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Abstract: This paper proposes an improved ResU-Net framework for automatic liver CT segmentation. 

By employing a new loss function and data augmentation strategy, the accuracy of liver segmentation 

is improved, and the performance is verified on two public datasets LiTS17 and SLiver07. Firstly, to 

speed up the convergence of the model, the residual module is used to replace the original convolution 

module of U-Net. Secondly, to suppress the problem of pixel imbalance, the opposite number of Dice 

is proposed to replace the cross-entropy loss function, and the morphological method is introduced to 

weigh the pixels. Finally, to improve the generalization ability of the model, random affine 

transformation and random elastic deformation are employed for data augmentation. From 20 training 

datasets of Sliver07, 16 sets were selected as the training set, two sets were used for verification, and 

two sets were used for the test; meanwhile, from 131 training datasets of LiTS2017, eight sets were 

selected as the test set. In the experiment, four evaluation metrics, including DICE global, DICE per case, 

VOE, and RVD, were calculated, with the accuracies of 94.28, 94.24 ± 2.07, 10.83 ± 3.70, and -0.25 ± 2.74, 

respectively. Compared with U-Net and ResU-Net, the performance of the proposed method is 

significantly improved. The experimental results show that, although the method’s complexity is high, 

it has a faster convergence speed and stronger generalization ability. The segmentation effect on the 

2D image is significantly improved, and the scalability on 3D data is also robust. In addition, the 

proposed method performs well in the case of low-contrast neighboring organs, which proves the 

robustness of the proposed method. 
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1. Introduction  

Liver cancer is the third cause of cancer death. Therefore, in liver CT diagnosis and surgical 

planning, segmentation is an essential prerequisite. However, when faced with hundreds of CT slices, 

clinicians have to manually depict the liver contour and lesions slice by slice, which is time-consuming, 

labor-intensive, and highly dependent on clinicians’ subjective experiences. Therefore, in clinical 

practice, there is an urgent need for high-precision automatic liver segmentation methods. 

For the automatic segmentation of liver CT, many algorithms, including thresholding [1], 

deformation model [2,3], statistical model [4,5], active contour model [6] and machine learning-based 

methods, have been proposed in the past decades [7–9]. 

The above methods can effectively achieve liver segmentation, most of them require manual 

intervention, and the degree of automation is not high. Moreover, due to the partial volume effect of 

CT imaging and the inter-differences between annotators [8], the conventional statistical information 

model-based methods are often not feasible. At the same time, the shape complexity and variability of 

liver tissue also make it difficult for deformation model-based methods to adapt to complex liver 

segmentation tasks [10]. 

Nevertheless, with the rapid development of hardware in recent years, deep learning-based 

technology has shown outstanding advantages, particularly in image classification and 

segmentation [11–13].  

Currently, there are mainly two kinds of methods for automatic liver segmentation based on deep 

learning. One is to transform the segmentation problem into a pixel classification problem, and the 

other is to perform segmentation through a self-coding network directly. 

The first type of method, such as Li et al. [14], divides the image into several small blocks for 

classification to obtain the segmentation results of liver and pathological region. However, this kind 

of method has an inherent defect; that is, the simple sliding window method would produce a large 

number of image blocks, and the same pixel in the image will be repeatedly calculated multiple times, 

which would cause a considerable system cost. 

The second type of method is to segment the entire image and output the target mask directly. 

FCN [15] is a typical representative of this method, which directly obtains the segmentation results by 

changing the full connection layer to the convolution layer. Based on FCN, Ronneberger et al. [16] 

proposed a symmetrical and elegant U-shaped structure (U-Net). This network structure first proposed 

the combination of contraction path and expansion path feature graph and verified the excellent 

performance of the method in cell edge segmentation experiments. Ben Cohen et al. [17] used the 

improved U-Net for liver segmentation and liver metastasis detection. At the same time, it removed 

the cross-connection in the network and achieved significantly better results than the image block-

based method. 

The above-mentioned deep learning-based are all based on 2D image strategy. In recent years, 

more and more methods directly segment 3D data. Cicek et al. [18] proposed a 3D U-Net that replaces 

the original 2D convolution with 3D convolution and performs segmentation tasks directly on the 3D 

data. Dou et al. [19] combine the 3D deeply supervised network (3D DSN) with the conditional random 

field and introduce a deep-level supervision mechanism in the learning process to overcome potential 

optimization problems, to obtain faster convergence speed and more accurate recognition ability. Zhao 

et al. [20] proposed a method for automatically segmenting lung parenchyma, which uses three-

dimensional V-Net for end-to-end lung extraction, and uses a deformation module to limit the V-Net 
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output based on prior shape knowledge. Experimental results show that the salient features measured 

in their segmentation results are consistent with the features in manual annotations. Besides, Zhao et 

al. [21] also extracted coronary arteries through deep learning and detecting arterial stenosis from ICAs. 

This model combines the feature pyramid with the U-Net++ model to automatically segment the 

coronary arteries in ICAs. Experimental results show excellent clinical application prospects and can 

provide auxiliary suggestions for CAD diagnosis and treatment. 

Hoogi et al. [22] used a convolutional neural network to promote the level set segmentation 

method and used the output CNN probability map to adaptively calculate the parameters of the active 

contour function. Hu et al. [23] proposed an automatic segmentation framework based on a 3D 

convolutional neural network and global optimization surface evolution. The framework first trains a 

deep 3D CNN to learn the probability map of the liver, then adaptively integrates the global and local 

appearance information obtained from segmentation into the model and globally optimizes it through 

surface evolution. Lu et al. [24] developed a deep learning algorithm with image segmentation and 

refinement to automatically segment liver CT. Firstly, 3D CNN is used for liver detection and 

probabilistic segmentation. Then, the initial segmentation is refined using the graph cut result and the 

previously learned probabilistic map. 

The method based on deep CNN can solve the problems of the tedious extraction process of 

manual feature extraction and provide an end-to-end learning approach, which significantly simplifies 

the learning steps and can substantially improve the performance of segmentation. 

This paper mainly improves the network structure and loss function based on U-Net, with the 

following main contributions. 

1) Use the residual module to replace the original convolution module, and speed up the convergence 

through skip connection and batch normalization. 

2) Use the opposite number of the Dice coefficient to replace cross-entropy and eliminate the disturbance 

of the class imbalance. 

3) Propose a morphology-based weighting method to force the model to deal with liver edges properly. 

4) Modify the network to a 3D network to verify the segmentation effect of the proposed method on 

the 3D image. 

The following parts of this paper are arranged as follows: the third section gives a detailed 

description of the proposed network framework and the improved loss function, the fourth section 

provides the experimental results and analysis, and the final part is the conclusion. 

2. Related works 

2.1. Degradation problem of U-Net 

In the task of medical image classification, detection, and segmentation, to improve the accuracy 

of the task, the usual approach is to build a deeper network framework by directly stacking convolution 

kernels. However, experiments show that with the increase of convolution layers, the effect of the 

model is not as good as that of the relatively shallow neural network; that is, the network degrades as 

the number of layers increases. 

Although the decoder of the U-Net network can integrate the encoder’s low, medium, and high-

level features, it is widely used in various medical tasks. However, as the depth of the network deepens, 

the degradation problem is unavoidable. On the one hand, after each down-sampling of the U-Net 
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coder, the channel number of the convolution kernel decreases. On the other hand, when a specific 

layer in the middle of the network compresses the features in a large proportion in the spatial dimension 

(e.g. when pooling is used), a lot of information will be lost in the feature map [25]. One solution is to 

double the number of feature channels before pooling, which can be understood as adding redundant 

features and then pooling again to avoid reducing information. 

On the other hand, the maximum pooling needs to record the location index of the pooling during 

each backpropagation process. Thus, it would increase the model’s computing cost to a certain extent. 

Besides, as the number of network layers deepens, backpropagation becomes more and more complex; 

that is, the convergence speed of the model tends to decrease. 

2.2. Residual-based resolution 

Aiming at the resolution of network degradation, He et al. [26] proposed reconstructing the 

mapping of the network, in which the original convolution module is replaced with the residual module. 

Thus, unlike the previous training that relies on multi-layer stacking to learn the implicit mapping, the 

network expects to learn a residual mapping. 

The residual structure has been widely used in many applications of medical image segmentation. 

For example, to accelerate the convergence speed of the network, Milletari et al. [27] added a residual 

module to the network to obtain a V-Net segmentation network. They received good results in 

segmentation tasks, especially in prostate segmentation. Furthermore, Jin et al. [28] proposed a 3D 

hybrid residual attention perception segmentation network that combines residual structure and U-Net 

to extract liver and tumors from CT. The model was verified on brats2018 and brats2017 datasets.  

Although there are two ways of identity transformation and weight mapping in skip connection, 

identity transformation is significant for the above bottleneck structure because the weight mapping 

matrix can make the input and output of skip connection become into two high-dimensional matrices, 

which would double the computational complexity and model size. Therefore, the skip connection of 

identity transformation can make the residual network more efficient based on the bottleneck structure. 

2.3. Class-imbalance problem and resolution 

In liver segmentation, another challenge is the imbalance of different categories. That is, the 

segmented objects in different liver images vary significantly in size. 

To solve the class imbalance problem, one solution is to improve the loss function. One of the 

commonly used loss functions in semantic segmentation is cross-entropy. However, cross-entropy does 

not consider the class imbalance problem, and thus it may be difficult to detect small liver regions or 

fuzzy boundaries. Christ et al. [29] assigned a weight to each category, where the weight belongs to 

the reciprocal of the pixel proportion of the category. Milletari et al. [27] proposed a dice loss function 

in the 3D image segmentation task, effectively reducing the segmentation deviation caused by the 

imbalance of the ROI area and the background. Sudre et al. [30] proposed a Tversky loss function 

based on Tversky similarity, taking the difference between false positives and false negatives into 

account. The Tversky loss function takes to parameters and makes a trade-off between false positive 

and false negative. Goceri [31,32] proposed a hybrid loss function using the cross-entropy with 

Tversky loss or mutual information for lesion segmentation from colored images.  

The second solution is the data augmentation strategy, improving the network’s generalization 
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ability, enhancing the system’s robustness, and reducing the overfitting problem. General data 

augmentation strategies mainly include rigid transformation and non-rigid transformation to improve 

the network’s generalization ability. 

3. Method 

3.1. Proposed network framework 

The improved network framework presented in this paper is based on the V-Net [27] proposed by 

Milletari et al. and the residual U-Net [31] proposed by Zhang et al. Their core modules are shown in 

Figure 1. 

 

Figure 1. Convolutional and residual modules (a) convolution (b) residual module. 

The improved network structure proposed in this paper is shown in Figure 2. The main 

modifications are as follows: First, before each down-sampling, the number of channels is changed to 

twice the number of the upper layer; at the same time, before each up-sampling (i.e., transpose 

convolution), the number of channels of convolution kernel is halved, and thereby effectively reducing 

the bottleneck of the model. Secondly, using convolution with a step size of 2 instead of pooling, on 

the one hand, it can alleviate the information loss caused by directly discarding features, on the other 

hand, it can reduce the memory consumption. Thirdly, for the problem of slow model convergence, it 

introduces residual structure to improve the model, to speed up the convergence. At the same time, the 

skip connections in the network can promote information propagation, reduce the number of 
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parameters, and thus improve the network performance. 

 

Figure 2. Proposed iResU-Net network structure. 

In Figure 2, each red cube represents the feature map obtained after convolution.  

1) The solid blue arrow indicates the process of BN (Batch Normalization), ReLU activation function, 

and convolution (kernel size is 3 × 3, the step size is 1) on the input data in sequence. 

2) The purple arrow represents the convolution process with a convolution kernel size of 1 × 1, a step 

size of 1, and an activation function of sigmoid. 

3) The blue dashed arrow represents the forward propagation process of the information flow in the 

network without any operation. Note that the blue dashed arrow has two main functions: on the one 

hand, it is used for the skip connection of the ResNet module, and on the other hand, it is the skip 

connection that transmits high-resolution information to low-resolution in the original U-Net. 

4) The red arrow is a convolution with a convolution kernel size of 2 × 2 and a step size of 2. The 

number of convolution kernels is twice the number of channels of the input feature map, and its primary 

purpose is to down-sample the feature map. 

5) The green arrow indicates a transposed convolution with a convolution kernel size of 2 × 2 and a 

step size of 2. The number of convolution kernels is half of the number of channels of the input feature 

map, and its primary purpose is to up-sample the feature map. 

6) The Adding layer only adds the corresponding positions of the two inputs, while the Concat layer 

concatenates the two inputs in the channel dimension. 

3.2. Proposed loss function 

In traditional U-Net, the cross-entropy loss function is calculated on the output result of Softmax 

as the loss function of the entire network. Pre-calculate the corresponding weight distribution map for 

each pixel in the image, as shown in Eq (1). 
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𝑤(𝑥) = 𝑤𝑐(𝑥) + 𝑤0 ∙ exp⁡(−
(𝑑1(𝑥)+𝑑2(𝑥))

2

2𝜎2
)                    (1) 

In the first part, 𝑤𝑐(𝑥) is used to compensate for the imbalance between different types of pixels 

in the dataset. In the second part, by calculating the square of the sum of the distance between the 

current pixel and the closest edge and the distance between the current pixel and the second nearest 

edge, the network pays more attention to learning the edge of cells in contact with each other. Thus, 

Eq (1) mainly solves two problems to strengthen the network’s learning ability for the target task. One 

is the problem of sample imbalance; the other is the challenge of the task itself, which often leads to 

the low accuracy of edge segmentation in the liver segmentation task. Based on these two problems, 

combined with the specific situation of liver segmentation, this paper improves the loss function. 

3.2.1. Redefinition of the loss function 

Using cross-entropy as the loss function can only indirectly estimate the effect of the current 

model but cannot directly evaluate it. When the loss function reaches the minimum value, it cannot 

guarantee that the model obtains the best performance but only ensures a relatively good result. Since 

the DICE coefficient only cares about the gap between the segmentation result and the ground truth, 

the employment of the opposite of the Dice coefficient can directly avoid the problem of the uneven 

number of pixels in different categories without using weighting. Besides, cross-entropy as the loss 

function can be used to estimate the effect of the current model, but not directly; that is, when the loss 

function reaches the minimum, it can not guarantee the best performance but only a relatively good 

effect. Therefore, this paper uses the opposite of the Dice coefficient as the loss function and only 

focuses on the gap between the segmentation result and the ground truth, which can directly avoid the 

imbalance problem of the pixels in different categories without weighting. The Equation is shown as 

follows: 

𝑙 = −
2×∑𝑤𝑥𝑌𝑝𝑟𝑒_𝑥𝑌𝑡𝑟𝑢𝑒_𝑥+𝜀

∑ 𝑤𝑥𝑌𝑝𝑟𝑒_𝑥𝑥 +∑ 𝑤𝑥𝑌𝑡𝑟𝑢𝑒_𝑥+𝑥 𝜀
                           (2) 

where Ypre_x indicates the prediction result of the x-th pixel in the prediction result, Ytrue_x represents 

the category label of the x-th pixel in the actual label,ωx is the weight of the x-th pixel, andεis used 

to prevent the numerator or denominator from being zero. 

3.2.2. Definition of the weight of loss function 

The second improvement is to modify the weight of each pixel. The situation of liver 

segmentation is different from that of cell segmentation: most livers have only one piece, and the gap 

between a few pieces is significantly larger than that between cells. Thus, the weight definition of the 

classic U-Net is not suitable for liver segmentation. Besides, in the process of liver segmentation, the 

following situations often occur: 

1) For smaller liver parts, it is prone to over-segment or under-segmentation; 

2) The accuracy of liver edge segmentation is not high, which makes the size of segmented liver 

slightly smaller than that of real one. 

The reasons for the above problems can be summarized into the two difficulties mentioned 

previously, namely the sample imbalance problem and the tricky boundary segmentation problem. The 
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imbalance problem of pixel categories can be solved by using the inverse number of the Dice 

coefficient as the loss function. 

In addition, this paper also improves the weighting method of the image through the 

morphological approach, that is, the number of erosions obtains the weight of different pixels and the 

weight mapωmorphology (x) of the image is formed, and the value of each point in the weight map is the 

value of 𝑤𝑥 in the loss function.  

The primary purpose of calculatingωmorphology (x) is to enhance the model’s learning ability on 

edge and improve the small liver’s learning ability. The specific calculation flow of the weight mapω

morphology (x) is shown in Figure 3. 

 

Figure 3. Flow chart of weight calculation algorithm based on morphology. 

Through the algorithm flow shown in Figure 3, we can get the weight of each pixel in the image. 

The calculated weight map can be displayed in the form of a heat map, as shown in Figure 4. 

Figure 4(a) is the original label of the liver CT, and Figure 4(b) is the weight map obtained through 

morphology. It can be seen from Figure 4 that the more difficult-to-segment contours of the liver get 

a relatively large weight. In contrast, the easier-to-segment interiors get a relatively small weight, 

forcing the network to pay more attention to learning the liver edges. 
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Figure 4. Weighted heat map of liver (a) label of CT (b) morphological-based weight heat map. 

3.3. Evaluation metrics 

In this paper, each patient’s VOE (Volume Overlap Error), RVD (Relative Volume Difference), 

ASD (Average Symmetric Surface Distance), and MSD (Maximum Symmetric Surface Distance) are 

used to evaluate the proposed method. 

Therefore, to properly analyze the overlapping degree between the ground truth and the 

segmentation results of the proposed model, this paper uses the VOE to evaluate the effect of the model, 

which reflects the degree of error between the segmentation results of the model and the ground truth, 

with the calculation formula shown in Eq (4). 

𝑉𝑂𝐸 = 1 −
|𝑌𝑥𝑖_𝑝𝑟𝑒𝑑∩𝑌𝑥𝑖_𝐺𝑇|

|𝑌𝑥𝑖_𝑝𝑟𝑒𝑑∪𝑌𝑥𝑖_𝐺𝑇|
                            (4) 

Meanwhile, this paper also introduces the RVD, an asymmetric measurement method used to 

express the volume difference between the ground truth and the predicted results, with the calculation 

formula shown in Eq (5). 

𝑅𝑉𝐷 =
|𝑌𝑥𝑖_𝑝𝑟𝑒𝑑|−|𝑌𝑥𝑖_𝐺𝑇|

|𝑌𝑥𝑖_𝐺𝑇|
                             (5) 

We introduced the average surface distance (ASD), which represents the average distance 

between the segmentation result and the gold standard surface, where d (v, S(X)) represents the shortest 

Euler distance from voxel v to the surface voxel of the segmentation result. 

𝐴𝑆𝐷 =
1

|𝑌𝑥𝑖_𝑝𝑟𝑒𝑑|+|𝑌𝑥𝑖_𝐺𝑇|
(∑ 𝑑(𝑝, 𝑆(𝑌𝑋𝑖_𝐺𝑇)𝑝∈𝑆(𝑌𝑋𝑖_𝐺𝑇)

+ ∑ 𝑑(𝑞, 𝑆(𝑌𝑋𝑖_𝑝𝑟𝑒𝑑)𝑞∈𝑆(𝑌𝑋𝑖_𝑝𝑟𝑒𝑑)
)    (6) 

Finally, we used the maximum surface distance (MSD), representing the maximum distance 

between the segmentation result and the gold standard surface. 

𝑀𝑆𝐷 = 𝑚𝑎𝑥 { 𝑑(𝑝, 𝑆(𝑌𝑋𝑖_𝐺𝑇)， 𝑑(𝑝, 𝑆(𝑌𝑋𝑖_𝑝𝑟𝑒𝑑)𝑞∈𝑆(𝑌𝑋𝑖_𝐺𝑇)
𝑚𝑎𝑥

𝑝∈𝑆(𝑌𝑋𝑖_𝑝𝑟𝑒𝑑)
𝑚𝑎𝑥 }        (7) 
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4. Experiment 

4.1. Dataset and implementation 

The first dataset of the experiment is from the public dataset LiTS171. The LiTS17 dataset 

consists of 131 and 70 sets of abdominal CT scans, which can be used for training and testing, respectively. 

All the training sets provide the ground truth for liver and liver tumors, while the test set does not provide 

the gold standard, but the performance on each metric can be obtained by participating in the competition. 

Most of the scans come from patients with various liver tumor diseases and different acquisition protocols. 

The resolution range of cross-section is [0.56, 1.0] mm, and the resolution of the z-axis image is [0.45, 6.0] 

mm. The number of slices in each CT is between [42, 1026]. There are 201 sets of CT volumes in this 

dataset, including 131 sets for training and 70 sets for the test. 

The second dataset is from SLiver 072, with different acquisition protocols. Its resolution in cross-

section is [0.56, 0.8] mm, and that in z-axis is [1, 3] mm. Most of the images are pathological, including 

tumors, metastases, and cysts of different sizes. All datasets used contrast-enhanced agents in the central 

venous phase. The dataset provides 20 sets for training and ten sets for the test. 

Considering the huge gap of different data in the z-axis direction in LiTS17 and limited by the capacity 

and computing capability of the training platform, this paper randomly takes out 16 volumes from the 20 

sets as the training set, two volumes as to the validation set. Meanwhile, the test set has eight volumes with 

a z-axis resolution of [1, 3] mm in the LiTS17 and the remaining two volumes in Sliver07. Therefore, this 

paper collected a total of 28 sets of liver images, of which 16 sets were used for training, two sets were 

used for validation, and ten sets were used for the test. 

All networks in this paper are built with Keras 2.4.03. Adam is used as the optimization algorithm to 

find the optimal solution in the training process. Since the BN layer is used in the network, the initial 

learning rate is set to 30 times the learning rate in the original method, that is, lr = 0.03. The specific 

configuration of the platform used for training is Ubuntu 18.04, graphics card RTX2080Ti, memory 64 G, 

single CPU Intel Xeon Silver 4110. 

4.2. Image preprocessing 

 

Figure 5. Illustration of 2D data augmentation. 

 
1 https://competitions.codalab.org/competitions/17094#results 

2 http://www.sliver07.org/ 

3 https://github.com/keras-team/keras 
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In the preprocessing stage, the Hounsfield intensity value is unified between [-200, 250] to 

remove irrelevant organs and details. At the same time, the intensity value of the image is normalized 

to [0, 1]. After that, random affine transformation and elastic deformation are performed on the training 

dataset, and then the amount of data is expanded ten times to prevent the model from overfitting. Figure 

5 shows an illustration of the data augmentation process for a 2D image. 

 

Figure. 6 Illustration of 3D dataset augmentation (a) Original CT (b) Elastic deformation 

(c) Affine transformation (d) Elastic deformation with affine transformation. 

For 2D CT images, data can be enhanced directly one by one, but for 3D data, certain 

modifications are required. The same random affine transformation matrix and elastic deformation 

matrix are used for data augmentation for all cross-sectional slices in a liver scan. The specific process 

is shown in Figure 6. 

Figure 6(a) shows two slices from the same liver. To show the results of data augmentation more 

clearly, the liver is marked in red with a white grid; Figure 6(b) is the result using random elastic 

deformation. Figure 6(c) results from data augmentation using random affine transformation matrix; 

Figure 6(d) is the result of the combined effect of the elastic deformation and the affine transformation. 

By observing the deformation of the grid in Figure 6, it can be seen that the method can perform data 

augmentation on all slices in a liver scan and ensure the continuity of the 3D space. Therefore, this 

paper divides the data into 512 × 512 × 64 for training. The data is only divided into blocks on the z-

axis but not on the x-axis and y-axis. 

4.3. Experimental results and discussion 

In medical images, the original data is often three-dimensional. The segmentation algorithm for 

each slice in 2D space can only use the context information of the current slice, but not the spatial 

information between adjacent slices. Intuitively, using 3D iResU-Net to perform convolution would 

make good use of the 3D spatial information of the data and improve the model effect. 

Although the method proposed in this paper is designed for 2D images, it can also be used to 

segment 3D images as long as 2D convolution is changed into 3D convolution. In order to enhance the 
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use of multi-scale information in the model and improve the segmentation effect of the model on 3D 

data, some improvements are made to the original network, as shown in Figure 7. 

 

Figure 7. The framework of 3D iRes-U-Net. 

This 3D network framework is different from the previous 2D network in four points. First of all, 

the input and output are all 3D data. Due to the limitation of the memory size, the data will be input in 

blocks. Secondly, all 2D convolutions are changed to 3D convolutions. Thirdly, to add multi-scale 

information to the network’s input, the image is concatenated with the feature image of the previous 

layer after scaling and convolution. Then the convolution process of this layer is performed. Finally, 

to reduce the computational complexity, the input is down-sampled by a 2 × 2 × 2 maximum pooling 

and then input to the network. The output is up-sampled through a 2 × 2 × 2 bilinear as the final output. 

Therefore, the dimension of the input data of the network is 512 × 512 × 64, and only the z-axis is 

partitioned, which largely preserves the spatial information and avoids partitioned processing. 

4.3.1. Comparison of loss function of different methods 

The opposite number of the Dice coefficient is still used as the loss function in the loss function 

part. However, since it is challenging to implement opening and closing operations in 3D space, the 

weighted processing based on morphology is not used. Figure 8 shows the loss curves of different 

methods, including the ordinary U-Net, the proposed iResU-Net, and the 3D iResU-Net. 
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Figure 8. Loss curve of different methods on training data and validation data. 

In Figure 8, the red dashed line represents the loss function curve of U-Net on the training set, 

and the solid red line represents the loss function curve of U-Net on the validation set. The blue dashed 

line represents iResU-Net on the training set, and the solid blue line represents the loss function curve 

of ResU-Net on the validation set. The green dashed line represents the loss function curve of 3D 

iResU-Net on the training set, and the solid green line represents the loss function curve 3D iResU-

Net on the validation set. 

In the training process, iResU-Net shows the fastest convergence speed, which is mainly thanks 

to two improvements: first, the BN layer in the network speeds up the convergence of the network, 

and second, the residual module is introduced into the network, which can not only be used to solve 

the problem of training difficulty of deeper network, but also enable an improvement on the shallow 

network, and accelerate the convergence of the network. 

Through the loss function curve of three network tests, it can be seen clearly that compared with 

U-Net and 3D iResU-Net, iResU-Net performs best on the training set and shows superior 

generalization ability in the verification set. 

In addition, the improved 3D iResU-Net for 3D data shows a good effect. To reduce the 

computational complexity of the model, the up-sampling and down-sampling operations on the input 

and output of the network make the model lose part of the information, resulting in slower convergence 

of the network. Besides, due to the shallower layers of the network, the model’s generalization ability 

is greatly improved. Specifically, the performance of 3D iResU-Net on the verification set is higher 

than the training set and finally exceeds the segmentation effect of the U-Net. 

Then, the segmentation effect of the model is further analyzed from the four metrics of VOE, 

RVD, ASD, and MSD, as shown in Table 1. 

In Table 1, ResU-Net uses the cross-entropy loss function based on pixel category weighting. 
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iResU-Net uses the opposite number of Dice coefficients based on morphological weighting proposed 

in this paper. 

Table 1. Summary of evaluations using four models on the test set. 

Models VOE (%) RVD (%) ASD (mm) MSD (mm) 

U-Net 15.39 ± 5.46 5.49 ± 4.24 5.48 ± 3.23 32.84 ± 5.98 

ResU-Net 13.42 ± 3.68 -7.95 ± 3.04 3.58 ± 2.85 25.43 ± 4.21 

iResU-Net 10.83 ± 3.70 -0.25 ± 2.74 2.12 ± 1.98 19.52 ± 4.01 

3D iResU-Net 2.20 ± 12.46 15.73 ± 1.46 2.58 ± 2.12 13.76 ± 2.99 

Comparing the experimental results of iResU-Net and U-Net, it can be seen that the improved 

model based on the residual module has brought a great improvement. iResU-Net outperforms U-Net 

in VOE, ASD, and MSD. 

After the improvement, iResU-Net is significantly ahead of U-Net and ResU-Net in all metrics. 

Its Dice global value is more significant, and the mean value per case is larger with a most negligible 

variance, which indicates that iResU-Net achieves a superior segmentation effect both on the whole 

and on the individual. In addition, the mean and variance of VOE, RVD, ASD, and MSD are smaller, 

which means that it not only has a good segmentation effect, minor error, but also a more stable 

performance. Compared ResU-Net with iResU-Net, it can be found that the improved loss function 

proposed in this paper enabled a significant improvement on the basic U-Net model. In addition, 

compared with other networks, 3D iResU-Net showed the highest MSD score, which is because 3D 

convolution can make full use of the spatial information between slices.  

Table 2. Summary of the parameters and reasoning time of the three models. 

Models 
Total number of 

parameters (M) 

Trainable 

parameters (M) 

Untrainable 

parameters (M) 

Reasoning time 

(ms) 

U-Net 1.851 0.563 0 46.73 

iResU-Net 3.321 3.316 0.005 59.85 

3D iResU-Net 0.564 0.563 0.001 8.46 

Besides, this paper also compared the size and inference speed of the model, as shown in Table 2. 

There are two kinds of parameters in Table 2: trainable parameters and non-trainable parameters. There 

are mainly two types of non-trainable parameters in current neural networks.  

1) One is the parameters corresponding to the frozen layers in the network remain unchanged 

during the training process, which is often used in finetuning as a fixed feature extractor or unique 

image preprocessing.  

2) The other is the statistical values in the BN layer, which would change with the mean and variance 

of the data, but are not directly affected by backpropagation. 

It can be seen from Table 2 that, compared with U-Net, the total number of iResU-Net parameters 

is about 1.8 times that of U-Net, with higher complexity. Still, the convergence is faster, and the 

generalization ability is higher, indicating a significant improvement effect. However, the inference 

speed of iResU-Net is slower, about 1.28 times that of U-Net. Therefore, this improvement is more 

suitable for scenes that require fine segmentation but not high segmentation speed. 
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Specifically, it is necessary to analyze the experimental results of improved iResU-Net for 3D 

data. Only the test data in SLiver07 are used, mainly because the data in LiTS17 is quite different from 

SLiver07 in slice thickness, and the difference in data distribution between the two is noticeable. Due 

to the use of maximum pooling and up-sampling for input and output in 3D iResU-Net, the model’s 

parameter amount and calculation amount are significantly reduced, and the model inference speed is 

faster. Still, it also limits the segmentation effect of 3D iResU-Net to a certain extent. 

4.3.2. Qualitative analysis on challenging cases 

To verify the segmentation robustness of the network, tests were conducted on CT images in some 

difficult-to-segment cases, including liver CT with high noise, low contrast with neighboring organs, 

and pathological abnormalities. The segmentation results are shown in Figure 9. 

 

Figure 9. Comparative results on challenging cases among U-Net, iResU-Net, and 3D iResU-net. 



1441 

Mathematical Biosciences and Engineering  Volume 19, Issue 2, 1426-1447. 

The first three rows of images correspond to the low-contrast CT data of adjacent organs, the 

middle three rows correspond to the noisy CT data, and the last three rows correspond to the CT data 

with pathological abnormalities. For three rows of images from the same data, the first row is the axial 

plane that represents a cross-section of CT image, the second row is the sagittal plane that represents 

a sagittal plane of CT data, and the third row is the coronal plane that represents a coronal plane of CT 

data. In order to show the experimental results more clearly, we stretch the sagittal plane and coronal 

plane longitudinally, and the rest of the images are the same as the original size. 

As shown in Figure 9, for the low-contrast CT image of adjacent organs, compared with the 

original U-Net, iResU-Net shows a better segmentation effect on the whole. Although some false 

positive segmentation results in the cross-plane, it provides superior results in the sagittal and coronal 

plane with a smooth edge. However, the 3D iResU-Net for the 3D dataset is not ideal on the three 

planes, but the segmentation effect in the sagittal plane is better than U-Net. 

For CT data with pathological abnormalities, U-Net shows high false negatives at the lesion site 

and the contours of the liver, and there is almost no way to segment the liver completely. However, the 

proposed iResU-Net shows superior performance. Meanwhile, the 3D iResU-Net can also segment 

this type of data well, with some false positives and misjudgment. 

4.3.3. Impact of weighted heat map 

In this section, we will verify the influence of the weighted heat map in the weighted loss function. 

U-Net and the iResU-Net proposed in this paper are used in the unweighted and weighted heat maps of 

Dice, respectively. Training, verification, and testing are performed on the inverse coefficient loss function. 

Table 3. Comparative results of U-Net and iResU-Net on unweighted and weighted heat maps. 

Models VOE (%) RVD (%) ASD (mm) MSD (mm) 

U-Net (Unweighted) 18.65 ± 7.35 7.95 ± 5.65 7.54 ± 4.32 38.40 ± 6.35 

U-Net (Weighted) 15.39 ± 5.46 5.49 ± 4.24 5.48 ± 3.23 32.84 ± 5.98 

iResU-Net (Unweighted) 12.96 ± 3.95 1.25 ± 3.65 2.65 ± 2.85 21.89 ± 5.69 

iResU-Net (Weighted) 10.83 ± 3.70 -0.25 ± 2.74 2.12 ± 1.98 19.52 ± 4.01 

 

Figure 10. Comparative results of U-Net and iResU-Net on unweighted and weighted heat 

maps (a) unweighted (b) weighted. 
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Table 3 lists the quantitative results of U-Net and iResU-Net on unweighted and weighted heat 

maps. It can be seen that when the weighted heat map is introduced, both U-Net and iResU-Net have 

obtained consistent performance improvement on all evaluation metrics. Moreover, Figure 10 shows the 

qualitative results. It can be seen that, compared to the methods without weighted heat maps, the 

approaches employing weighted heat maps reduce the segmentation errors effectively. 

4.3.4. Ablation study  

In this section, we perform the ablation experiments to verify the effectiveness of our proposed 

iResU-Net. There are three models: (1) U-Net (2) U-Net with the residual block (ResU-Net). (3) U-Net 

combining residual block with BN layer (iResU-Net).  

Table 4. Comparative results of ablation experiments. 

Models VOE (%) RVD (%) ASD (mm) MSD (mm) 

U-Net 15.39 ± 5.46 5.49 ± 4.24 5.48 ± 3.23 32.84 ± 5.98 

ResU-Net 12.63 ± 4.21 1.58 ± 3.25 4.32 ± 2.56 26.25 ± 4.65 

iResU-Net 10.83 ± 3.70 -0.25 ± 2.74 2.12 ± 1.98 19.52 ± 4.01 

 

Figure 11. Comparative results of ablation experiments. 
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Table 4 shows the quantitative segmentation results. It can be seen that with the continuous 

improvement of the network structure, the segmentation effect of the network all obtains consistent 

performance improvement. Specifically, iResU-Net achieves the best performance compared with the other 

two models. In addition, Figure 11 shows the qualitative segmentation results. It can be seen that with the 

continuous improvement of the network, our proposed iResU-Net outperforms the other two models. 

4.3.5. Comparison with other methods 

To further verify the effectiveness of our model, we compared the proposed method with two 

classic models, including the FCN and U-Net, with the same training and testing dataset. 

Table 5. Comparative results with other methods. 

Models VOE (%) RVD (%) ASD (mm) MSD (mm) 

FCN 26.73 ± 8.25 9.58 ± 6.42 7.25 ± 6.32 41.25 ± 8.21 

U-Net 15.39 ± 5.46 5.49 ± 4.24 5.48 ± 3.23 32.84 ± 5.98 

iResU-Net 10.83 ± 3.70 -0.25 ± 2.74 2.12 ± 1.98 19.52 ± 4.01 

 

Figure 12. Comparison of different methods on the difficult-to-segment cases. 
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Table 5 shows the results of the three models. It can be seen that our proposed model showed 

significant advantages compared to the other two methods. For example, the FCN obtained the lowest 

VOE, RVD, and MSD scores and delivered the most significant difference from the ground truth. On 

the contrary, the VOE, RVD, and MSD of our proposed iResU-Net have significantly improved 

compared with U-Net. Furthermore, Figure 12 shows a typical segmentation case of the three methods 

with difficult-to-segment cases. It can be seen that our proposed approach showed the least over-under-

segmentation errors. 

5. Conclusion 

This paper proposes an improved iResU-Net for liver CT segmentation. Aiming at the 

shortcomings of U-Net in performance, the BN layer is introduced to remove the internal covariate 

shift in the network, to enhance the generalization ability of the model and speed up the model 

convergence; In addition, a residual module is introduced to speed up the convergence through the 

identity mapping. At the same time, the opposite number of the Dice coefficient is used to replace the 

original cross-entropy loss function to enhance the learning ability while suppressing the imbalance of 

pixels. Moreover, the weighting method based on morphology is proposed to force the model to refine 

the edge of the target. Finally, to verify the scalability of the proposed model on 3D data, the network's 

input is changed to multi-scale input to improve the performance. The experimental results show that 

the improved iResU-Net achieves a higher mean value and a minor standard deviation on each 

segmentation metric, proving good performance and robustness. It also delivers better results in 

various difficult-to-segment instances. In addition, the improved 3D iResU-Net segmentation effect 

for 3D data is better than U-Net, indicating that the model is highly scalable on 3D data. Nevertheless, 

the segmentation edge of 3D iResU-Net is relatively rough, mainly because the bilinear up-sampling 

method is used in the network’s output. Therefore, in future research, other ways will be studied to 

refine the segmentation edge. 
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