that so that no patterns can form on an infinite homogeneous
Type 1 landscape. Obviously, pattern formation is impossible on a homogeneous Type 2 landscape.
We conduct the same numerical experiments as in the preceding section.

4.1. Patchiness in terms of population dynamics

We begin with the case where only population dynamics but not movement behaviour change
between patch types. With the same population-dynamic parameters as in the preceding section, Con-
ditions DDI 1 and DDI 2 are satisfied on Type 1 patches, and the critical diffusion ratio is Dc ≈ 28.6
as before. We choose diffusion coefficients with a ratio smaller than that. Specifically, for simulations,
we set Dv

1 = Dv
2 = 15 and Du

1 = Du
2 = 1, which gives a ratio of just over half of the critical ratio. We

assume that there is no patch preference for either species, so that pu
1 = pv

1 = 0.5. As in Section 3, an
upper bound for the threshold of l2, above which the prey cannot persist, is given in Eq (3.1).

To see whether pattern formation is possible for the homogenized model, we evaluate Conditions
DDI 3 and DDI 4 numerically as functions of l2 in the range where DDI 1 and DDI 2 are satisfied.
While condition DDI 3 is satisfied for all l2 below some threshold (red curve in Figure 8), DDI 4 is
satisfied only for intermediate values of l2 but not as l2 approaches zero (black curve in Figure 8). This
behaviour, of course, reflects our choice of condition DDI 4 not being satisfied on a homogeneous Type
1 landscape. We compare and contrast this with Figure 1, where Condition DDI 4 holds for all small
enough l2 because Condition DDI 4 holds on a homogeneous Type 1 landscape there.

As before, we check whether and which patterns actually form by simulating homogenized system
in Eq (2.3), where f̂ (U,V) and ĝ(U,V) are given by Eqs (2.17) and (2.18), respectively. We use the
Crank-Nicolson scheme. We choose a specific value for l2 in the range where the preceding analysis
predicts pattern formation (here l2 = 0.1), and we fix the other parameters as mentioned above. With
these parameter values, the steady state is given by (U∗,V∗) ≈ (0.279, 0.223), and the critical value of
Eq (2.13) for the homogenized diffusion coefficient is D̂c ≈ 11.86. Figure 9 shows a spatially periodic
pattern as the steady-state profile of our system. From it, we calculate wc ≈ 21.84 as the critical
wavelength.
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Figure 8. Illustrating the pattern-formation conditions for Scenario 2a when movement rates
are constant in space. DDI 3 is satisfied when the red curve is positive. DDI 4 is satisfied
when the black curve is below the black dashed line. The DDI conditions hold for the range
l2 ∈ [0.06, 0.33].

Figure 9. The periodic spatial pattern is the steady-state profile of Eq (2.3) in Scenario 2a
for the prey (red) and predator (blue). The figure was obtained using the Crank–Nicolson
scheme with the same numerical and population dynamics parameters as in Figure 8, except
that here Dv

1 = Dv
2 = 15. The domain length is L = 3wc ≈ 66.

4.2. Patchiness in terms of movement rates

We continue our investigation of Scenario 2a by choosing the movement rates to vary as we
did in Scenario 1, Section 3.2. While keeping population dynamics parameters as in the first part of
Scenario 2a, we now choose Dv

1 = 15 and Du
1 = Du

2 = 1 and evaluate DDI conditions in the two-
parameter plane of Dv

2 and l2; see Figure 10(a). We also vary the diffusion coefficient of species u
on patches of Type 2 see Figure 10(b). For both scenarios, we assume that there is no patch preference
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for either species, so that pu
1 = pv

1 = 0.5.
In Figure 10, the white curve delineates the region where all DDI conditions are satisfied (blue to

yellow colours) from where they are not all satisfied (uniform blue colour). Where the DDI conditions
are satisfied, the colours indicate the level sets of the wavelength of emerging patterns with lighter
colours indicating longer wavelengths (see side bar). As in the previous section, there is a threshold of
l2, the ‘Extinction Boundary’ (pink), above which the prey cannot persist.

(a) (b)

Figure 10. Level sets of the critical wavelength as a function of l2 and Dv
2 (left plot) or Du

2
(right plot) for Scenario 2a. Parameters, the black region and the extinction boundary are as
in Figure 9.

Figure 10 shares many similarities with Figure 6 but also shows some crucial differences. The
most important is that pattern formation is impossible for very small and large values of l2 by our
choice of Scenario 2a. Nonetheless, we see that pattern formation is possible for a large range of
intermediate parameter values. Patterns are more likely to form when Dv

2 is large or Du
2 is small, since

then the ratio of the homogenized diffusion coefficients is larger, and we know that this ratio typically
needs to be large for patterns to form.

Similar to Figure 6, Figure 10(a) also shows that for fixed values of Dv
2, the critical wavelength

is a concave up function of l2. Patterns cease to exist when the wavelength approaches infinity. The
situation is similar in Figure 10(b) where the critical wavelength is concave up with respect to l2 for
any fixed Du

2. In that Figure, we also see again a small spot where Condition DDI 1 is violated in the
turquoise region. As in the scenarios before, there is a periodic orbit in the non-spatial system.

4.3. Patchiness in terms of patch preferences

We conclude our investigation of Scenario 2a by varying the patch preferences of the two species
while keeping other parameters fixed, similar to what we did in Scenario 1, Section 3.3. Parameters
other than patch preferences are set exactly as in Section 4.1. As in Figure 7, we vary the patch
preference of the predator and prey species separately and evaluate the corresponding DDI conditions.
We present and illustrate our results as contours of critical wave lengths in the corresponding two-
parameter planes of pu

1 = 1 − pu
2 or pv

1 = 1 − pv
2 and l2; see Figure 11.
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(a) (b)

Figure 11. Level sets of the critical wavelength as a function of l2 and pu
1 (left plot) or pv

1
(right plot) for Scenario 2a. The pink extinction boundary and the black region to the right
of it are defined as in the preceding figures. Parameters are the same as in Figure 8 unless
otherwise noted.

The plots in Figure 11 should be compared to those in Figure 7. They show a number of simi-
larities, but their biggest difference is that pattern formation is not possible for l2 = 0 by the setting
of Scenario 2. Hence, there is a region without pattern formation near l2 = 0. Interestingly, when pu

1
is very small, pattern formation is possible for very small values of l2. There seems to be a trade-off:
when l2 is small, bad patches are small, but when the preference for these bad patches is high, their
effect appears larger. As before, for fixed values of patch preferences, the critical wavelength is a
concave-up function of l2.

5. Analysis of Scenario 2b

In contrast to the last two sections, we now choose population dynamics parameters such that on
patches of Type 1 (good patches), we do not have an activator–inhibitor sign-pattern. It is therefore
impossible to get Turing patterns on a homogeneous Type 1 landscape. More precisely, by choosing
parameter q to be less than qA, the (1,1) entry in the Jacobian matrix is negative. This means that
Condition DDI 3 cannot be satisfied for any values of the diffusion coefficients, even though Conditions
DDI 1 and DDI 2 can be. Patches of Type 2 (bad patches) remain the same as before, where we have no
positive coexistence state, so that no Turing patterns are possible on an infinite homogeneous landscape
on Type 2.

For numerical simulations, we choose the population dynamics parameters b = 0.1, s = 0.2 and
q = 0.5 < qA ≈ 0.672. This ensures that the Jacobian matrix on Type 1 patches does not have an
activator–inhibitor pattern. On patches of Type 2, we choose m = 0.6 as before. As in the previous
scenarios, we first set the movement parameters equal in both patches; later, we consider spatially
varying movement and patch preferences.
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5.1. Patchiness in terms of population dynamics

As in the previous scenarios, we begin our investigation of Scenario 2b with the case where only
population dynamics but not movement behaviour changes between patch types. We set Dv

1 = Dv
2 = 40,

and Du
1 = Du

2 = 1. We assume that there is no patch preference for either species, so that pu
1 = pv

2 = 0.5.
As before, Eq (3.1) defines a threshold of l2, above which the prey cannot persist.

We begin with the analogue of Figures 1 and 8; i.e., we visualize Conditions DDI 3 and DDI 4 as
a function of l2. We checked that Conditions DDI 1 and DDI 2 are satisfied in the range l2 ∈ [0, 0.6].
The plot in Figure 12 shows that Condition DDI 4 is satisfied for l2 near zero, but DDI 3 is not. This
is in contrast to Scenario 1, where both were satisfied near zero, and Scenario 2a, where DDI 3 was
satisfied near zero but DDI 4 was not. As l2 is increased, DDI 4 is violated before DDI 3 holds. Then
there is an intermediate range of l2 where both conditions hold (approximately for l2 ∈ [0.29, 0.44])
before both are violated for larger values of l2.

We can explain the emergence of an activator–inhibitor sign pattern for intermediate values of
l2 mathematically and biologically. Mathematically, we note that the prey density at the coexistence
state decreases as l2 increases. Furthermore, the derivative of f̂ with respect to U, the (1,1)-entry of
the Jacobian matrix, is a decreasing function of U. Hence, there can be a range of l2 where U is
small enough to make this entry positive and give the required sign pattern. Biologically speaking,
the productivity of a population (its rate of change) is typically the highest at intermediate population
densities. At low density, there are not enough individuals around; at high density, there are too
many. When there are bad patches into which some individuals are moving, the steady state density is
decreased, and productivity is increased. If productivity is high enough, we have an activator.

Figure 12. Illustrating the pattern formation conditions in Scenario 2b when movement rates
are constant in space. DDI 3 is satisfied when the red curve is positive. DDI 4 is satisfied
when the black curve is below the black dashed line. The DDI conditions hold for the range
l2 ∈ [0.29, 0.44].

As in the last two scenarios, we illustrate pattern formation by simulating homogenized Eq (2.3),
using the Crank-Nicolson scheme. We fix all parameters as above and choose l2 = 0.4. Then the steady
state is given by (U∗,V∗) ≈ (0.1296, 0.0648), and the critical value of Eq (2.13) of the homogenized
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diffusion coefficient is D̂c ≈ 28.84. Figure 13 shows a periodic spatial pattern as the steady-state profile
of our system. From it, we calculate wc ≈ 32.53 as the critical wavelength.

Figure 13. The periodic spatial pattern is the steady-state profile of Eq (2.3) in Scenario 2b
for the prey (red) and predator (blue). The figure was obtained using the Crank-Nicolson
scheme with the same numerical and population dynamics parameters as in Figure 2, except
that here q = 0.5. The domain length is L = 3wc ≈ 98.

5.2. Patchiness in terms of movement rates

(a) (b)

Figure 14. Level sets of the critical wavelength as a function of l2 and Dv
2 (left plot) or Du

2
(right plot) for Scenario 2b. Parameters, the black region and the extinction boundary are as
in Figure 13.

In the previous section, movement behaviour was identical between the two patch types, so that
the homogenized diffusion coefficients were independent of the sizes of the two habitat types. Similar
to Sections 3.2 and 4.2, we now explore how differences in movement rate affect pattern formation,
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in particular through Conditions DDI 3 and DDI 4. As before, we vary Dv
2 and Du

2 as well as l2 and
visualize the critical wavelength in the corresponding parameter planes. Unless otherwise noted, all
parameters are as in Section 5.1.

In Figure 14, the colour coding, the extinction boundary and the white curve that delineates
the regions where pattern formation is possible are exactly the same as in previous figures, such
as Figure 3. No pattern formation is possible near l2 = 0. Figure 14(a) shows the intermediate range
of l2 where pattern formation is possible provided Dv

2 is large enough. Similarly, Figure 14(b) shows
the intermediate range of l2 where patterns can form when Du

2 is small enough. We note that pattern
formation is possible very close to the extinction boundary here. As we have seen in all previous plots
of this kind, the largest wavelengths occur as one approaches the boundary where pattern formation
is possible.

5.3. Patchiness in terms of patch preferences

We conclude our investigation of Scenario 2b by allowing patch preferences to vary while keeping
movement rates constant in space, as we did in Sections 3.3 and 4.3. Population dynamics parameters
and diffusion coefficients are as in Section 5.1. We evaluate the DDI conditions and illustrate our results
in two-parameter planes of the preference of Type 1 patches of prey (see Figure 15(a) with pu

1 = 1− pu
2)

and predator (see Figure 15(b) with pv
1 = 1 − pv

2).

(a) (b)

Figure 15. Level sets of the critical wavelength as a function of l2 and pu
1 (left plot) or pv

1
(right plot) for Scenario 2b. The pink extinction boundary and the black region to the right
of it are defined as in the preceding figures. Parameters are the same as in Figure 12 unless
otherwise noted.

Several conclusions that can be drawn from this figure are similar to those in the corresponding
preceding figures. For example, at the boundary (white curve), Condition DDI 4 becomes an equality
and then fails to hold so that no patterns form. Pattern formation is not possible for quite a wide range
of parameter values, especially in plot (b). When the preference of the prey for patches of Type 1
is large, no patterns can form. When the preference is low, in particular when prey prefer patches
of Type 2, patterns can form for intermediate values of l2. The biological explanation behind this
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mathematical observation is again in the question of release from intraspecific competition. When
prey have a preference for Type 1 patches, not many leave for Type 2 patches; hence, there is no relief
from this competition. When the preference is for Type 2 patches and those patches are large enough,
the release from competition is strong enough so that an activator–inhibitor sign pattern exists and
patterns can form. If, however, the Type 2 patches are too long, the overall population density will be
too small for pattern formation.

In plot (a), as the preference of prey for patches of Type 1 (pu
1) increases, we get Turing

patterns for the larger values and a wider range of l2. Moreover, in this plot, we can see that when pu
1

exceeds 0.5, l2 needs to be large enough for patterns to form. The reason is again that a large enough
bad patch will provide release from intraspecific competition in patches of Type 1. Finally, in contrast
to plots (a) in Figures 7 and 11, in this plot, we do not have any hole in the region where we get pat-
terns. In plot (b), we observe that it is possible to get patterns when pv

1 varies approximately between
0.3 and 0.7, but only when Type 2 patches are long enough.

6. Numerical aspects

In this section, we describe in more detail how we solved the homogenized and the nonhomoge-
nized reaction-diffusion equations and we give some examples that the former approximates the latter
quite well.

To simulate the homogeneous or homogenized model, we chose two independent implementa-
tions of numerical reaction-diffusion solvers. One was Matlab’s built-in pdepe solver, which we used
with the standard error tolerances. The other was the finite-difference Crank-Nicolson scheme [35],
which we implemented also in Matlab. We used the same spatial and temporal discretization as well
as the final time for both schemes, namely dx = 0.05, dt = 0.1 and T = 3000 unless otherwise noted.
With these parameters, we found the simulations to be stable and solutions of the time-dependent prob-
lem to reach the time-independent steady state. The simulations of the two different methods agreed.
To approximate the infinite spatial domain, on which the analysis rests, we chose a relatively large
bounded numerical domain and implemented no-flux (Neumann) boundary conditions. The formulas
obtained analytically guided our choice of domain size in that we ensured that the numerical domain
was large enough to contain several periods of the expected pattern.

Finally, we implemented a fractional step method Strang-splitting to solve the nonhomogenized
reaction-diffusion system. To iterate each time step, we used half a time step of diffusion, implemented
as a Crank-Nicholson scheme (see above), followed by a full time step of reaction using a fourth order
Runge–Kutta scheme, followed by half a time step of diffusion, implemented as before. To ensure
that the whole scheme remains second-order accurate, we used second-order forward or backward
difference to approximate the derivatives in the interface conditions. Since each patch is very small, we
used a smaller spatial discretization than in the homogeneous case, which then also required a smaller
time step (dx = 0.01, dt = 8 × 10−4). Since the pattern was already well established at T = 1000, we
ended the simulations there. Numerical simulations for a single population have already demonstrated
that the homogenization provides a very good approximation to the nonhomogenized model, e.g.,
Figure 2 in [29]. We note that the requirement of very small time steps in the nonhomogenized model
leads to a much greater demand on CPU time for simulation than in the homogenized model at roughly
equal accuracy. In this case, the time requirement was about 105 times that of the homogenized model.
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(a) (b)

Figure 16. Comparison of the homogenized and nonhomogenized model, see text for expla-
nation. Parameters are the same as in Scenario 2a, except that we chose the prey to show
preference for patch 2. Specifically, we used b = 0.1, s = 0.2, q = 0.8, m = 0.6, l2 = 0.2, and
l1 = 0.8. The spatial period is supposed to be small for homogenization to work. We choose
L = 0.5, i.e., Li = 0.5 li. The diffusion coefficients are Du

1 = Du
2 = 1, and Dv

1 = Dv
2 = 15.

While the predator shows no patch preference (pv
1 = pv

2 = 1/2), we used the plots in Figure
7(a) to choose prey patch preferences pu

1 = 0.3 and pu
2 = 0.7 within the region where pattern

formation is expected.

We show one representative simulation outcome in Figure 16. This figure is based on Scenario 2a.
As we had done there, we chose the predator to have no patch preference and equal diffusion rates in
both patches. Consequently, the predator density is continuous at all interfaces. Hence the simulation
result from the nonhomogenized model (black) and the homogenized model (red) closely match (Fig-
ure 16(a)). We chose the prey to have preference for patch type 2, so that the homogenized model
predicts pattern formation (see Figure 7(a)). Now the prey density is discontinuous at each interface,
and the homogenized model is expected to approximate some average spatial density in the nonho-
mogenized model. This is indeed the case. The solid red curve in Figure 16(b) shows the solution of
the homogenized model, whereas the black curve shows the solution of the nonhomogenized model.
The two dashed red curves are multiples of the solid red curve, given by u ∗ ru

1/〈r
u〉 (bottom curve)

and u ∗ ru
2/〈r

u〉 (top curve). Hence, these two dashed curves are what one obtains when recovering the
nonhomogenized solution from the homogenized one. They show excellent agreement.

7. Conclusions and discussions

Uncovering mechanisms that lead to observed spatial patterns in ecological systems is still a fun-
damental challenge in ecology. The pioneering work on pattern formation was conducted by Alan
Turing [1], who discovered pattern formation through DDI by deriving conditions under which a spa-
tially homogeneous steady state that is stable in the absence of diffusion becomes unstable in the
presence of diffusion. This mechanism determines the spatial pattern that evolves [2, 3]. Although
Turing’s study was originally proposed in chemistry, his idea spread to biology; e.g., developmental
biology and animal-coat patterns [2]. Turing patterns are generated by the interaction of two sub-
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stances, an activator and an inhibitor, with different diffusion rates: the inhibitor must diffuse faster
than the activator. We specialize the general Turing pattern idea to ecological population dynamics and
predator–prey interactions.

A number of authors have explored the application of DDI to population dynamics in
ecology [7, 9, 15], although these have been largely confined to studying pattern formation in a
homogeneous landscape. In this paper, we examined the possibility for Turing-pattern formation in a
heterogenous landscape. Since we assumed that the period of the underlying landscape heterogeniety
is small, we could study pattern formation in a patchy landscape by applying the homogenization
technique to derive a homogenized model. From this homogenized model we could apply the standard
approach [2,3] to derive DDI conditions for this simplified model. Our main results (Figures 6, 10 and
15) show that even when pattern formation is impossible in a homogeneous landscape, heterogeneity
could generate pattern formation. By varying the relative size (l2) of the bad patches in the landscape
we found that we could control whether we obtained patterns or, by contrast, have them disappear
(Figures 4 and 7).

Two requirements of diffusion driven instability have limited the application of Turing patten
formation in ecology, one being the ecological requirement of an Allee effect in prey growth rate or self-
damping in the predator, the second requirement being that the predator diffuses significantly further
than the prey. Together, these are quite restrictive and not necessarily common place in predator–prey
systems. Much work has been conducted into finding ways to relax these requirements so that Turing’s
theory can be applied to an ecological setting, and here we argue that heterogeneity can provide at least
a partial solution to this problem. In Scenario 2a we relaxed the requirement of high predator diffusion
(Section 4). While we still required the predator to diffuse more rapidly than the prey, we found
we could allow these rates of diffusion to be much closer in value and still obtain pattern formation.
Preference for a particular patch type and the relative sizes of patches in which movement is fast or
slow act to speed up or slow down movement at the landscape scale, thereby enabling the system to
satisfy the Turing pattern formation conditions at the level of the landscape (homogenized model), but
not requiring these conditions to be met locally (patch model). Finally, in Scenario 2b, we showed how
the need for an Allee effect or self-damping could be relaxed. We found spatial heterogeneity could
turn a system without an activator–inhibitor sign structure at the fine spatial scale into a system that
has one at landscape spatial scale, enabling Turing patterns to emerge.

Our study is closest to the one by Cobbold et al. [18], who also consider pattern formation on a
heterogeneous landscape composed of patches. They also find that spatial heterogeneity can facilitate
pattern formation. They assume that movement within a patch is fast, but movement between patches
is localized and confined to neighbouring patches only, which is in contrast to our assumption, that
movement is rapid and individuals encounter many patches over their lifetime. Despite this difference
in modelling assumptions, several of our results are similar to those of Cobbold et al. For example, they
found that no patterns form when prey movement was heavily biased toward good patches. Similar
results can be found in our work, as seen in Figures 11(a) and 15(a). Cobbold et al. also compared the
range of pattern formation in a homogeneous landscape with a heterogeneous landscape. They showed
that the range of parameter q that leads to pattern formation in a homogeneous landscape is much
smaller than in a heterogeneous landscape. We reached a similar conclusion, in Scenario 2b when we
compared the effects of parameter q in the two different landscapes. The consistency of these results
across both fine grain (our work) and coarse grain (Cobbold et al.) spatial heterogeneity highlights the

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2506–2537.



2533

robustness of many of our findings.
Further studies that have considered pattern formation on heterogeneous domains have focused on

only the diffusion coefficients depending on space [20,21], which has the benefit that there is a spatially
constant steady state around which one can linearize. These studies chose diffusion coefficients such
that pattern formation is possible on one side of a two-patch domain but not on the other. Under
appropriate conditions, they found that patterns can emerge on the entire domain through DDI. In the
models by Page et al. [22, 23], only the population dynamics change in space but not the diffusion
terms. They showed that, under some conditions, the mismatch of the steady state at the interface
can generate patterns that are centred around this discontinuity and then decays away from it to the
boundaries of the domain. The patterns found in a similar set-up by Kozák [24] extend on either or
both sides of the discontinuity but are still of very small wavelength compared to the patch size. These
spatially localized patterns are in contrast to the patterns we find, which propagate across the entire
domain and are generated by Turing instability rather than the discontinuity at the patch interface.
Underlying the work of Benson et al., Page et al. and Kozák et al. is the assumption that the length of
patches is larger than the length of the patterns and patterns emerge as variation in the densities in one
patch. Instead, we have assumed that the pattern wavelength is much larger than the length of patches.
There is currently no theory in place to study the case when the pattern wavelength and patch lengths
are comparable.

Homogenization has provided a useful method for studying Turing instabilities in spatially het-
erogeneous systems with rapidly varying heterogeniety. Krause et al. [36] recently used WKBJ asymp-
totics to derive a local version of the classical Turing conditions which allows one to formally study the
case of slowly varying spatial heterogeneiety. In contrast to our study, Krause et al. find that patterns
are localised in space, similar to Page et al. Also in contrast to our study, the local Turing conditions
require that the classical Turing conditions hold locally, which is not required in the landscapes we
consider. This raises the question: at what scale of heterogeneity do our pattern formation conditions
break down? We know from the work of Page, Benson and Krause (see above) that large scale hetero-
geneity leads to localised patterns and these occur in a more restricted range of parameter space, but
what happens at intermediate scales of heterogeneity still remains an open question.

Preliminary work suggests that our findings are likely to be robust to the choice of predator–prey
model. We chose the May model on good patches and the no-growth model for prey on bad patches. If
we replace the May model by the Beddington–DeAngelis functional response, we also observe that it
is possible to get Turing patterns for some range of the size of bad patches (plots not shown). Hence, an
interesting task is to replace the May model on Type 1 patches with different functional responses such
as the ratio-dependent model [10] and the modified Rosenzweig–MacArthur model that was introduced
by Fasani and Rinaldi [15]. Then we can study how heterogeneity may affect Turing patterns for each
of these models in terms of how the characteristics of the patterns such as the wavelength etc. depend
on the size of bad patches, l2. Another interesting question is to explore spatial patterns when we no
longer have strict bad and good types of patches; e.g., a heterogeneous landscape consisting of two
different type of patches, with the same functional form of the model, say the May model, in both
patches but different values for the model parameters. Arrangement of patches is another modelling
assumptions that should be tested for robustness.

Our work here has relied on the technique of homogenisation which requires the size of the
good and bad patches to be very small. Yurk and Cobbold have shown that homogenization can also

Mathematical Biosciences and Engineering Volume 19, Issue 3, 2506–2537.



2534

give a good approximation for heterogeneous reaction-diffusion equations even for moderate size
patches [28]. Moreover the theory of homogenization has also been extended to two dimensional
systems [37] and to advective systems [38] which paves the way for our approach to be extended to
more complex settings in the future.
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Appendix

We express the DDI conditions for the homogenized model in Eq (2.3) in terms of the
patchy growth functions, fi and gi, in order to evaluate them at the steady state in the patch-level
model. It may sometimes be easier to evaluate the DDI conditions on the patchy level rather than on
the homogenized level.

We derive these conditions on the patch-level by applying the chain rule for each of the following
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partial derivatives to obtain

∂ fi
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i U
〈ru〉

,
rv

i V
〈rv〉

) ∣∣∣∣∣
(U∗,V∗)

=

(
∂ fi

∂ui

∂ui

∂U

)
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ru
i
〈ru〉 ,V
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i
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=

(
∂ fi

∂ui

(
ru

i

〈ru〉

))
(ui, vi)
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(U∗

ru
i
〈ru〉 ,V

∗
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i
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(A1)

and

∂ fi
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∂vi

∂V

)
(ui, vi)

∣∣∣
(U∗

ru
i
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∗
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(A2)

We have similar expressions for partial derivatives of function gi.
As a result, Conditions DDI 1–DDI 4 in terms of fi and gi are given by

1. l1

[
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1
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where all these expressions are evaluated at the steady state (U∗ ru
i
〈ru〉
,V∗ rv

i
〈rv〉

).
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