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Abstract: eRNAs as the products of enhancers can regulate gene expression via various possible ways, 

but which regulation way is more reasonable is debatable in biology, and in particular, how eRNAs 

impact gene expression remains unclear. Here we introduce a mechanistic model of gene expression 

to address these issues. This model considers three possible regulation ways of eRNA: Type-I by which 

eRNA regulates transcriptional activity by facilitating the formation of enhancer-promoter (E-P) loop, 

Type-II by which eRNA directly promotes the mRNA production rate, and mixed regulation (i.e., the 

combination of Type-I and Type-II). We show that with the increase of the E-P loop length, mRNA 

distribution can transition from unimodality to bimodality or vice versa in all the three regulation cases. 

However, in contrast to the other two regulations, Type-II regulation can lead to the highest mean 

mRNA level and the lowest mRNA noise, independent of the E-P loop length. These results would not 

only reveal the essential mechanism of how eRNA regulates gene expression, but also imply a new 

mechanism for phenotypic switching, namely the E-P loop can induce phenotypic switching. 
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1. Introduction  

Enhancers, located upstream or downstream from the transcription start sites (TSSs), are 

important cis-acting elements, which can activate or promote the transcription levels of their target 

genes, independent of their position and orientation to the target genes [1–5]. It has been reported that 

there are more than 400,000 enhancers in human genome [6,7], and this number is far more than that 

of protein-encoding genes. Active enhancers can recruit a number of transcription factors (TFs) and 
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RNAPII to control precise gene expression in tissue-specific patterns required for the directional 

development of cell types and lineages [8–12].  

Biological experiments have reported fundamental characteristics of enhancers: (1) enhancers 

with the promoters of protein-encoding genes can form chromatin loops, thus producing a large amount 

of eRNAs [13,14]; (2) Functionally active enhancers can be transcribed into different types of eRNAs 

in an unidirectional or a bidirectional manner [9,15–19]; (3) eRNAs produced by enhancers are 

extremely unstable because they are quickly degraded by the RNA exosome, a ribonucleic acid 

exonuclease complex involved in the degradation and processing of intracellular RNAs [20–23]; (4) 

The eRNA abundance is so low that eRNAs are often viewed as the byproducts of enhancer 

transcription [24]. These experimental facts provide guidelines for modeling and analysis of gene 

expression regulated by eRNAs, but biological functions of the eRNAs remain elusive. 

Two theories have been proposed to interpret the roles of eRNAs. The first theory is the so-called 

“transcription noise theory”, which considers that eRNAs are merely the byproducts of enhancer 

transcription without functional significance. Some biologists supported this idea, e.g., Albin Sandelin 

thought that enhancer and the regulatory promoter may form a stable DNA loop when high 

concentrations of RNAP and TFs accumulate [25]. The excess RNAPII machinery collides 

stochastically with enhancers to initiate transcription [18–26]. The second theory is the so-called 

“functional theory”, which considers that eRNAs themselves may play a role of activating gene 

expression since transcription does not seem a random phenomenon but would be controlled by various 

factors [27–33]. For example, stationary enhancers have no transcriptional activities, meaning that 

chromatin accessibility is decided by DNase I hypersensitivity [34]. With regard to the “functional 

theory”, several hypotheses have been made to describe the role of eRNAs at distinct stages: (1) 

Enhancer-promoter (E-P) looping. For example, in human breast cancer cells, the eRNAs expressed 

from estrogen receptors that bind enhancers promote specific E-P interactions by recruiting adhesion 

proteins to the enhancers [27]. Also for example, in prostate cancer cells, the eRNAs expressed from 

the Kallikrein-related peptidase 3 enhancer accelerate the interaction between the KLK3 enhancer and 

the KLK2 promoter, by forming a complex with the androgen receptor and subunit of Mediator 

complex, MED1 [29]; (2) Chromatin remodeling. During the myogenic differentiation of C2C12 

skeleton muscle cells, eRNAs expressed from MYOD1 core enhancer facilitate the accessibility of 

chromatin and enhance the occupancy of RNAPII to the promoter region and the subsequent gene 

expression [31]; (3) Early transcription elongating. In the induction of immediate early genes in 

neuronal cells, eRNAs facilitate the efficient release of negative elongation factors (NELF) from their 

target gene promoters through direct association with the RNA recognition motif in the NELF-E 

subunit, thus promoting the synchronous expressions of the target genes [33]. A schematic diagram for 

the interaction between enhancer and promoter is shown in Figure 1. Which of the above three 

hypotheses is more reasonable is debating. In particular, the mechanism of how eRNAs affect gene 

expression is unclear. 

So far, many molecular mechanisms have been proposed to explain the impact of eRNAs on gene 

expression, but to our knowledge, there seem no theoretical models to investigate eRNAs’ potential 

functions. In this paper, we build a mechanistic model of stochastic gene expression, which considers 

both an E-P loop characterizing the E-P interaction and different feedbacks representing different ways 

that eRNAs impact gene expression. Although simple, this model still captures fundamental events 

taking place in gene expression, such as random synthesis and degradation of eRNA and mRNA, and 

stochastic switching between promoter activity states as well as eRNA regulation of the mRNA 
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expression. It also considers three possible regulation ways: Type-I regulation by which eRNAs 

regulates transcriptional activity by facilitating the formation of the E-P loop’s formation, Type-II 

regulation by which eRNAs directly increase the production rate of mRNA, and the combination of 

these two ways (called mixed regulation). Note that the “transcription noise theory” does not consider 

regulation.  

 

Figure 1. Schematic of enhancer-promoter interactions, which are reflected in the 

following three stages. (1) E-P looping: eRNAs can associate with the subunits of 

mediator-cohesion complex; (2) Chromatin remodeling: eRNAs can remodel chromatin 

structure and increase the accessibility of RNAPII machinery, thus improving transcription; 

(3) Early transcription elongation. Some eRNAs can facilitate transient release of the 

negative elongation factors, helping the RNAPII enter into the TSSs and initiate a 

productive elongation stage.  

We analytically derive approximate steady-state mRNA and eRNA probability distributions as 

well as their statistical quantities such as mean and expression noise (defined as the ratio of the variance 

over the squared mean). Interestingly, we find that with the increase of the E-P loop length, the mRNA 

probability distribution can switch from unimodality to bimodality and then be back to unimodality in 

all the three cases of eRNA regulation. We also find that in contrast to the other two regulations, the 

Type-II regulation can result in the highest mean mRNA level and the lowest mRNA noise, 

independent of the E-P loop length. Since these results are qualitative, we conclude that the E-P loop 

can induce phenotypic switching, which may be utilized by organisms or live cells. Our analysis 

validates the eRNA’s “functional theory”, whereas our results would have potential biological 

implications. 

2. Model description 

2.1. Mathematical model 

Although the interaction between the enhancer and the promoter of a gene would be diverse (in 

particular, in eukaryotic cells), here we assume that they form a loop (a representative chromatin 

structure) so that RNAPII can access a specific binding site to initiate transcription. This assumption 
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is reasonable. In fact, experimental evidences indicated that the formation of a DNA loop is beneficial 

to structural stability and thus to recruitment of TFs and RNA polymerases. For example, E. Savitskaya 

et al. verified by experiment that long-distance functional interactions between Su (Hw) insulators that 

can regulate the E-P communication in Drosophila melanogaster [35]. Looping is critical for process 

ranging from gene regulation to recombination and repair, and the boundaries of loop domains 

(insulators) are the determinants of chromosome form and function in multicellular eukaryotes [36]. 

M. Julien et al. suggested that the genome segment delimited by topological insulators and comprising 

the gene and its enhancer regulatory sequences is the plausible adaptor, which mediating the 

correspondence between the concentrations of specific transcription factors in the cell nucleus and 

gene expression level [37]. In addition, P. Charles et al. proposed that the Activity-by contact model 

of enhancer-promoter regulation from thousands of CRISPR perturbations to map and predict which 

enhancers regulate which genes [38]. We also assume that eRNA and mRNA are expressed only when 

the E-P loop is formed. This assumption is also reasonable since a promoter must recruit TFs and RNA 

polymerases to initiate transcription. Using the idea of the mapping method proposed in ref. [39], we 

build a mechanistic model of stochastic gene expression to model the effect of eRNA on gene 

expression, referring to Figure 2. This model is, in essence, similar to the extensively studied ON-OFF 

model of stochastic transcription [40–44]. That is, the gene promoter has one active (ON) state that 

corresponds to the case that the E-P loop is formed so that RNAPII can access a specific binding site 

to initiate transcription, where DNAs are transcribed into mRNAs and enhancers are transcribed into 

eRNAs, and one inactive (OFF) state that corresponds to the case that the E-P loop is not formed, 

where transcription is not existent, namely, neither the gene nor the enhancer is expressed. Furthermore, 

stochastic transitions exist between ON and OFF states.  

 

Figure 2. Schematic of gene models considering eRNA and its regulation as well as its 

interaction with the promoter. Neither the gene nor the enhancer is expressed if the 

enhancer and the promoter do not form a DNA loop and both are expressed otherwise. In 

(A) or (B), eRNAs produced by the enhancer are assumed to regulate gene expression in 

three possible manners: Type-I regulation, Type-II regulation and mixed regulation. 

In addition, the model also considers feedback. Usually, mRNA and eRNA need to use the same 

resource, polymerases, which, in principle, may couple two populations of the molecules. If a 

polymerase pool is sufficiently large, then we can neglect the mRNA-eRNA feedback bridged by 

polymerase. The produced eRNAs then serve as transcriptional factors to regulate the target gene 
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expressions. Based on experimental evidences, we introduce three possible regulation ways (or 

mechanisms) of eRNA: Type-I regulation, Type-II regulation and mixed regulation, as described in the 

introduction. Note that the first regulation mechanism corresponds to the first hypothesis in the 

“functional theory”, whereas the second regulation mechanism integrates the latter two hypotheses in 

the “functional theory”. Nevertheless, it is unclear which of the three regulation mechanisms is more 

possibly utilized by live organisms or cells.  

For clarity, we list all biochemical reactions corresponding to Figure 2A as follows 

     
0 1 1

2 1 2

[ ] [ ]
, , ,

, , ,

k eRNA k eRNA
I A A I A A mRNA

A A eRNA mRNA eRNA
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   

   
                      (1) 

where 
0k  and 1k  are respectively transition rates from inactive ( I ) to active ( A ) states and vice 

versa in the absence of eRNA regulation, 
1  and 

2  are respectively transcription rates, 
1 and 

2  

are respectively degradation rates of mRNA and eRNA. In Eq 1,  eRNA  represents the number of 

eRNA molecules or the eRNA concentration,   and    represent two feedback strengths and are 

assumed as nonnegative constants. If 0    but =0  , then the model reduces to the case of DNA 

looping. If 0   but 0  , then it reduces to the case of Type-II regulation. If 0   and 0  , then it 

corresponds to the case of mixed regulation. If 0   and 0  , then it corresponds to the case of no 

regulation. Thus, we can study the effect of eRNA on the mRNA expression in a united framework. 

Let m  and n   represent the numbers of mRNA and eRNA molecules, respectively. To better 

trace the time evolution of probability distributions of mRNA and eRNA molecule numbers, we 

introduce two distribution functions  , ;IP m n t  and  , ;AP m n t , which represent the probabilities 

that mRNA have m  molecules and eRNA have n molecules at time t when the gene is respectively 

at I  and A  states. Thus, the total probability, denoted by  , ;P m n t , is given by A IP P P  . Then, 

the chemical master equation corresponding to Eq 1 takes the following form 
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where , 0,1,2,m n  , S  is the unit operator, and 
lE  is the common step operator and 1

lE   is its 
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inverse (where l m  or n ). The initial condition is set as  0,0;0 1IP   and  0,0;0 0AP  . We are 

interested in stationary eRNA and mRNA distributions. Note that at steady state, Eq 2 becomes  

             
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     (3) 

Introduce two factorial marginal distributions for eRNA and mRNA, which are respectively 

defined as    ,i i

m

Q n P m n   and    ,i i

n

R m P m n  , where , .i I A   Thus, the total stationary 

distributions of eRNA and mRNA are      I AQ n Q n Q n   and      I AR m R m R m  , respectively. 

One main aim of this paper is to derive the analytical expressions of  Q n  and  R m . 

2.2. Dependence of looping rate on E-P loop length 

Apart from the eRNA’s regulation mechanism, the E-P looping rate is also an important factor 

affecting gene expression. Since an enhancer’s position relative to its promoter is not fixed, the E-P 

looping rate is assumed to change in a finite range. Note that the transition rate from OFF to ON states 

in Figure 2, 
0k , actually represents the rate that the enhancer and the promoter form a DNA loop 

(denoted by loopk  ), i.e., 0 loopk k  . In order to quantify how the E-P loop length (denoted by d  ) 

impacts gene expression, it is needed to know the dependence of 
0k  on .d  For a single DNA loop, 

previous works studied the impact of the E-P loop length on the looping rate, and even gave empirical 

formulae [47,48]. In our case, the corresponding formula takes the form of 

exp logloop on

u
k k v d wd z

d

 
     

 
 , which is motivated by the worm-like chain model of DNA 

bending [49], where loopk  represents the rate of the DNA looping, and d  represents the E-P loop 

length along the DNA line, i.e., the distance between the promoter and the enhancer. Accordingly, 

some parameter values can be set as 1, 140.6, 2.52, 0.0014, 19.9onk u v w z     , which are 

obtained by fitting experimental data [47,48]. As mentioned on the Introduction, enhancers located 

upstream or downstream of the target gene. For target gene, the different position of enhancer will 

directly affect the E-P looping rate .loopk In other words, once the target gene and the enhancer are 

fixed, then the loopk  is determined. However, for different target gene, the position of enhancer is 

different, so 
loopk  is also different. Under this setting, given the value of 0k , we can determine the 
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DNA loop length (also called distance) d from the above empirical formula. However, the case of 

1 loopk k   is also possible in theory. Therefore, based on the above empirical formula, we can also 

determine d  if the value of 
1k  is given. 

As is well known, enhancers’ regulation has a long-distance effect. Although enhancers are cis-

acting elements, the position relative to their target genes may be highly changeable. Generally, an 

enhancer is located ~200bp  upstream from the target promoter, but can also facilitate the transcription 

activity of a distant promoter even with the distance being >10 kb  [3,50]. In the following sections, 

we will set the E-P loop length between 200bp  and 8000bp  in our numerical simulations, to obtain 

qualitative results. 

Finally, in this section, we point out: (1) Most eRNA’s have been proposed to have very short half-

lives (~7.5 mins) and only a few have long half-lives [33], implying that the degradation rate of eRNA 

is in general larger than that of mRNA. In our simulation, we will set 
1 1   (one unit) and 

2 5  . 

(2) The amount of eRNAs is usually much less than that of mRNAs [51], implying that the production 

rate of the former is much smaller than that of the latter. In our simulation, we will set 
1 20   and 

2 2  . (3) The choice of other parameter values is based on the setting of parameter values used 

often in the study of the common ON-OFF model at the transcription level [40]. 

3. Results 

First, there are two possible ways to determine the DNA loop length ( d ) if the other parameters 

are fixed: increasing 
0k , and reducing 

1k . Second, we numerically find that in whichever way (i.e., 

given the value of 
0k  or 

1k , which determines d according to the above empirical formula), the 

qualitative impact of increasing 
0k  or reducing 

1k  on the mRNA expression is the same (referring 

to an example shown in the Appendix of this paper). Therefore, we will only show results in the case 

that d   is determined by the previous setting of 
0k   that is allowed to change in a finite range 

(implying that d  changes in another finite range). 

3.1. Analytical distributions and statistics 

Analytical results can often provide the comprehensive understanding of a system’s behavior. 

Here we present analytical results for eRNA and mRNA distributions, and statistical quantities such as 

expectations and variances as well as noise intensities. The detailed mathematical derivations are put 

in Appendix A of this paper. 

 



2102 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 2095-2119. 

First, consider the eRNA case. We can show that the exact, analytical eRNA distribution is given 

by  
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Gamma function. Equation 4 indicates that the stationary eRNA distribution is independent of mRNA. 

Thus, the eRNA noise intensity is given by 
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Then, consider the stationary mRNA distribution. Under some assumed conditions, we can derive 

the approximate expression of this distribution (seeing Appendix A for derivation) 

 
   

 
  

01

1 1 0 0 1 1

0 1

+ , + + ;
! +

m

m

m

k nn
R m F k n m k n k m n

m k n k

 
   




    


   (6) 

where n  is given by Eq 5a. This analytical expression shows how eRNA quantitatively impacts the 

stationary mRNA distribution. Apparently, this impact is nonlinear. We point out that this approximate 

distribution has been verified by the Gillespie stochastic simulation algorithm [53], referring to 

Figure 3A where the E-P loop length is set as 1500 .bp  From the panels of this figure, we observe 

that in all the three cases of eRNA regulation, the absolute differences between theoretical and 
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numerical results do not exceed 0.01, indicating that our approximate method (seeing Appendix A for 

detail) is effective. 

 

Figure 3. Shown are the results (solid lines) obtained by theoretical prediction and the 

results (circles) obtained by the Gillespie algorithm in the cases of Type-I regulation (red), 

Type-II regulation (blue), and mixed regulation (purple). (A) mRNA probability 

distributions, where the probabilities corresponding to the second peak (i.e., the peak away 

from the origin) are shown in the small boxes. The E-P loop length is set as 1500d bp . 

(B) Dependence of the mRNA mean on d , where the smallest means are indicated by 

arrows. (C) Dependence of the mRNA noise on d , where the largest noise intensities are 

indicated by arrows. In (A,B,C), parameter values are set as: 
1 10.2, 20k    , 

2 1 22, 1, 5       and feedback strength: 1    for Type-I regulation, 1    for Type-II 

regulation, and 0.5, 0.5   (A) but 0.7, 0.3   (B,C) for mixed regulation. In (B,C), 

the E-P loop length changes from 200 to 8000 .bp  

 



2104 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 2095-2119. 

The mean mRNA is given by 
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whereas the mRNA noise intensity by 
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Both show how the mean of eRNA molecules affects the mean and noise intensity of mRNA. 

Moreover, m   is a monotonically increasing function of n   whereas 2

m   is a monotonically 

decreasing function of n . Similar to the case of mRNA distribution, the approximate mean and noise 

intensity of mRNA have also been verified by the Gillespie stochastic simulation algorithm [53], 

referring to Figure 3B (for the mRNA mean) and 3C (for the mRNA noise intensity). In fact, the 

maximum error between the two mRNA means does not exceed 0.4, whereas the maximum error 

between the two mRNA noise intensities does not exceed 0.002. Therefore, except that the error is 

slightly larger at 2000d bp  (no more than 0.5), the two methods are still in good agreement in other 

E-P looping length. These results further indicate that our approximate method is reasonable. 

3.2. Impact of E-P loop length on mRNA probability distribution 

Experimental evidences have indicated that an enhancer may be located in any position of the 

promoter’s upstream or downstream. The enhancer can not only prompt the transcription of the core 

promoter but can also facilitate that of any promoter near it. Therefore, it is necessary to investigate 

how the E-P loop length impacts gene expression and further cell-to-cell variability in isogenic cells. 

Here we address this issue in terms of mRNA distribution, with reasons stated as follows. First, in 

contrast to a single stochastic trajectory, the distribution can provide more complete information on 

stochastic dynamics of the underlying system. Second, distributions provide an intuitive understanding 

for cellular phenotypes and phenotypic diversity as well as phenotypic switching [54–56].  

In order to show the effect of the E-P loop length on the mRNA distribution, we consider four 

cases: Type-I regulation, Type-II regulation, mixed regulation and non-regulation. Numerical results 

are demonstrated in Figure 4, where the lines represent the results obtained by the Gillespie 

algorithm [53] whereas the circles represent the results obtained by theoretical prediction. We observe 

that with the increase of the E-P loop length, the mRNA distribution can change from unimodality to 

bimodality and then be back to unimodality in all the cases, independent of eRNA regulatory patterns. 

In Figure 4A, the first, second, third and fourth columns correspond respectively to Type-I 

regulation, mixed regulation, Type-II regulation and non-regulation. In all the cases, the E-P loop 

length can result in unimodal or bimodal mRNA distribution where one peak is close to zero and the 

other peak is away from zero. Specifically, the mRNA distribution is unimodal for a small d (for 

example, d is set as 200 bp ) in all the four cases of eRNA regulation, referring to the first row in 

Figure 4A. At least d is about 600 bp  is needed to generate bimodality for Type-I regulation, at least 
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d is about 800 bp  for mixed regulation, at least d is about 1000 bp  for Type-II regulation, and at least 

d is about 1200 bp for non-regulation, referring to the second row in Figure 4A. With the increase of 

d , the bimodal mRNA distribution gradually become unimodal, but the E-P loop length needed for this 

change is different among the four cases. Specifically, at least d is about 3500 bp  is needed for Type-

I regulation, at least d is about 4600 bp for mixed regulation, at least d is about 5500 bp  for Type-II 

regulation, and at least d is about 7000 bp  for non-regulation, referring to the fourth row in Figure 

4A. The panels from the second row to the third row in Figure 4A show how the E-P loop length 

impacts the shape of the bimodal mRNA distribution in all the four cases of eRNA regulation. Figure 

4B demonstrates the time series of the mRNA number in the four cases of eRNA regulation: from top 

to bottom, the fifth row for bimodality and the sixth row for unimodality. In order to help understand 

the mechanism of how the E-P loop length induces the transition between ON and OFF states in all 

the four cases of eRNA regulation, we also plot the time evolution of promoter activity, referring to 

Figure 4C. 

In a word, we numerically find that the shortest E-P loop length is needed to generate bimodality 

or to switch from bimodality to unimodality in the case of Type-I regulation, but the longest d  is 

needed in the case of non-regulation. In the other two regulation cases, the d  needed for bimodality 

or switching is in between the shortest and longest E-P loop lengths. The results shown in Figure 4 

would have important biological implication. Perhaps cells would make use of the E-P loop for better 

survival in complex environments. 

Finally in this subsection, we give a simple interpretation for the appearance of bimodality. First, 

while the common on-off model of gene expression itself has the potential to generate bimodality, our 

model has the similar one [40,41]. Second, eRNA in our gene model is designed to regulate the 

expression of the gene in an activating manner. Due to the low production rate and high degradation 

rate of eRNA, the number of eRNA is generally small, but this activating effect on gene expression 

indeed exists and is unneglectable, and even can induce phenotypic switching, as demonstrated in 

Figure 4. In addition, we point out that previous studies showed that a simple genetic auto-activation 

loop can lead to bistability (meaning that the underlying deterministic system has two stable equilibria) 

but can also lead to bimodality in the stochastic case [57]. In contrast, we showed that the E-P loop 

can induce bimodality. Therefore, our mechanism is different from the previous one. 

3.3. Effects of the E-P loop length on the mRNA mean 

Figure 5 shows how the E-P loop length affects the mean mRNA level. Specifically, Figure 5A 

demonstrates the dependence of the mRNA mean on the E-P loop length in all the four cases of eRNA 

regulation, Figure 5B demonstrates the dependence of the ratio of the mRNA mean in all the three 

cases of eRNA regulation on the E-P loop length, Figure 5C demonstrates the impact of the E-P loop 

length on transition rate 0k , and Figure 5D demonstrates the dependence of mRNA mean on both E-P 

loop length and feedback strength. 
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Figure 4. Probability distribution of mRNA and time evolution of the mRNA number as 

well as the time evolution of the promoter activity, where red lines (first column) 

correspond to Type-I regulation, purple lines (second column) to mixed regulation, blue 

lines (third column) to Type-II regulation, and green lines (fourth column) to non-

regulation. The solid lines represent the results obtained by theoretical prediction, whereas 

the circles represent the results obtained using the Gillespie algorithm. (A) Dependence of 

mRNA probability distribution on the E-P loop length. (B) Time evolution of the mRNA 

number. (C) Time evolution of the promoter activity. The parameter values are set as: 

1 1 2 1 20.2, 20, 2, 1, 5,k           and feedback strengths are set as: 0.8    for Type-I 

regulation, 0.4, 0.4    for mixed regulation, and 0.8   for Type-II regulation.  
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Figure 5. Influence of eRNA on the mRNA mean. (A) Dependence of the mRNA mean on 

the E-P loop length, where red dotted dash lines correspond to Type-I regulation, purple 

forked dash lines to mixed regulation, blue circled dash lines to Type-II regulation, and 

green hexagonal star dash lines to non-regulation. (B) The ratio of the mRNA mean in 

three cases of eRNA regulation over that in case of non-regulation. (C) Dependence of 
0k  

on the E-P loop length. (D) Dependence of mRNA mean on both E-P loop length and 

feedback strength. Parameter values are set as: 1 1 2 1 21, 20, 2, 1, 5, 0.6,k          

0.4  , and the E-P loop length changes from 200bp  to 8000bp .  

From Figure 5A, we observe that the curve in the case of non-regulation is always below the 

curves in three cases of eRNA regulation for all possible E-P loop lengths that are assumed to change 

in the interval from 200 bp   to 8000 bp   in our simulation, and the curve in the case of Type-II 

regulation is above that in the case of mixed regulation, which is above that in the case of Type-I 

regulation. Moreover, the changing range of the mean mRNA level is larger in the case of Type-II 

regulation than that in the cases of Type-I and mixed regulations, indicating that the Type-II regulation 

can amplify the mRNA expression level in contrast to the other two ways of eRNA regulation (i.e., 

Type-I and mixed regulations). We also observe that the mRNA mean first decreases for smaller E-P 

loop lengths and then increases with the increase of the E-P loop length, that is, the mean mRNA level 

reaches the minimum in all the four cases of eRNA regulation. 

Figure 5B demonstrates the dependence of the mean mRNA ratio (defined as the ratio of the mean 

mRNA in the case of eRNA regulation over the mean mRNA in the case of non-regulation) on the E-

P loop length for three ways of eRNA regulation, where by “relative” we mean that the mean mRNA 

level in the case of non-regulation is set as unit (or the mean mRNA level in the case of non-regulation 

is taken as a reference). We observe that these relative changes exhibit different characteristics, 

depending on the way of eRNA regulation. Specifically, the mean mRNA ratio reaches the minimum 

in the case of Type-II regulation but the maximum in both cases of Type-I and mixed regulations. In 
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addition, for all possible E-P loop lengths, the relative curve for Type-II regulation is always higher 

than the ones for two other regulations, and the change trend of the former is opposite to that of the 

latter two. 

In order to verify the above qualitative results, we further analyze the dependence of the mean 

mRNA level on both E-P loop length and feedback strength, referring to Figure 5D. Interestingly, we 

observe that for any feedback strength, the mean mRNA level can reach a minimum at about 2000bp  

E-P loop length. Particularly in the cases of Type-II and mixed regulations, the larger feedback strength 

leads to a higher mean mRNA level, but the E-P loop length needs to be limited in the interval from 

200 to 4000bp . 

It is worth pointing out that the above qualitatively different relative change tendencies may in 

turn help us infer the way and the qualitative effect of eRNA regulation.  

3.4. Effects of the E-P loop length on the mRNA noise 

Figure 6 shows how the E-P loop length affects the mRNA noise. Specifically, Figure 6A 

demonstrates dependence of the mRNA noise on the E-P loop length in the four cases of eRNA 

regulation as specified above; Figure 6B, an enlarged diagram for the red dotted line shown in Figure 

6A, demonstrates the dependence of the mRNA noise on the E-P loop length in the case of Type-I 

regulation; Figure 6C demonstrates the dependence of the ratio of the mRNA noise (defined as the 

ratio of the mRNA noise in the case of eRNA regulation over the mRNA noise in the case of non-

regulation) on the E-P loop length in the three cases of eRNA regulation; and Figure 6D demonstrates 

the dependence of mRNA noise on both E-P loop length and feedback strength. 

From Figure 6A, we first observe that the curve in the case of non-regulation is above the curve 

in the case of Type-I regulation, which is above the curve in the case of mixed regulation, which is 

above the curve in the case of Type-II regulation. This implies that each of three eRNA regulation 

ways can reduce the mRNA noise in contrast to non-regulation. In addition, whatever the E-P loop 

length, the mRNA noise in the case of Type-II regulation is the lowest, the mRNA noise in the case of 

Type-I regulation is the highest, and the mRNA noise in the case of mixed regulation is moderate. 

Then, we observe that in all the three cases of eRNA regulation, the mRNA noise intensity first 

increases and then decreases with the increase of the E-P loop length, implying that the mRNA noise 

has the highest level even for Type-I regulation (referring to Figure 6B). 

From Figure 6C, we observe that the noise-ratio curves for Type-I regulation (red) and mixed 

regulation (purple) have the same change trend, that is, they first decrease and then increase until they 

become flat. The noise ratios reach the minimum around the 2000bp E-P loop length. If the E-P loop 

is long enough (e.g., more than 6000bp ), the noise level in the case of Type-I regulation is very close 

to that in the case of non-regulation, and the former is much smaller than the latter otherwise. In 

addition, the curve for Type-II regulation is always below the ones for the other two regulation ways, 

and the change trend of the former is opposite to that of the latter two. Furthermore, we analyze the 

simultaneous dependence of mRNA noise intensity on E-P loop length and feedback strength, referring 

to Figure 6D. From this diagram, we observe that for any feedback strength, the mRNA noise intensity 
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reaches the maximum around the 2000bp  E-P loop length. Particularly in the cases of Type-I and 

mixed regulations, the greater the feedback strength is, the smaller is the mRNA noise, and this 

relationship holds for the E-P loop length in the interval from 200 to 4000 .bp  

The combination of Figures 5 and 6 implies that the Type-II regulation is advantageous over Type-

I or mixed regulation in controlling gene expression and tuning gene expression noise, and this 

advantage is independent of the E-P loop length. 

 

 

 

Figure 6. Influence of eRNA on the mRNA noise. (A) Dependence of the mRNA noise 

on the E-P loop length. (B) An enlarged diagram of the red dotted line in (A). (C) The ratio 

between the mRNA noise intensities in three cases of eRNA regulation. (D) Dependence 

of the mRNA noise on both E-P loop length and feedback strength. Parameter values are 

the same as those in Figure 5.  

3.5. Effects of feedback strength and eRNA synthesis rate on mRNA noise 

Here, we investigate the effects of feedback strength parameters (  and  ) and eRNA 

production rate ( 2 ) on the mRNA noise, for a fixed E-P loop length. Numerical results are 

demonstrated in Figure 7. 

From Figure 7A and B, we observe that the mRNA noise is a monotonously decreasing function 

of feedback strength   or  , where red dotted lines correspond to Type-I regulation, blue circled 

lines to Type-II regulation, and purple cross lines to mixed regulation. Figure 7A shows that with the 

increase of  , the mRNA noise for Type-I regulation is a bit greater than that for mixed regulation. 

Similarly, Figure 7B shows that with the increase of  , the mRNA noise for Type-II regulation is 
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apparently greater than that for mixed regulation. In addition, the mRNA noise in Figure 7A is a 

concave function of  , whereas that in Figure 7B has an inflecting point nearly at 0.45  : the 

mRNA noise is a concave function if 0.45   but a convex function if 0.45  . 

Figure 7C demonstrates how the mRNA noise intensity changes with the eRNA synthesis rate 

2 . We observe that in all the three cases of eRNA regulation, with the increasing of synthesis rate 

2 , the mRNA noise first decreases rapidly and then maintains at a stable level after the synthesis rate 

is beyond a certain value. In the three cases of eRNA regulation, although the change trend of the 

mRNA noise is fundamentally similar, the mRNA noise level displays an apparent difference. 

Specifically, if 2  is kept the same, the line for Type-I regulation is above that for mixed regulation, 

which is above that for Type-II regulation. This indicates that if the eRNA generation rate is set as unit, 

the mRNA noise for Type-II regulation is the lowest, and the mRNA noise for Type-I regulation is 

higher than that for mixed regulation. Therefore, from the viewpoint of reducing the mRNA noise, the 

best way of eRNA regulation is the Type-II regulation, which is in accordance with the conclusion for 

the mean mRNA. 

 

Figure 7. Dependence of the mRNA noise on feedback strength or the eRNA synthesis 

rate in three cases of eRNA regulation, where red dotted lines correspond to Type-I 

regulation, blue circled lines to Type-II regulation, and purple cross lines to mixed 

regulation. (A) Effect of   on mRNA noise, where   changes from 0 to 1 for Type-I 

regulation, and from 0 to 0.8 for mixed regulation with the fixed 0.2  . (B) Effect of   

on mRNA noise, where   changes from 0 to 1 for Type-II regulation, and from 0 to 0.8 

for mixed regulation with the fixed 0.2  . (C) Effect of 
2  on mRNA noise, where 

parameter 
2  changes from 1 to 20, 0.1   and 0.9   for mixed regulation. In (A), 

(B) and (C), parameter values are set as: 
1 1 1 21, 20, 1, 5,k       2000 .d bp  
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4. Conclusions 

More and more experimental evidences indicate that non-coding RNAs play important role in 

controlling gene expression. As a kind of mysterious non-coding RNA and a new regulation factor, 

eRNA may affect gene expression and its anomalous expression may lead to many diseases [58–61,34]. 

Exploratory interrogation should be conducted to unravel the association of functional eRNAs with 

specific chromatin regions and other functional RNAs [62], as well as to understand possible functional 

motifs, secondary structures and chemical modifications [63,64]. On the other hand, mathematical 

models are a powerful tool for exploring possible functions of eRNAs. 

In this work, based on biologically experimental evidence, we have proposed a mechanistic model 

of stochastic gene expression with eRNA regulation. In this toy model, the eRNA regulatory role is 

primarily reflected in one of three ways: (1) Type-I regulation by which eRNA accelerates the 

formation of the E-P loop, (2) Type-II regulation by which eRNA promotes the production rate of its 

target gene product, (3) mixed regulation which is a combination of the former two regulation ways. 

We have also provided a theoretical analysis framework to investigate the eRNA’s contribution to the 

target gene expression, and derived analytical formulae for the mRNA’s distribution, mean and noise. 

Interestingly, we have found that with the increase of the E-P loop length, the mRNA distributions can 

transition to bimodality from unimodality and then be back to unimodality, independent of eRNA 

regulation ways. We have also shown that in contrast to Type-I and mixed regulations, the Type-II 

regulation can result in the higher mean mRNA level and the lower mRNA noise, independent of the 

E-P loop length. These results are independent of the choice of the model’s parameter values and are 

hence qualitative, although we only demonstrated relevant numerical results for particular sets of 

parameter values. Our results indicate that the E-P loop can induce phenotypic switching, a mechanism 

different from the traditional one (i.e., feedback can induce phenotypic switching). Both would be 

exploited by live cells surviving in complex environments.  

In our model, eRNA is taken as an enhancer’s product, which inter-regulates the expression of its 

target gene. The made assumption may not be exactly consistent with biological reality of eRNA 

regulation under some specific environments. In other situations, it would be needed to construct other 

more biologically reasonable models to investigate the role of eRNA in regulating its target genes, e.g., 

the constructed models should consider dynamic regulation where eRNA is taken as an input signal of 

the model systems [65]. For this, one may assume that eRNA is a special spatiotemporal regulation 

factor that wanders in cellular space, and its concentration is a time-dependent function, eRNA(t). 

Based on this assumption, one can also establish theoretical models as done in this paper. This will be 

the next task in our future research.  

It should be pointed out that in the introduction, we have mentioned three hypotheses on the 

“functional theory”: eRNA facilitates the formation of the E-P loop, eRNA remodels chromatin, and 

eRNA improves the extension of RNAPII. In this paper, we assumed that the most possible biological 

function of eRNA is to enhance the mRNA production rate. Although this rate integrates the effects of 

chromatin remodeling and promoting RNAPII elongation, but we did not specify molecular 

mechanisms behind these effects. Therefore, the future study needs to construct a more realistic model 

to investigate whether chromatin remodeling or the extension of RNAIIP can increase the mRNA 

transcriptional rate, and how this rate affects gene expression and further cell-to-cell variability across 

a genetically identical population of cells.  
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Appendix A: Derivation of analytical results 
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This is a solvable model where mRNA does not impact eRNA. To solve this equation group, we 
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where the parameters are normalized by 2  . By adding the above two equations, we get 
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Making Taylor expansion:   n
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Thus, we obtain the following expression of function  G x  
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Being back to the original variable yields 
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Using the relationship between probability distribution and probability-generating function, we 

thus obtain the analytical expression for the marginal probability density function of eRNA  
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Furthermore, the mean of eRNA is given by 
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Next, let    ,i i

n

R m P m n  be the marginal probability density functions of mRNA. It follows 

from Eq 3 in the main text that 
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Now, we make the approximation: replacing ( , )IP m n  with ( ) ( )I IR m Q n . In addition, we make the 

approximation: replacing 
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   with 
0
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   The effectiveness of these approximations has 

been verified by numerical simulation (seeing the main text). Then, we have the approximate equations 
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where n  is given by Eq A12. Since n  is unrelated to mRNA, it can be taken as a parameter in 

Eq A14. The other parameters in Eq A14 have been normalized by 1 . Thus, Eq A14 is also a solvable 

model. In fact, it is a common ON-OFF model where the transition rate from ON to OFF state is 1k , 

the transition rate from OFF to ON state is 0k n  and mRNA transcriptional rate is 1 n  . By 

solving this model, we obtain the following analytical expression of stationary mRNA probability 

distribution  
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where ( )nc   is the Pochhammer symbol, defined as ( ) ( ) ( ),nc c n n     and  1 1 , ;F a b z   
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confluent hypergeometric function, defined as  
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Appendix B: Supplemental figure 

In the main text, we have investigated the effect of eRNA on the mRNA expression in the case that 

eRNA regulates the transition rate from OFF to ON. However, it is possible that eRNA regulates the 

transition rate from ON to OFF. In this case, whether the qualitative effect of eRNA affects on the 

mRNA expression is that in the case that eRNA regulates the transition rate from OFF to ON. We 

numerically find that both are indeed the same. Here we only demonstrate an example, referring to 

Figure S1. 
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Figure S1. Influence of reducing 
1k  on stationary mRNA distribution, where distance d  

is determined by 1 exp logon

u
k k v d wd z

d

 
     

 
, and some parameter values are set as: 

0 1 2 1 21, 20, 2, 1, 5, 1.k             
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