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Abstract: The local dynamics with different topological classifications, bifurcation analysis and chaos
control in a discrete-time COVID-19 epidemic model are investigated in the interior of R3

+. It is proved
that discrete-time COVID-19 epidemic model has boundary equilibrium solution for all involved pa-
rameters, but it has an interior equilibrium solution under definite parametric condition. Then by linear
stability theory, local dynamics with different topological classifications are investigated about bound-
ary and interior equilibrium solutions of the discrete-time COVID-19 epidemic model. Further for the
discrete-time COVID-19 epidemic model, existence of periodic points and convergence rate are also
investigated. It is also investigated the existence of possible bifurcations about boundary and inte-
rior equilibrium solutions, and proved that there exists no flip bifurcation about boundary equilibrium
solution. Moreover, it is proved that about interior equilibrium solution there exists hopf and flip bi-
furcations, and we have studied these bifurcations by utilizing explicit criterion. Next by feedback
control strategy, chaos in the discrete COVID-19 epidemic model is also explored. Finally numerically
verified theoretical results.
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1. Introduction

1.1. Motivation and literature review

In December 2019, Wuhan city in China—home to 11 million people—first came to the global
spotlight with the reports of a pneumonia-like disease. Initially it was suspected that certain animals
such as bats were its origin. Later on, however, with an unexpected surge of the corona cases all over
the world, it was declared as a serious infectious pandemic which spread from one infected person to
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another through direct or indirect contact. This severe acute respiratory syndrome, later called COVID-
19, is actually caused by a novel Coronavirus SARS-CoV-2.

Besides, SARS-CoV-2, there have also been identified at least six other kinds of coronavirus that
originate from animals. Most of them cause common cold which, in certain cases, can prove a potential
threat to human health. Each infected person is estimated to pass the phenomenon on to three other
people. It lasts approximately between 1–14 days. The common symptoms include: sore throat,
fever, general weakness, shortness of breath, cough, pain etc. There are particular groups of people
among whom the risk factor becomes too higher. They include old men and women, obese guys, chain
smokers, those fighting hypertension and cancer patients. Prevention seems to be the only sure cure
out there.

When it initiated in China nearly two years ago, the COVID-19 was limited only to the city of
Wuhan. With the progress of time, however, it first spread in the whole country and then within months
reached almost every corner of the world. It happened largely due to the careless of the masses. As a
result, most government were forced to impose such strict regulations as lockdown. Maintaining social
distancing too could be a very viral step to curb the spread of the virus which is generally reliant upon
other people to reach the healthy segment of the society.

The second wave of this contagious coronavirus was another reminder that it’s over. As we learn
through media, the death rate was once again on the rise. In Pakistan and Azad Kashmir (just like the
rest of the world), all educational institutions were closed for two or more months. The reason was
simple. People didn’t take the threat seriously and, as a result, its spread couldn’t be stopped. Nations
globally need to learn their lessons quickly. Without taking all the precautionary measures, we won’t
be able to fight COVID-19. On the other hand, as compared to second wave, the third and forth waves
of coronavirus were not so serious and rate of new cases controlled.

Various vaccines are continuously being tested throughout the world. Most of them have reportedly
proven successful too. This, however, seems to be time consuming task. It isn’t simple to first agree
on a single vaccine and then make it simultaneously available across all the continents. Therefore, we,
the people, are left with no other option than taking care of ourselves and near and dear ones. Kids,
being less immune, are particularly prone to catch most ailments. If there’s a strict parental control, it
will not just keep their own families safe, but the whole society at large will also be in a better position
to defy this looming health danger.

In the meanwhile, many chemists, biologists, doctors and mathematicians are trying to study the
behavior of coronavirus. On the mathematical side, there are few models already discovered, to study
it’s behavior. Some of them are: SIR (Susceptible, Infected and Recovered) model, SIQR (Susceptible,
Infectious, Quarantined and Recovered) model, SEIR (Susceptible, Exposed, Infected and Recovered)
model, and SIRS (Susceptible, Infected and Recovered, Susceptible) model. For instance, Zou et
al. [1] suggested the following epidemic model (SuEIR), which is alternative to the SEIR model by
considering the unreported COVID-19 cases and instructed by machine learning algorithms based on
the reported historical data, for forecasting the propagation of COVID-19 comprising a lot of authentic
and casualty cases at national levels in the United States:

dS
dt
= −
β(I + E)S

N
,

dE
dt
=
β(I + E)S

N
− σE,

dI
dt
= µσE − γI,

dR
dt
= γI, (1.1)

where β is the exposure rate between the susceptible and infected people, σ expresses the ratio of cases
in the revealed sections that are either confirmed as infectious or dead/recovered without authentication,
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µ is the rate of realization of the infected cases, and γ represents the alteration rate between the sections
I and R. Ray et al. [2] estimated the real-time application of an open, collective ensemble to predict
deaths attributable to COVID-19 in the United States. Shea et al. [3] explored multiple COVID-19
mathematical models to comprehend the sources of widespread COVID-19 disease. Nadim et al. [4]
studied the stability analysis of the following compartmental epidemic model of COVID-19 to forecast
and control the upsurge:

dS
dt
= Π −

S (βI + rQβQ + rAβA + rJβJ)
N

− µS ,

dE
dt
=

S (βI + rQβQ + rAβA + rJβJ)
N

− (γ1 + k1 + µ)E,

dQ
dt
= γ1E − (k2 + σ1 + µ)J,

dA
dt
= pK1E − (σ2 + µ)A,

dI
dt
= (1 − p)k1E − (γ2 + σ3 + µ)I,

dJ
dt
= k2Q + γ2I − (δ + σ4 + µ)J,

dR
dt
= σ1Q + σ2A + σ3I + σ4J − µR,

(1.2)

whereΠ is recuitment rate, β is transmission rate. rQ, rA and rJ are modification factors for quarantined,
asymptomatic and isolated respectively. γ1 is the rate at which the exposed individuals are diminished
by quarantine, and γ2 is the rate at which the symptomatic individuals are diminished by isolation. k1

and k2 are rates at which exposed become infected, quarantined individuals are isolated, respectively. p
is the proportion of asymptomatic individuals. σ1, σ2, σ3, σ4 are respectively the recovery rates from
quarantined, asymptomatic, symptomatic and isolated individuals. δ and µ are the diseases induced
mortality rate and natural death rate, respectively. Li et al. [5] developed a SEIQR COVID-19 model,
described by the system of difference equation:

S t+1 = S t −
βS tEt + β1S tIt

Nt
,

Et+1 = Et +
βS tEt + β1S tIt

Nt
− δEt,

It+1 = It + δEt − mIt,

Qt+1 = Qt + mIt − γQt,

Rt+1 = Rt + γQt,

Nt = S t + Et + It + Qt + Rt,

(1.3)

where human host incubation period is 1
δ

days. Infectious cases at the rate m revert to confirmed cases,
and recovered rate is γ. Susceptible humans acquire COVID-19 through direct contact with exposed
cases and infected cases at rates βS tEt

Nt
and β1S t It

Nt
, respectively. Tian et al. [6] investigated the spread and

control of COVID-19 using a data set that included case reports, human movement, and public health
interventions. Sun et al. [7] presented the following model to show the propagation of COVID-19 in
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Wuhan:

dS
dt
= −
β
′

1S E + β
′

2S I
N

,
dE
dt
=
β
′

1S E + β
′

2S I
N

− δE,
dI
dt
= δE −m1I,

dQ
dt
= m1I − γQ,

dR
dt
= γQ, (1.4)

where N, S , E, I, Q, R are total, susceptible, exposed, infected, confirmed and removed populations,
respectively. β

′

1 and β
′

2 are infection coefficients under lockdown, and m1 is confirmation rate depends
on the rickness of medical resources. δ is transform rate from the exposed population to infected
population, and γ is transform rate from the confirmed population to the removed population. In 2021,
Tesfaya et al. [8] suggested the following continuous-time stochastic COVID-19 epidemic model with
jump-diffusion derived by both Gaussian and non-Gaussian noises:

dS
dt
= Λ − βS I − νS + σR,

dI
dt
= βS I − (ν + γ)I,

dR
dt
= γI − (ν + σ)R, (1.5)

where S , I and R respectively denote susceptible, infected and recovered populations, whereas joining
rate of people to susceptible class through migration or birth isΛ, β is the rate at which susceptible class
tends to infected one, ν is due to coronavirus death, recovery rate is γ, and σ is the rate of deteriorate
in health.

1.2. Statement of the problem

Motivated from the aforementioned studies, the purpose of this study is to investigate the dynamical
characteristics of COVID-19 epidemic model, which is discrete analogue of continuous-time stochastic
COVID-19 epidemic model (1.5), by Euler-forward formula. It is noted here that by applying Euler-
forward formula the continuous-time stochastic COVID-19 epidemic model (1.5) takes the following
form:

S t+1 − S t

h
= Λ − βS tIt − νS t + σRt,

It+1 − It

h
= βS tIt − (ν + γ)It,

Rt+1 − Rt

h
= γIt − (ν + σ)Rt. (1.6)

After simplification, model (1.6) takes the following form:

S n+1 = hΛ + (1 − νh)S n − βhS nIn + hσRn, In+1 = (1 − νh − γh)In + hβS nIn,

Rn+1 = (1 − hν − hσ)Rn + hγIn,
(1.7)

with h is step size and t is denoted by n. It is also important to note that in the proposed work we study
dynamical characteristics of discrete-time COVID-19 epidemic model (1.7), which is counter part of
epidemic model (1.5), because discrete model gives more efficient computational results as compared
to continuous once.

1.3. Structure of the paper

In the subsequent Section existence of equilibrium solutions of discrete COVID-19 epidemic model
(1.7) is explored. In Section 3 we have constructed linearized form of discrete COVID-19 epidemic
model (1.7) whereas Section 4 is about the exploration of local behavior of COVID-19 epidemic model
(1.7) at equilibrium solutions. In Section 5 periodic points with period-n of COVID-19 epidemic model
(1.7) is investigated. The convergence rate for COVID-19 epidemic model (1.7) is studied in Section
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6. In detailed bifurcation analysis about equilibrium solutions of discrete COVID-19 epidemic model
(1.7) is given in Section 7. Section 8 is about the study of chaos control of COVID-19 epidemic model
(1.7). Numerical verifications of theoretical results are given in Section 9. The concluding remarks are
given in Section 10.

2. Existence of equilibrium solutions of discrete COVID-19 epidemic model (1.7)

In R3
+, existence of equilibrium solutions of COVID-19 epidemic model (1.7) is studied in this

Section, as follows:

Lemma 2.1. For existence results regarding equilibrium solutions of discrete COVID-19 epidemic
model (1.7), following statements hold:

(i) ∀ h, β, Λ, ν, σ, γ > 0, discrete COVID-19 epidemic model (1.7) has boundary equilibrium
solution: ES 00

(
Λ
ν
, 0, 0

)
;

(ii) If β > ν(ν+γ)
Λ

then discrete COVID-19 epidemic model (1.7) has interior equilibrium solution:

E+S IR

ν + γβ , (ν + σ)
(
βΛ − ν2 − νγ

)
β
(
ν2 + (σ + γ) ν

) ,
γ
(
βΛ − ν2 − νγ

)
β
(
ν2 + (σ + γ) ν

) .
Proof. If equilibrium solution of COVID-19 epidemic model (1.7) is ES IR(S , I,R) then

S = hΛ + (1 − νh)S − βhS I + hσR, I = (1 − νh − γh)I + hβS I, R = (1 − hν − hσ)R + hγI. (2.1)

It is noted that for ES 00

(
Λ
ν
, 0, 0

)
algebraic system (2.1) satisfied identically. Thus one can obtain that the

boundary solution of discrete COVID-19 epidemic model (1.7) is ES 00

(
Λ
ν
, 0, 0

)
. For the interior equi-

librium solution of discrete COVID-19 epidemic model (1.7), one need to solve following algebraic
system simultaneously:

(βI + ν)S = Λ + σR, ν + γ = βS , (ν + σ)R = γI. (2.2)

2nd equation of (2.2) yields
S =
ν + γ

β
. (2.3)

Using Eq (2.3) in 1st equation of (2.2) one has

(βI + ν)
ν + γ

β
= Λ + σR. (2.4)

From 3rd equation of (2.2) one has

R =
γI
ν + σ

. (2.5)

From Eqs (2.4) and (2.5) one has

I =
(ν + σ)(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

. (2.6)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1944–1969.



1949

Using Eq (2.6) in Eq (2.5) one has

R =
γ(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

. (2.7)

Finally, from Eqs (2.3), (2.6) and (2.7) it can be concluded that if β > ν(ν+γ)
Λ

then interior equilibrium

solution of discrete COVID-19 epidemic model (1.7) is E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
. More-

over it is important here to mention that if β > ν(ν+γ)
Λ

, i.e., βΛ

ν(ν+γ) > 1 then discrete COVID-19 epidemic
model (1.7) has interior equilibrium solution, and hence basic reproductive number is R0 =

βΛ

ν(ν+γ) . □

3. Linearized form of model (1.7)

In the present Section, linearized form of discrete COVID-19 epidemic model (1.7) about equilib-
rium solution ES IR(S , I,R) is explored. The linearized form of discrete COVID-19 epidemic model
(1.7) about equilibrium solution ES IR(S , I,R) under the map

( f , g, h) 7→ (S n+1, In+1,Rn+1), (3.1)

is
Ψn+1 = J|ES IR(S ,I,R)Ψn, (3.2)

where

J|ES IR(S ,I,R) =


1 − νh − βhI −βhS σh
βhI 1 − νh − γh + βhS 0
0 γh 1 − νh − σh

 , (3.3)

and

f = hΛ + (1 − νh)S − βhS I + hσR, g = (1 − νh − γh)I + hβS I, h = (1 − hν − hσ)R + hγI. (3.4)

4. Local behavior of discrete COVID-19 epidemic model (1.7) about equilibrium solutions

Local dynamic behavior of COVID-19 epidemic model (1.7) about equilibrium solutions:

ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
is explored in this section.

4.1. Local dynamic behavior of COVID-19 epidemic model (1.7) about ES 00

(
Λ
ν
, 0, 0

)
About ES 00

(
Λ
ν
, 0, 0

)
, Eq (3.3) becomes

J|ES 00(Λν ,0,0) =


1 − νh −

βΛh
ν

σh
0 1 − hν − hγ + βΛh

ν
0

0 hγ 1 − hν − hσ

 , (4.1)

with characteristic roots are

λ1 = 1 − νh, λ2 = 1 − νh − γh +
βΛh
ν
, λ3 = 1 − νh − σh. (4.2)

From Eq (4.2) and by stability theory [9–13], one can conclude local dynamic behavior of discrete
COVID-19 epidemic model (1.7) about ES 00

(
Λ
ν
, 0, 0

)
as follows.
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Lemma 4.1. For local dynamic behavior of COVID-19 epidemic model (1.7) about ES 00

(
Λ
ν
, 0, 0

)
,

following statements hold:

(i) ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is a sink if

0 < ν < min
{

2
h
,

2
h
− σ

}
and

ν(νh + γh − 2)
hΛ

< β <
ν(ν + γ)
Λ

, (4.3)

with
σ <

2
h

and ν >
2
h
− γ; (4.4)

(ii) ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is a source if (4.4) holds and additionally

ν > max
{

2
h
,

2
h
− σ

}
and β <

ν(νh + γh − 2)
hΛ

; (4.5)

(iii) ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is a saddle if (4.4) hold and additionally

ν > max
{

2
h
,

2
h
− σ

}
and

ν(νh + γh − 2)
hΛ

< β <
ν(ν + γ)
Λ

, (4.6)

or
2
h
− σ < ν <

2
h

and
ν(νh + γh − 2)

hΛ
< β <

ν(ν + γ)
Λ

, (4.7)

or

0 < ν < min
{

2
h
,

2
h
− σ

}
and β <

ν(νh + γh − 2)
hΛ

, (4.8)

or
2
h
− σ < ν <

2
h

and β <
ν(νh + γh − 2)

hΛ
; (4.9)

(iv) ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is non-hyperbolic if

ν =
2
h
, (4.10)

or
β =
ν(νh + γh − 2)

hΛ
, (4.11)

or
ν =

2
h
− σ. (4.12)

Proof. (i) By stability theory ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is a sink if eigenvalues

of J|ES 00(Λν ,0,0) which are depicted in (4.2) satisfying |λ1,2,3| < 1. So if |λ1| = |1 − νh| < 1, |λ2| =∣∣∣1 − νh − γh + βΛh
ν

∣∣∣ < 1 and |λ3| = |1 − νh − σh| < 1 then straightforward manipulation implies that
ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 model (1.7) is a sink if 0 < ν < min

{
2
h ,

2
h − σ

}
, ν(νh+γh−2)

hΛ < β <
ν(ν+γ)
Λ

with σ < 2
h and ν > 2

h − γ. In similarly way one can prove conclusions (ii)-(iv). □
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4.2. Local dynamic behavior of discrete COVID-19 epidemic model (1.7) about interior equilibrium

solution: E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
In order to find local dynamic behavior of discrete COVID-19 epidemic model (1.7) about interior

equilibrium solution: E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
following theorem is utilized which shows

the fact that all roots of the characteristic equation of J|
E+S IR

(
ν+γ
β ,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

,
γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

) whose absolute value

less than one ( [13], Theorem 1.2.3).

Theorem 4.2. The necessary and sufficient conditions for roots of following third-degree polynomial

P(λ) = λ3 +H1λ
2 +H2λ +H3, (4.13)

satisfying
∣∣∣λ1,2,3

∣∣∣ < 1 are

|H1 +H3| < 1 +H2, |H1 − 3H3| < 3 −H2, H
2
3 +H2 −H3H1 < 1. (4.14)

Lemma 4.3. E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) is a

stable if
|H1 +H3| < 1 +H2, |H1 − 3H3| < 3 −H2, H

2
3 +H2 −H3H1 < 1, (4.15)

where

H1 = − 3 + hν + hσ +
βΛhν + βΛhσ − νγσh
γν + ν2 + σν

,

H2 =
1

ν2 + σν + γν
[3γν − 2βΛh(ν + σ) + 3ν2 + βΛν2h2 + βΛσνh2 − γν2h − ν3h

+ 2νγσh − ν2γσh2 − h2(γ + ν)(−βΛ + ν2 + νγ)(ν + σ) + βΛνσh2 + βΛσ2h2

− γνσh − ν2σh − νγσ2h2 + 3σν − ν2hσ − σ2hν − h(σ + ν)(γν + ν2 + σν)],

H3 =
1

ν2 + σν + γν
[βΛνh + βΛσh − γν − ν2(1 + βΛh2) − βΛσνh2 + γν2h − νγσh

+ ν3h + ν2h2γσ − h2(γ + σ)(ν + σ)(−βΛ + ν2 + νγ)(−1 + hν + σh) − βΛσh2(ν + σ)
+ γνσh + ν2σh + νγσ2h2 − h3σγ(ν + σ)(βΛ − ν2 − νγ) − σν(1 − νh − σh)].

(4.16)

Proof. About E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
, Eq (3.3) becomes

J|E+S IR
=


ν2+σν+γν−βΛνh−βΛσh+νγσh

ν2+σν+γν
−h(ν + γ) σh

h(ν+σ)(βΛ−ν2−νγ)
ν2+σν+γν

1 0

0 γh 1 − hν − hσ

 . (4.17)

The characteristic polynomial of J|
E+S IR

 ν+γβ , (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

 about interior equilibrium solution

E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) is

P(λ) = λ3 +H1λ
2 +H2λ +H3, (4.18)
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where H1,H2 and H3 are depicted in Eq (4.16). Now Theorem 4.2 implies that interior equilibrium

solution E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) is a sink if

|H1 +H3| < 1 +H2, |H1 − 3H3| < 3 −H2 andH2
3 +H2 −H3H1 < 1.

□

5. Periodic points with period-n of discrete COVID-19 epidemic model (1.7)

Motivated from existing study [14], in this section it is explored that equilibrium solutions:

ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) are

periodic points with period-n.

Theorem 5.1. Equilibrium solutions ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete

COVID-19 epidemic model (1.7) are periodic points of prime period-1.

Proof. From model (1.7) one denotes

P (S , I,R) := ( f (S , I,R), g(S , I,R), h(S , I,R)) , (5.1)

where f (S , I,R), g(S , I,R) and h(S , I,R) are depicted in Eq (3.4). From Eq (5.1) the computation
yields

P|ES 00( Λν ,0,0) = ES 00

(
Λ

ν
, 0, 0

)
,

P|
E+S IR

(
ν+γ
β ,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

) = E+S IR

ν + γβ , (ν + σ)
(
βΛ − ν2 − νγ

)
β
(
ν2 + (σ + γ) ν

) ,
γ
(
βΛ − ν2 − νγ

)
β
(
ν2 + (σ + γ) ν

)  . (5.2)

Therefore Eq (5.2) implies that ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete

COVID-19 epidemic model (1.7) are periodic points of prime period-1. □

Theorem 5.2. Equilibrium solution: ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 epidemic model (1.7) is a

periodic point of period-n.
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Proof. From Eq (5.1) we have

P2 = ((1 − νh) f (S , I,R) + hΛ−

βh f (S , I,R)g(S , I,R) + hσh(S , I,R),
(1 − νh − γh)g(S , I,R)+
βh f (S , I,R)g(S , I,R),

(1 − hν − hσ)h(S , I,R) + hγg(S , I,R))⇒ P2|ES 00(Λν ,0,0) = ES 00

(
Λ

ν
, 0, 0

)
,

P3 =
(
(1 − νh) f 2(S , I,R) + hΛ−

βh f 2(S , I,R)g2(S , I,R)
+ hσh2(S , I,R),
(1 − νh − γh)g2(S , I,R)+
βh f 2(S , I,R)g2(S , I,R),

(1 − hν − hσ)h2(S , I,R) + hγg2(S , I,R)
)
⇒ P3|ES 00(Λν ,0,0) = ES 00

(
Λ

ν
, 0, 0

)
,

...

Pn =
(
(1 − νh) f n−1(S , I,R)+

hΛ − βh f n−1(S , I,R)gn−1(S , I,R)
+ hσhn−1(S , I,R),
(1 − νh − γh)gn−1(S , I,R)+
βh f n−1(S , I,R)gn−1(S , I,R),

(1 − hν − hσ)hn−1(S , I,R) + hγgn−1(S , I,R)
)
⇒ Pn|ES 00(Λν ,0,0) = ES 00

(
Λ

ν
, 0, 0

)
.

(5.3)

Equation (5.3) implies that equilibrium solution:ES 00

(
Λ
ν
, 0, 0

)
of discrete COVID-19 epidemic model

(1.7) is a periodic point of period-n. □

Theorem 5.3. Equilibrium solution: E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epi-

demic model (1.7) is a periodic point of period-n.

Proof. From Eq (5.3) the following computation yields the required statement:

P2|
E+S IR

(
ν+γ
β ,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

,
γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

) = E+S IR

(
ν + γ

β
,

(ν + σ)(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

,
γ(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

)
,

P3|
E+S IR

(
ν+γ
β ,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

,
γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

) = E+S IR

(
ν + γ

β
,

(ν + σ)(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

,
γ(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

)
,

...

Pn|
E+S IR

(
ν+γ
β ,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

,
γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

) = E+S IR

(
ν + γ

β
,

(ν + σ)(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

,
γ(βΛ − ν2 − νγ)
β(ν2 + (σ + γ)ν)

)
.

□
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6. Convergence rate of discrete COVID-19 epidemic model (1.7)

Convergence rate of discrete COVID-19 epidemic model (1.7) is studied for the completeness of
this Section.

Theorem 6.1. If {(S n, In,Rn)} is a positive solution of discrete COVID-19 epidemic model (1.7) such
that lim

n→∞
{(S n, In,Rn)} = ES IR(S , I,R) then

φn =


φ1

n

φ2
n

φ3
n

 , (6.1)

satisfying the following mathematical relation:

lim
n→∞

n
√
||φn|| =

∣∣∣λ1,2,3J|ES IR(S ,I,R)

∣∣∣ ,
lim
n→∞

||φn+1||

||φn||
=

∣∣∣λ1,2,3J|ES IR(S ,I,R)

∣∣∣ . (6.2)

Proof. It is recalled that if {(S n, In,Rn)} is a positive solution of COVID-19 epidemic model (1.7) such
that lim

n→∞
{(S n, In,Rn)} = ES IR(S , I,R), then in order for error terms one has

S n+1 − S = (1 − νh − βhI) (S n − S ) − βhS n (In − I) + hσ (Rn − R) ,
In+1 − I = hβI (S n − S ) + (1 − νh − γh + hβS n) (In − I) ,

Rn+1 − R = hγ (In − I) + (1 − hν − hσ) (Rn − R) .
(6.3)

Set
φ1

n = S n − S , φ2
n = In − I, φ3

n = Rn − R. (6.4)

In view of Eq (6.4), Eq (6.3) becomes:

φ1
n+1 = α11φ

1
n + α12φ

2
n + α13φ

3
n,

φ2
n+1 = α21φ

1
n + α22φ

2
n,

φ3
n+1 = α32φ

2
n + α33φ

3
n,

(6.5)

where
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α11 = 1 − νh − βhI,

α12 = −βhS n,

α13 = hσ,

α21 = hβI,

α22 = 1 − νh − γh + hβS n,

α32 = hγ,

α33 = 1 − hν − hσ.

(6.6)

From Eq (6.6), one has

lim
n→∞
α11 = 1 − νh − βhI,

lim
n→∞
α12 = −βhS ,

lim
n→∞
α13 = hσ,

lim
n→∞
α21 = hβI,

lim
n→∞
α22 = 1 − νh − γh + hβS ,

lim
n→∞
α32 = hγ,

lim
n→∞
α33 = 1 − hν − hσ,

(6.7)

that is

α11 = 1 − νh − βhI + σ11,

α12 = −βhS + σ12,

α13 = hσ + σ13,

α21 = hβI + σ21,

α22 = 1 − νh − γh + hβS + σ22,

α32 = hγ + σ32,

α33 = 1 − hν − hσ + σ33,

(6.8)

where σ11, σ12, σ13, σ21, σ22, σ32, σ33 → 0 as n → ∞. In view of existing literature [15], one has the
following error system:

φn+1 = (A + Bn)φn, (6.9)

where A = J|ES IR(S ,I,R) and Bn =


σ11 σ12 σ13

σ21 σ22 0
0 σ32 σ33

. Therefore one has the following limiting system of

error terms 
φ1

n+1
φ2

n+1
φ3

n+1

 =


1 − νh − βhI −βhS hσ
hβI 1 − νh − hγ + hβS 0
0 hγ 1 − hν − hσ



φ1

n

φ2
n

φ3
n

 , (6.10)
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which is same as linearized system of discrete COVID-19 epidemic model (1.7) about ES IR(S , I,R).
Particularly Eq (6.10) implies that

φ1
n+1
φ2

n+1
φ3

n+1

 =


1 − νh −
βΛh
ν

σh
0 1 − hν − hγ + βΛh

ν
0

0 hγ 1 − hν − hσ



φ1

n

φ2
n

φ3
n

 , (6.11)

and 
φ1

n+1
φ2

n+1
φ3

n+1

 =

ν2+σν+γν−βΛνh−βΛσh+νγσh

ν2+σν+γν
−h(ν + γ) σh

h(ν+σ)(βΛ−ν2−νγ)
ν2+σν+γν

1 0
0 γh 1 − hν − hσ



φ1

n

φ2
n

φ3
n

 , (6.12)

which are same as respective linearized system obtained at equilibrium solution ES 00

(
Λ
ν
, 0, 0

)
and

E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of the discrete COVID-19 epidemic model (1.7). □

7. Bifurcations of discrete COVID-19 epidemic model (1.7)

The bifurcation analysis about ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of the discrete

COVID-19 epidemic model (1.7) are explored deeply in the section by bifurcation theory [16, 17].

7.1. Bifurcation analysis about ES 00

(
Λ
ν
, 0, 0

)
From (4.2) the computation yields λ1|(4.10) = −1 but λ2,3 = −1−γh+ βΛh2

2 ,−1−σh , 1 or −1, which
implies that discrete COVID-19 epidemic model (1.7) may undergo flip bifurcation if (Λ, β, γ, ν, σ, h)
located in the set:

F |ES 00(Λν ,0,0) =
{

(Λ, β, γ, ν, σ, h) : ν =
2
h

}
. (7.1)

The following Theorem guarantees the fact that if (Λ, β, γ, ν, σ, h) ∈ F |ES 00(Λν ,0,0) then discrete COVID-
19 epidemic model (1.7) does not undergo flip bifurcation.

Theorem 7.1. If (Λ, β, γ, ν, σ, h) ∈ F |ES 00(Λν ,0,0) then discrete COVID-19 epidemic model (1.7) does
not undergo flip bifurcation.

Proof. Since discrete COVID-19 epidemic model (1.7) is invariant with respect to I = R = 0.
Therefore in order to determine bifurcation, discrete COVID-19 epidemic model (1.7) is restricted
on I = R = 0, where it becomes

S n+1 = (1 − νh)S n + hΛ. (7.2)

From Eq (7.2) one denotes the map

f (S ) := (1 − νh)S + hΛ. (7.3)

Now if ν = ν∗ = 2
h and S = S ∗ = Λ

ν
then from Eq (7.3) one gets

∂ f
∂S

∣∣∣∣∣
ν=ν∗= 2

h , S=S ∗=Λν

= −1, (7.4)
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∂ f
∂ν

∣∣∣∣∣
ν=ν∗= 2

h , S=S ∗=Λν

= −
hΛ
ν
, 0, (7.5)

and
∂2 f
∂S 2

∣∣∣∣∣
ν=ν∗= 2

h , S=S ∗=Λν

= 0. (7.6)

It is noted that the condition obtained in Eq (7.6) violates the non-degenerate condition for the exis-
tence of flip bifurcation and hence one can say that discrete COVID-19 epidemic model (1.7) does not
undergo flip bifurcation if (Λ, β, γ, ν, σ, h) ∈ F |ES 00(Λν ,0,0). □

7.2. Bifurcation analysis about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
By utilizing explicit criterion (without finding eigenvalues), we will explore hopf and flip bifurca-

tions by choosing h as a bifurcation parameter about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete

COVID-19 epidemic model (1.7) in this section.

7.2.1. Hopf bifurcation about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
By using following explicit criterion [18], hopf bifurcation for the discrete COVID-19 epidemic

model (1.7) about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
is explored.

Lemma 7.2. Consider the following n-dimensional discrete dynamical system:

Xn+1 = fh(Xn), (7.7)

where h ∈ R is considered as a bifurcation parameter. Moreover characteristic polynomial of J|X about
X of n-dimensional discrete dynamical system, which is depicted in system (7.7), is

P(λ) = λn +H1λ
n−1 +H2λ

n−2 + · · · +Hn. (7.8)

Now considering the determinants: ∆±0 (h) = 1, ∆±1 (h), · · · ,∆±n (h), which can be expressed as

∆±j (h) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


1 H1 H2 · · · H j−1

0 1 H1 · · · H j−2

0 0 1 · · · H j−3

· · · · · · · · · · · · · · ·

0 0 0 · · · 1


±


Hn− j+1 Hn− j+2 · · · Hn−1 Hn

Hn− j+2 Hn− j+3 · · · Hn 0
· · · · · · · · · · · · · · ·

Hn−1 Hn · · · 0 0
Hn 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, (7.9)

where j = 1, · · · , n. Furthermore, hopf bifurcation occurs at critical value h = h0 if following paramet-
ric conditions hold:

Γ1 : Eigenvalue assignment: Ph0(1) > 0, (−1)nPh0(−1) > 0, ∆−n−1(h0) = 0, ∆+n−1(h0) > 0, ∆±j (h0) > 0
where j = n − 3, n − 5, · · · , 1 (or 2), when n is even (or odd, respectively).

Γ2 : Transversality condition: d
dh∆

−
n−1(h0) , 0.

Γ3 : Nonresonance condition: cos( 2π
l ) , 1 − 0.5Ph(1)∆

−
n−3(h0)
∆+n−2(h0) or resonance condition cos

(
2π
l

)
= 1 −

0.5Ph(1)∆
−
n−3(h0)
∆+n−2(h0) , where l = 3, 4, · · · .
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Theorem 7.3. If
1 −H2 +H3(H1 −H3) = 0,
1 +H2 −H3(H1 +H3) > 0,

1 +H1 +H2 +H3 > 0,
1 −H1 +H2 −H3 > 0,

d
dh

(1 −H2 +H3(H1 −H3)) |h=h0 , 0,

cos
2π
l
, 1 −

1 +H1 +H2 +H3

2(1 +H3)
, l = 3, 4, · · · ,

(7.10)

then about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
discrete COVID-19 epidemic model (1.7) undergoes a

hopf bifurcation at a critical value h0 whereH1,H2,H3 are depicted in Eq (4.16) and h0 is the real root
of 1 −H2(h) +H3(h)(H1(h) −H3(h)) = 0.

Proof. By utilizing Lemma 7.2 for n = 3, one gets:

∆−2 (h) = 1 −H2 +H3(H1 −H3) = 0,
∆+2 (h) = 1 +H2 −H3(H1 +H3) > 0,

Ph(1) = 1 +H1 +H2 +H3 > 0,
(−1)3Ph(−1) = 1 −H1 +H2 −H3 > 0,

d
dh

(
∆−2 (h)

)
|h=h0 =

d
dh

(1 −H2 +H3(H1 −H3)) |h=h0 , 0.

(7.11)

Finally

1 − 0.5Ph(1)
∆−0 (h)
∆+1 (h)

= 1 −
1 +H1 +H2 +H3

2(1 +H3)
.

□

7.2.2. Flip bifurcation about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
By using following explicit criterion [18, 19], flip bifurcation for the discrete COVID-19 epidemic

model (1.7) about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
by choosing h as a bifurcation parameter is ex-

plored.

Lemma 7.4. Consider the system (7.7) with h ∈ R is a bifurcation parameter. Moreover, characteristic
polynomial of J|X about X of system (7.7) is of the form, which is depicted in Eq (7.8). Now consid-
ering the determinants: ∆±0 (h) = 1, ∆±1 (h), · · · ,∆±n (h), which are depicted in Eq (7.9) and j = 1, · · · , n.
Furthermore flip bifurcation occurs at critical value h = h0 if following parametric conditions hold:

Γ1 : Eigenvalue assignment: Ph0(−1) = 0, Ph0(1) > 0, ∆±n−1(h0) > 0, ∆±j (h0) > 0 where j = n − 3, n −
5, · · · , 1 (or 2), when n is even (or odd, respectively).

Γ2 : Transversality condition:

n∑
i=1

(−1)n−iH
′

i

n∑
i=1

(−1)n−i(n − i + 1)Hi−1

, 0 where H
′

i represents the derivative w.r.t

h at h = h0.
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Theorem 7.5. If

1 −H2 +H3(H1 −H3) > 0,
1 +H2 −H3(H1 +H3) > 0,

1 +H1 +H2 +H3 > 0,
1 −H1 +H2 −H3 = 0,

1 ±H3 > 0,

H
′

1 −H
′

2 +H
′

3

3 − 2H1 +H2
, 0,

(7.12)

then about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
discrete COVID-19 epidemic model (1.7) undergoes a

flip bifurcation at a critical value h0, where h0 is the real root of 1 −H1(h) +H2(h) −H3(h) = 0.

Proof. By utilizing Lemma 7.4 for n = 3, one gets:

∆−2 (h) = 1 −H2 +H3(H1 −H3) > 0,
∆+2 (h) = 1 +H2 −H3(H1 +H3) > 0,
Ph0(1) = 1 +H1 +H2 +H3 > 0,

Ph0(−1) = 1 −H1 +H2 −H3 = 0,
∆±j = 1 ±H3 > 0,

3∑
i=1

(−1)3−iH
′

i

3∑
i=1

(−1)3−i(3 − i + 1)Hi−1

=
H
′

1 −H
′

2 +H
′

3

3 − 2H1 +H2
, 0.

(7.13)

□

8. Chaos control

In this Section, feedback control strategy is utilized in order to study chaos in discrete COVID-19

epidemic model (1.7) about interior equilibrium solution: E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
. By

utilizing feedback control strategy, discrete COVID-19 epidemic model (1.7) takes the form

S n+1 = hΛ + (1 − νh)S n − βhS nIn + hσRn + δ(S n − S ),
In+1 = (1 − νh − γh)In + hβS nIn + δ(In − I),

Rn+1 = (1 − hν − hσ)Rn + hγIn + δ(Rn − R),
(8.1)

with δ is chosen as the control parameter. The JC |
E+S IR

 ν+γβ , (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

 about interior equilib-

rium solution E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of controlled discrete COVID-19 epidemic model
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(8.1) is

J|E+S IR
=


1 + νγσh−βΛh(ν+σ)

ν2+σν+γν
+ δ −h(ν + γ) σh

h(ν+σ)(βΛ−ν2−νγ)
ν2+σν+γν

1 + δ 0

0 γh 1 − hν − hσ + δ

 , (8.2)

the characteristic polynomial of JC |
E+S IR

 ν+γβ , (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

 about interior equilibrium solution

E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
is

P(λ) = λ3 +H∗1λ
2 +H∗2λ +H

∗
3 , (8.3)

where

H∗1 =
βhΛ(σ + ν) + ν{γ(−3 − 3δ + hν) + (σ + ν)(−3 − 3δ + h(σ + ν))}

ν(γ + σ + ν)
,

H∗2 =1 + 4δ + 3δ2 − 2hδσ − hν − 2hδν −
h2(γ + ν)(σ + ν)(−βΛ + ν(γ + ν))

ν(γ + σ + ν)

+
{2 + 2δ − h(σ + ν)}{−βhΛ(σ + ν) + ν(γ + σ + hγσ + ν)}

ν(γ + σ + ν)
,

H∗3 = −
1 + δ − hν
ν(γ + σ + ν)

[βhΛ(σ + ν){−1 − δ + h(γ + σ + ν)} + ν{−h2γ2(σ + ν)

− (σ + ν)(1 + δ + hσ)(−1 − δ + h(σ + ν)) + γ(1 + δ(2 + δ) − h2(σ + ν)(σ + 2ν))}].

(8.4)

Based on linear stability theory the local dynamics of controlled discrete COVID-19 epidemic
model (8.1) about E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
can be stated as following Lemma:

Lemma 8.1. E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of controlled discrete COVID-19 epidemic model

(8.1) is a sink if

|H∗1 +H
∗
3 | < 1 +H∗2 , |H

∗
1 − 3H∗3 | < 3 −H∗2 , H

∗
3

2
+H∗2 −H

∗
3H

∗
1 < 1, (8.5)

whereH∗1 ,H
∗
2 andH∗3 are depicted in Eq (8.4).

Proof. Since JC |
E+S IR

 ν+γβ , (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

 about interior equilibrium solution

E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of controlled discrete COVID-19 epidemic model

(8.1) has characteristics polynomial which is depicted in model (8.3). By Theorem 4.2

E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of controlled discrete COVID-19 epidemic model (8.1) is a

sink if |H∗1 +H
∗
3 | < 1 +H∗2 , |H∗1 − 3H∗3 | < 3 −H∗2 andH∗3

2
+H∗2 −H

∗
3H

∗
1 < 1 whereH∗1 ,H∗2 andH∗3

are depicted in Eq (8.4). □
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9. Numerical simulations

Theoretical results are illustrated numerically in this section. In this regard, following cases are
presented to discuss the correctness of obtained theoretical results about equilibrium solutions for
discrete COVID-19 epidemic model (1.7) :

Case I: If h = 0.565, β = 3, Λ = 0.4, ν = 0.2, σ = 2, γ = 0.4 then from Eq (4.15) com-
putation yields |H1 +H3| = 0.0791966397692303 < 1 +H2 = 0.3493437692307695, |H1 − 3H3| =

3.512871619153845 < 3−H2 = 3.6506562307692305 andH2
3 +H2−H3H1 = 0.8910931323439 < 1,

which implies that equilibrium solution E+S IR (0.2, 1.5230769230769232, 0.27692307692307694) of
discrete COVID-19 epidemic model (1.7) is a sink. In this case plots for discrete COVID-19 epi-
demic model (1.7) with initial values (S 0, I0,R0) = (0.84, 0.84, 0.0082) are drawn in Figure 1 which
show that interior equilibrium solution E+S IR (0.2, 1.5230769230769232, 0.27692307692307694) is a
sink.

Case II: Now in this case it is proved that at h = 0.9645432692307686, discrete COVID-19 epi-
demic model (1.7) undergoes a hopf bifurcation if β = 3, Λ = 0.4, ν = 0.2, σ = 0.42, γ = 4.5
and h ∈ [0.1, 1.9] with initial values (S 0, I0,R0) = (0.94, 0.00084, 0.000782). If β = 3, Λ = 0.4, ν =
0.2, σ = 0.42, γ = 4.5 and h = 0.9645432692307686 then from Eq (4.18) one gets:

λ3 − 2.057234309269832λ2 + 2.008979566986039λ − 0.807091346153846 = 0, (9.1)

whose roots are λ1,2 = 0.625071481557993±0.7805675133791408ι, λ3 = 0.8070913461538463 where
|λ1,2| = |0.625071481557993±0.7805675133791408ι| = 1. This implies that for said parametric values
the eigenvalues criterion for the existence of hopf bifurcation holds, and hence discrete COVID-19
epidemic model (1.7) may undergo hopf bifurcation. In the rest of simulation, it is proved that discrete
COVID-19 epidemic model (1.7) must undergo hopf bifurcation. For instance, if β = 3, Λ = 0.4, ν =
0.2, σ = 0.42, γ = 4.5 and h = 0.9645432692307686 then from Eq (7.10) the computation yields

1 −H2 +H3(H1 −H3) = 0,
1 +H2 −H3(H1 +H3) = 0.6972071179271455 > 0,

1 +H1 +H2 +H3 = 0.14465391156236085 > 0,
1 −H1 +H2 −H3 = 5.8733052224097175 > 0,

d
dh

(1 −H2 +H3(H1 −H3)) |h=0.9645432692307686 = 0.499543845441214 , 0,

1 −
1 +H1 +H2 +H3

2(1 +H3)
= 0.6250714815579933.

(9.2)

Moreover cos 2π
l = 0.6250714815579933 implies l = ±7.0158253519640486. Thus from Eq (9.2)

all conditions of Theorem 7.3 hold and hence it can be concluded that discrete COVID-19 epidemic
model (1.7) undergoes hopf bifurcation. So hopf bifurcation diagram and maximum lypunov exponents
are drawn in Figure 2. Finally some phase portraits for discrete COVID-19 epidemic model (1.7) are
also plotted for certain values of h with initial values (S 0, I0,R0) = (0.94, 0.00084, 0.000782) in Figure
3.

Case III: Now in this case it is proved that at h = 0.3882629532979648, discrete COVID-19
epidemic model (1.7) undergoes a flip bifurcation if β = 3, Λ = 0.4, ν = 0.2, σ = 0.2, γ = 0.043 and
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h ∈ [0.01, 1.5] with initial values (S 0, I0,R0) = (0.4, 0.6, 0.7). If β = 3, Λ = 0.4, ν = 0.2, σ = 0.2, γ =
0.043 and h = 0.3882629532979648, then from Eq (4.18) one gets:

λ3 − 0.7487760229319358λ2 − 0.9865217321810046λ + 0.7622542907509305 = 0, (9.3)

whose roots are λ1 = −1 but λ2,3 = 0.8264286135915285, 0.922347409340407 , 1 or − 1. This
implies that for said parametric values the eigenvalues criterion for the existence of flip bifurcation
holds, and hence discrete COVID-19 epidemic model (1.7) may undergo flip bifurcation. In the rest
of simulation it is proved that discrete COVID-19 epidemic model (1.7) must undergo flip bifurcation.
For instance if β = 3, Λ = 0.4, ν = 0.2, σ = 0.2, γ = 0.043 and h = 0.3882629532979648, then from
Eq (7.12) the computation yields

1 −H2 +H3(H1 −H3) = 0.8347323921215153 > 0,
1 +H2 −H3(H1 +H3) = 0.0032044003420764813 > 0,

1 +H1 +H2 +H3 = 0.026956535637990164 > 0,
1 −H1 +H2 −H3 = 0,

1 +H3 = 1.7622542907509304 > 0,
1 −H3 = 0.23774570924906946 > 0,

H
′

1 −H
′

2 +H
′

3

3 − 2H1 +H2
= −1.0314039405572908 , 0.

(9.4)

Thus from Eq (9.4) all conditions of Theorem 7.5 hold and hence it can be concluded that dis-
crete COVID-19 epidemic model (1.7) undergoes flip bifurcation. So flip bifurcation diagrams and
maximum lypunov exponents are drawn in Figure 4. Finally, phase portraits for discrete COVID-19
epidemic model (1.7) are also plotted for h = 0.38, 0.383 with initial values (S 0, I0,R0) = (0.4, 0.6, 0.7)
in Figure 5.

Case IV: The numerical simulation will be provided in order to verify result of Lemma 8.1 for
controlled discrete COVID-19 epidemic model (8.1). If h = 0.5643, β = 3, Λ = 0.22, ν = 0.2, σ =
2, γ = 0.43, δ = 0.22 then from Eq (8.5) computation yields |H∗1 + H

∗
3 | = 1.9887516175217854 <

1+H∗2 = 2.062885326736867, |H∗1 − 3H∗3 | = 1.4779003281575345 < 3−H∗2 = 1.937114673263 and
H∗3

2
+H∗2 − H

∗
3H

∗
1 = 0.8415173747084458 < 1 which implies that interior equilibrium solution of

controlled discrete COVID-19 epidemic model (8.1) is a sink. In this case plots for discrete COVID-19
epidemic model (1.7) with initial values (S 0, I0,R0) = (0.84, 0.84, 0.0082) are drawn in Figure 6, which
show that interior equilibrium solution is a sink.

Case V: Finally, we will fit real data, obtained from published materials for three different countries
France, Italy and United Kingdom, to our under consideration discrete epidemic model (1.7) in order
for the effectiveness of our mathematical analysis regarding stability. The collected real data is depicted
in Table 1 whereas corresponding dynamical analysis of discrete epidemic model (1.7) of France, Italy
and the United Kingdom are respectively given in Figures 7–9. In Figure 7(a) the plot of susceptible
population show a curve that represent the number of susceptible individuals increase rapidly with the
passage of time. After peak, the number of susceptible individuals decrease and attain a steady state
whereas Figure 7(b) shows a curve that represent the infection rate is sharply increase with the passage
of time and reach to its maximum level. Finally, Figure 7(c) represent that curve goes upward slowly
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(a) Plot of n Vs susceptible population
(b) Plot of n Vs infected population

(c) Plot of n Vs recovered population

Figure 1. Local dynamics of discrete COVID-19 epidemic model (1.7).

which means that the number of recovered individuals were small initially due to less medical care
and facilities but with the passage of time the recovery rate increases due to proper medication and
vaccination. Similar results can be interpreted for real data plotted in Figures 8 and 9 for Italy and
United Kingdom, respectively.

Table 1. Real data for three different countries France, Italy and United Kingdom.

Parameter Interpretation France Italy United Kingdom Source

Λ Rate in S through migration 0.21 0.21 0.21 Estimated
β Rate to join S to I 0.926 0.571 0.999 [20, 21]
ν Death rate due to virus 3.3616 × 10−5 3.2612 × 10−5 3.2929 × 10−5 [23]
γ Recovery rate 0.0735 0.076 0.0714 [21, 22]
σ Rate of deteriorate in health 0.0249 0.0338 0.0294 [23]
h Step size 0.2 0.2 0.2 Estimated
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(a) Bifurcation diagram
for susceptible popula-
tion

(b) Bifurcation diagram
for infected population

(c) Bifurcation diagram
for recovered population

(d) Bifurcation diagram
for susceptible and in-
fected populations

(e) Bifurcation diagram
for infected and recov-
ered populations

(f) Bifurcation diagram
for susceptible and re-
covered populations

(g) Maximum Lyapunov
Exponent

Figure 2. Bifurcation diagrams and maximum lyapunov exponents for discrete COVID-19
epidemic model (1.7) if β = 3, Λ = 0.4, ν = 0.2, σ = 0.42, γ = 4.5 and h ∈ [0.1, 1.9] with
initial values (S 0, I0,R0) = (0.94, 0.00084, 0.000782).

(a) For bifurcation value h = 0.19 (b) For bifurcation value h = 0.34

(c) For bifurcation value h = 0.5 (d) For bifurcation value h = 0.51345

Figure 3. Phase portraits for discrete COVID-19 epidemic model (1.7) if β = 3, Λ = 0.4, ν =
0.2, σ = 0.42, γ = 4.5 and h = 0.19, 0.34, 0.5, 0.51345 with initial values (S 0, I0,R0) =
(0.94, 0.00084, 0.000782).
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(a) Flip bifurcation diagram
for susceptible population

(b) Flip bifurcation diagram
for infected population

(c) Flip bifurcation diagram
for recovered population

(d) Flip bifurcation diagram
for susceptible and infected
populations

(e) Flip bifurcation diagram
for infected and recovered
populations

(f) Flip bifurcation diagram
for recovered and suscepti-
ble populations

(g) Maximum Lyapunov
Exponent

Figure 4. Flip bifurcation diagrams and Maximum Lyapunov Exponents for discrete
COVID-19 epidemic model (1.7) if β = 3, Λ = 0.4, ν = 0.2, σ = 0.2, γ = 0.043 and
h ∈ [0.01, 1.5] with initial values (S 0, I0,R0) = (0.4, 0.6, 0.7).

(a) For bifurcation value h = 0.38 (b) For bifurcation value h = 0.383

Figure 5. Phase portraits for discrete COVID-19 epidemic model (1.7) if β = 3, Λ = 0.4, ν =
0.2, σ = 0.2, γ = 0.043 and h = 0.38, 0.383 with initial values (S 0, I0,R0) = (0.4, 0.6, 0.7).
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(a) Plot of n Vs susceptible popula-
tion

(b) Plot of n Vs infected population (c) Plot of n Vs recovered population

Figure 6. Local dynamics for controlled discrete COVID-19 epidemic model (8.1).

(a) Plot for susceptible population (b) Plot for infected population (c) Plot for recovered population

Figure 7. Plots for fitting results of discrete COVID-19 epidemic model (1.7) of France.

(a) Plot for susceptible population (b) Plot for infected population (c) Plot for recovered population

Figure 8. Plots for fitting results of discrete COVID-19 epidemic model (1.7) of Italy.
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(a) Plot for susceptible population (b) Plot for infected population (c) Plot for recovered population

Figure 9. Plots for fitting results of discrete COVID-19 epidemic model (1.7) of United
Kingdom.

10. Conclusions

Beginning from the COVID-19, different mathematicians have proposed mathematical models to
predict the cause of COVID-19 pandemic starting from Wuhan city of China in December 2019.
For instance, few newly proposed mathematical models regarding COVID-19 pandemic are quoted
in references [1–7]. In the references [1–7] and more study indicates that different authors pre-
dict the case of this disease by mathematical models representing systems of differential or differ-
ence equations, and moreover based on date analysis and mathematical analysis authors have ex-
plored the effect of lockdown and medical resources on the COVID-19 transformation in Wuhan
city of China. So motivation from aforementioned studies, in this paper we have explored lo-
cal dynamical properties, bifurcation and control in a discrete-time COVID-19 epidemic model in
R3
+. Algebraically, it is proved that discrete COVID-19 epidemic model (1.7) has boundary equilib-

rium solution: ES 00

(
Λ
ν
, 0, 0

)
∀ h, β, Λ, ν, σ, γ > 0 but it has has interior equilibrium solution:

E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
if β > ν(ν+γ)

Λ
. Further local dynamical characteristics with topolog-

ical classifications about equilibrium solutions ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) are explored. It is investigated that ES 00

(
Λ
ν
, 0, 0

)
of dis-

crete COVID-19 epidemic model (1.7) is a sink if 0 < ν < min
{

2
h ,

2
h − σ

}
and ν(νh+γh−2)

hΛ < β < ν(ν+γ)
Λ

with σ < 2
h and ν > 2

h − γ; source if (4.4) holds and additionally ν > max
{

2
h ,

2
h − σ

}
and β <

ν(νh+γh−2)
hΛ ; saddle if (4.4) holds and additionally ν > max

{
2
h ,

2
h − σ

}
and ν(νh+γh−2)

hΛ < β < ν(ν+γ)
Λ
, or

2
h − σ < ν <

2
h and ν(νh+γh−2)

hΛ < β < ν(ν+γ)
Λ
, or 0 < ν < min

{
2
h ,

2
h − σ

}
and β < ν(νh+γh−2)

hΛ , or 2
h − σ <

ν < 2
h and β < ν(νh+γh−2)

hΛ ; non-hyperbolic if ν = 2
h , or β = ν(νh+γh−2)

hΛ , or ν = 2
h −σ, and moreover interior

equilibrium solution E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7)

is a sink if |H1 +H3| < 1 + H2, |H1 − 3H3| < 3 − H2, H
2
3 + H2 − H3H1 < 1 where H1,H2 and

H3 are depicted in Eq (4.16). It is shown that ES 00

(
Λ
ν
, 0, 0

)
and E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of discrete COVID-19 epidemic model (1.7) are periodic points of period-n. We have also studied
convergence rate for discrete COVID-19 epidemic model (1.7). Further, in order to understand dy-
namics of discrete COVID-19 epidemic model (1.7) deeply, we have studied the possible bifurcation
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scenarios. It is proved that about ES 00

(
Λ
ν
, 0, 0

)
there exist no flip bifurcation if (Λ, β, γ, ν, σ, h) ∈

F |ES 00(Λν ,0,0) =
{
(Λ, β, γ, ν, σ, h) : ν = 2

h

}
, but discrete COVID-19 epidemic model (1.7) undergoes both

hopf and flip bifurcations about E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
by choosing h as bifurcation pa-

rameter. We have studied hopf and flip bifurcations about E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
of dis-

crete COVID-19 epidemic model (1.7) by utilizing explicit criterion. By feedback control strategy,

chaos in discrete COVID-19 epidemic model (1.7) about E+S IR

(
ν+γ

β
,

(ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
is also

explored. For controlled system (8.1) it is proved that E+S IR

(
ν+γ

β
, (ν+σ)(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν) ,

γ(βΛ−ν2−νγ)
β(ν2+(σ+γ)ν)

)
is a sink if

|H∗1 +H
∗
3 | < 1 +H∗2 , |H

∗
1 − 3H∗3 | < 3 − H∗2 and H∗3

2
+H∗2 − H

∗
3H

∗
1 < 1, where H∗1 ,H

∗
2 and H∗3 are

depicted in Eq (8.4). Finally numerically verified theoretical results.
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