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Abstract: Despite the growing interest in studying the oscillatory behavior of delay differential
equations of even-order, odd-order equations have received less attention. In this work, we are
interested in studying the oscillatory behavior of two classes of odd-order equations with deviating
arguments. We get more than one criterion to check the oscillation in different methods. Our results
are an extension and complement to some results published in the literature.
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1. Introduction

This study investigates the oscillatory and asymptotic behavior of delay differential equations
(DDESs) of odd-order

(@@ )Y +qm) fW @) =0 (1.1)
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and

(a@ (")) +q ) f @ @m) =0, (12)

where n > 3 is an odd integer and v (7)) = ¥ () + p () ¢ (7 (17)). Further, we assume that:

(i) k1is aratio of odd natural numbers;

(it) g, p € C([10,0),(0,0)) and 0 < p (1) < 1;
(iii) a,7,¢ € C' ([1,)), a () >0, @ () 20, ¢p () =1 = 7(1), lim e, T (7)) = 00;
(iv) f e C(R,R), f(¥) > ky* and

T 1
n(n):f T ds — o0 asn — oo. (1.3)
0 a K(S)
If there exists a 1y, > no Wwith a continuous function  satisfies (1.1),

a(m) (w("‘l))K (n) € C! ([W’ oo) ,R), and sup {{y (7)| : 71 <7} > 0 for every 1,1 € [Wv oo), then ¥ is
said to be a proper solution of (1.1). A solution ¢ of (1.1) is said to be non-oscillatory if it is positive
or negative, ultimately; otherwise, it is said to be oscillatory.

Lately, great attention has been devoted to the theory of oscillation in DDEs. The works [1-10]
develop techniques and methods for studying the oscillations of second-order DDEs. This development
was necessarily reflected in the study of the oscillation of even-order DDEs, and this can be seen
through the works, for example [11-18]. On the other hand, odd-order DDEs have received less
attention compared to even-order DDEs. The development of the study of such equations can be traced
through papers, [19-29], and the references cited therein.

Baculikova and Dzurina [30] studied the asymptotic properties of neutral DDE

(am (@ xp@yGm")) +q@my* @) =0.

Li and Rogovchenko [31] investigated the oscillation of neutral DDE

(a() @ ) +qmy (@) =0,

where v () = ¥ (y) + poy (n — dp) and dy > O (delayed argument) or 6, < O (advanced argument).
Lackova [32] deduced oscillatory and asymptotic behavior of neutral DDE

W +pmyEm)N” +q@m fW @) =0,

where ¢ (17) is a delayed argument and n > 2, f (o) sgno > klo*, k> 1, k> 0.

The half-linear differential equations arise in the study of p Laplace equations, porous medium
problems, chemotaxis models, and so forth; see, for instance, the papers [33—35] for more details. In
this study, we investigate the oscillatory and asymptotic properties of solutions for half-linear
differential equations (1.1) and (1.2) under the conditions mentioned above and present some new
results which are complementary and extend to [30-32]. We will support the results obtained with
two examples.
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2. Auxiliary lemmas

We start with some lemmas that we will need to use later. The next result is a well-known result;
see [36, Lemma 2], also see [37, Lemma 2.2.1].

Lemma 2.1. If ¥ is a solutionkof (1.1) and positive eventually, then y® (), 1 < k < n— 1, are of
constant signs, a (1) (w(”‘” (77)) is decreasing. Moreover, s satisfies either

Y ) >0, 9" () >0, y" >0,y <0 (2.1)

or
-D"y"™ >0 m=1,2,..,n. (2.2)

Lemma 2.2. [36] Let ¢ € C"([no, ), (0,)), ¢ D@ y™ () < 0 for n > n, and assume that
lim, o ¥ (7) # 0, then there exists an ng € [77://’ 00) with

W) 2 7' W ()| for all n € [ny,00) and 6 € (0,1).

T (n—-1)!
Lemma 2.3. Assume that ¥ (n) > 0 fori = 0, 1,2, eventually. Then, for all 6, € (0, 1),

0
v () > ;me)

and s
NUOE (@) . 23)
Proof. Assume that Y (17) > 0 for i = 0, 1,2 and for all n > 1, > 1, n; large enough. Then, we get
)]
y(om) -y = W (s)ds >y (e —n). 24)

n

It is easy to notice that lim, . ¥ (7) = co. Hence, there exists 7, > n; large enough such that

17
So () <Y () —y () = f Y (s)ds <y (i (n—m) <y’ (), (2.5)

mn

for all ¢y € (0, 1). By integrating this inequality from 7 to ¢ (1), we find

60
U@ ) > (@) ).

This completes the proof of this Lemma.

Lemma 2.4. Suppose that s is a positive solution of (1.2). Then, (a ) (v("_l) (n))K), <0, v9(m), 1<
i < n-—1, are of constant signs, and v (n) satisfies either

Case (1):v(@m) >0, v () >0, v" (1) >0, v" V1) >0and v™ (1) <0 (2.6)

or
Case (2): (=Dv® () >0, fork=1,2,....n. 2.7)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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Proof. Suppose that i is a solution of (1.2) and positive eventually. Produces directly from (1.2) that

(a) (" V@) < ~kg v @) <O0. (2.8)

Now, from the above inequality we find either v~ (1) > 0 or v~V (37) < 0.
If ¥~V () < 0, then

a(m) (v @) <-c<0,

integration from 7, to n, we have

T 1
V"D () < "D apy) - M f ——ds,
m a (S)

by using (1.3) we have v”7? () — —oo0 at  — oo, and by doing this process several times we get
v(n) — —oo. This contradicts the positive v (17), then v~V (57) > 0. Since v~V (1) > 0, we have that
either v (1) > 0 or v (57) < 0. But, v (57) > 0 leads to v” () > 0 for 0 < i < n—2. Repeating
these considerations, we verify that v (1) satisfies either (2.6) or (2.7).

Now since v~V (1) > 0 and @’ > 0. Then we have

K\’ K k—1
0> (am (@ m)) =a m@" ") +ka@m) (@ @) v @,
which shows us that v™ (57) < 0. This completes the proof of this lemma.

Lemma 2.5. Let Case (1) hold. Then

)
v(@m) (¢ (n)) , (2.9)
v (1) n
forall 5, € (0,1).
Proof. The proof of the above lemma is similar to that of Lemma 2.3 and so it is omitted.
Next, we will present the basic definitions and notations that we will use in our results.
{hnm (M}),_, 18 @ sequence of continuous functions defined as follows
hyo(n) =k¥Y (), ke (0,1) fixed,
s () = o () + —= fm B () —o—ds, m = 0,1 (2.10)
m+1 (n_z)! . 1/K( ) 9 Ly eeey .

oo Koo
¥ () = q(s)(‘“ )) (1- p(@(s))ds

kl/K 00
@(n)=a1/K(n)(f q(s)ds) :

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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3. Main results

Now, we present our results for (1.1) and (1.2).

Theorem 3.1. Assume that

- foo S}’l—Z‘r(K+1)/K (S)d . (n_z)!
1min s
e T (1) J, allx(s) (k + 1)rDix
and y

00 1 00 K

n-2
_ d ds = oo,
fm S A (s) (f q@) Q) § =00

where

00 kS
ﬂmi[qwﬁm)d&
n

s

then lim,_,, ¥ (17) = O, for every nonoscillatory solution y () of (1.1).

(3.1)

(3.2)

Proof. Assume that ¢ is a solution of (1.1), positive eventually, and satisfies (2.1). By (3.1), we have

k(K+1)/K 00 Sn—2fr(1<+l)//< (S) (l/l _ 2)7
lim inf — o ds > ————
e T J,  al(s) (k+ !+

for some k € (0, 1). From Lemma 2.3 and (1.1), we have

k00
(mm@WWMW+mm%%?)wwmsa

Now we define @ (1) as follows

Cam " m)

A S
then N K
,U_@@wwwm) a @) (" @) v o
@ = v () -f v () '

By using (3.4) and (3.5), we get

¢ (n

K0q ’
@’ () < —kq (77)(7)) — k@ (17) v @)

w(n)

By using Lemma 2.2, we have

, b))\ A Y)
w(n)g—kq(n)(T) _Kw(n)(n—Z)! wap

from (3.5), we get

/ ¢(n) KO0 knn—Z
@’ (n) < —kgq (U)(T) KT ) (n —2)!

zD_l+l/K (T]) )

(3.3)

(3.4)

(3.5)

(3.6)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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Integrating (3.6) from 7 to co, we have

() > KT () + —& fm " () d (3.7)
w w s)ds .
PEET I ), are(s)
or
w(n) Kk(K+1)/K 00 Sn—Z‘r(K+1)/K (S) w.(s) (k+1)/k
+ ds,
kT(n) (=20 J, al/® (s) (kT(S)) ’
eventually, let us say n > n;. Since
@ () > kY (1),
then
AU
=z kT (1)
thus (k+1)/ 200 (k+1)/
k+1)/k n ‘I‘K+ K
@ () > K(kf) (S)ds, (3.8)
kK (17) - 2)!7 (1) a'l(s)
from (3.3), we have
k(K+1)/K 00 Sn—ZT(KH)/K (S)
ds > a > (k+ 1)« 3.9
W, T CS) s>a>(k+1) (3.9)
for some positive . From (3.8) and (3.9), we have
@ (1) > 1 WD/ g, 3.10
oy 2 e (3.10)
therefore
é« > 1+ Kg(K-f—l)/Ka > 1+ K{(K+l)/K (K + 1)—(K+1)/K,
that is,

0>

1 K ( { )(K+l)//< {

+ - .
k+1 «k+1\k+1 K+ 1
But, we have

K
— ﬂ(K+l)/K _ ’I_?
f@) = K+ 1 k+1

is a non-negative function for every J > 0. Thus, we obtain that s cannot satisfy (2.1).
Next, we suppose that (2.2) holds. Then there exists a finite lim,_,., ¥ (1) = D. Suppose the contrary
that D > 0. By integrating (1.1) over [, ), we have

am@" P my =k f q ()Y (¢ (s))ds > kD" f q(s)ds,
n n

that is,

") > KD (fmq(s)ds)l/K. (3.11)
a ()

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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Integrating (3.11) n — 2 times, we obtain

R o ol PR "
—w(n)szn ((s—n) Bal/K(s)(I q(g)dg) )ds,

integrating (3.12) from 7, to co, we get

kl/KD 00 . 1 o 1/«
yan) <n—2>!fm ((s—m) zauk(@(fs q(g)d@) )ds

K'xD (1 0 M
22 (n = 2)! fzm (S al/’((s)(fs Q@dg) ds,

which contradicts (3.2). Then, lim, . ¢ (17) = 0. The proof is complete.

Theorem 3.2. If

S 1 f‘x’ sl D/x (s)d . (n-2)!
1m in N
e () Jy allx(s) (k + 1)*rDix

and

f s"20 (5)ds = oo,

o

then every nonoscillatory solution y (n) of (1.2) satisfies lim,_,., ¢ (17) = 0.

(3.12)

(3.13)

(3.14)

Proof. Suppose that i is a solution of (1.2) and positive eventually. Assume that Case (1) holds. Since

ym=vm-pmyGam) zvm-pmuvE®),

From n > 7(n7), we have

ymzvm-pmuvam) zvm-pHvm =vmpd-pm)
and so
Y(dm) =v@m) (1 —-plpm),
from Lemma 2.2, we have
n—2

k
v () > —1

2> (11——2)!U(n_1) ).

From (2.9), (3.15) and (2.8), we have

K00
(atn (")) < —kq(n)(@) (1= p @) v @).

Now, we define the function ¢ (1) as follows

a () (v ()
v

p(m =

(3.15)

(3.16)

(3.17)

(3.18)

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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Differentiating (3.18) and using (3.17), we get

o ka () (v () v/ ()
o () < —kq (n)(M) 0 - po iy - _ )
] vt (n)
by using (3.16) and (3.18), we have
, ¢ )™ o Kk
¢ () < —kq(n) (T) (I=pl@m) - m‘%’( V@)

Integrating (3.20) from 7 to oo, we have

Kk 00 n-2
> k¥ (n) + w+D/K () q
@ () () =) fn a5 ¥ (s)ds
or equivalently,
o) Kkk(+07x gl (g) - Qe Dix ()

=21+ S,
kY () (n =)%Y J, all(s) (k¥ (s))«/
eventually, let us say n > n;. From (3.22), we have
el
K¥ G

then ")
.~ e
inf ——=p0>1,
nzm kW (1) e

by using (3.22) and (3.23), we have

90(77) ol K(Qk)(K+1)/K foo 2P+ x (S)
S T -, a9

ds,

by using (3.13), we have

L1+ /k o0 an=2p(1+6)/x (s) (n-2)!
lim inf ds > ————,
N7 (77) ‘L allx (S) (K + 1)(1+K)//<

for some k € (0, 1), from above inequality there exists some positive ¢ such that

k(1+/<)/l< 00 Sn—2\Il(l+K)/K (S)
(n=-2)¥ () J, a'l® (s)

ds > é‘: > m
From (3.26) and (3.24), we get
@ (1)

> 1 + K (1+K)/K’
P b

therefore, from (3.23), we have

’

o )(1+K)/K

> 1+ k&> 1+ (
© Kee KK+1

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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that is,

< 0.

1 K o) (1+x)/k 0
+ —
k+1 K+1(K+1) k+1
This contradicts the fact that the function

K
+ g,(l+/<)/l< -< > O,
k+1 «k+1

)=

for all ¢ > 0. Thus v (7) cannot satisfy Case (1).

Assume that Case (2) holds. Then there exists a constant ¢ > 0 such that lim,_,. ¥ (17) = c¢. Suppose
that ¢ > 0. Integrating (1.2), we see that

(@ w) 2k [ v @iz [ g0 (3.28)
n

n
that is,
V") > c0®). (3.29)

Integrating (3.29) twice, we obtain

V" () > Cfm (foo(»)(s)ds)dg = chO@(s) (s —n)ds, (3.30)
n 0 n

integrating (3.30) n — 4 times, we get

—v () > —

_(n_3)‘f O (s) (s —n)'"ds, (3.31)
]

integrating (3.31) from 7; to co, we get

c « o c R
11(771)2(’/1_2)!17;l O(s)(s—m) zdSZanls 2®(S)dSa

which contradicts (3.14), and so we have verified that lim,_,., ¢ (17) = 0. The proof is complete.

Theorem 3.3. Let  be a nonoscillatory solution of (1.2), (3.14) hold, and

PN IO . kk_ (7 S
xﬁqmwjr)(hwwmmem&mgﬂﬁﬁyuzwwfﬁm=w, (3.32)

for some k € (0,1) and some m = 0,1, ... . Then lim,_,., (1) = 0.

Proof. Suppose that i is a solution of (1.2) and positive eventually, we conclude from Lemma 2.4
that v (7) satisfies Case (1) or Case (2). If Case (1) holds, then from proof of Theorem 3.2, we find
that (3.21) holds. By induction, using (3.21), we have that the sequence {A,, (11)},_, is nondecreasing

and ¢ () > h, (7). Thus the sequence {h,, (1)}, _, converges to & (n). By the Lebesgue monotone
convergence theorem and letting m — oo in (2.10), we have

xk © §"2
h(K+l)/K d ,
m—2ﬂl; ® g &

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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since ¢ () > h,, (), gives

Lo s\ I TN i
W = —kq (n)(—n ) (1= p(pm)" TR ——h D) e al/K o)
)™ . iy T
_ g 1- - h
< kq(n)( . ) (1=ppm)) T 2), ) hy," () I/K()
Therefore,
’ Kk 1/x n N ¢( ) . K
h (,7)+( z)vh(n)h () —— W( = < —kq (1) (I=p@m),
that is,

Kk p s /
(h(")exp(< z)vf m ) i ))
o0 . cexp | ()

Integrating the above inequality from 7, to  we obtain

k —2
h(n)eXp(( Kz)vf B () W() ) (3.33)

<h(m)—kfq(Q)(¢())K60(1—p(¢(@)))eXp( Kk f”K() s )dQ
B m 0 (n—2)! a'/«(s)

Since,

kk Bl §"2
e - f 9) 28] 2 0 (3.34)

letting n — oo in (3.33) and using (3.32), we obtain a contradiction with (3.34).
If Case (2) holds, then from proof of Theorem 3.2, condition (3.14) insures that (1) tends to zero at
n — oo. This completes the proof of the theorem.

Theorem 3.4. Let  be a nonoscillatory solution of (1.2), (3.14) hold, and

Kk(n—1)
lim supkn a() h, () > ((n = 1)H", (3.35)
77—)00

for some h,, (n) and for some k € (0, 1). Then lim,_,, ¥ (17) = 0

Proof. Suppose that i is an eventually positive solution of (1.2), we conclude from Lemma 2.4 that
v (n) satisfies Case (1) or Case (2) . Assume that Case (1) holds. From Lemma 2.2, we have

1/k

- 1),77” W ap,

v =

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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where k is the same as in A, (7). Then

1 _ 1 v () . k TIK(n_l)
e am @YD) al@)((n-1H" ’

that is,

k
(n— DN > —n" Do @).
a(n)

Since ¢ () > h,, (7) , we have

((n= DY > —— gD (). (3.36)
a(m)

from (3.35) and (3.36) we get a contradiction. This completes the proof of the theorem.
Corollary 1. Let (3.14) be satisfied, and

k(n—1) 00

¢ ()

S

lim su
1—00 p a (77) n

K00
Q(S)( ) (1=p@(s))ds>((n-DH". (3.37)

Then every nonoscillatory solution y (1) of (1.2) satisfies lim,_,., ¥ (1) = 0.
Proof. From (3.37) there exists some k € (0, 1) such that

L NI
lim supk®——— q(s)(—) (1= p(@ () ds > (= D,
1—00 a (T]) n N
that is,
x(n—1)
lim supk ho(m) > ((n—1DH*.
nooo A1)

The assertion now follows from Theorem 3.4.

Example 3.5. Consider the differential equation of third order
(nw” @)’ + %W (2n) = 0. (3.38)

From (3.38), we find thatn = 3,k = 3,a(n) = n, () = qo/1°, qo > 0 and ¢ (1) = 2n.
Now, from Theorem 3.1 we notice that condition (3.2) is satisfied and condition (3.1) is satisfied if

q0 > %. Thus, we obtain that all nonoscillatory solutions of (3.38) tend to zero at infinity when

635
g0 > 356

Example 3.6. Consider the third-order neutral differential equation
(7" (@ @+ pog ) ) + e @) =0, (339)
where py and g are constants, k = 1/3, n=3,a(m) =1, 7)) = An, 1€ (0,1), w > 1, ¢ (n) = wn,

p () = po, () = qo/n*" and go > 0.
It is easy to get

* ¢ (s) o K 50/3 1/3 3
‘P(n)=f q(s) (1 =p(@(s))ds = gow™” (1 = po) o7
n

S

Mathematical Biosciences and Engineering Volume 19, Issue 2, 1411-1425.
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and

00 33
3 3
O @) = W( )(f q(s)ds) =Ko
and condition (3.14) holds

f "0 (s)ds = f skqy 2ds =3¢ f —ds =0
o) 0 m S

1 00 o 2\11(K+1)//< (S)
lim inf ds = 3*¢2@® (1 - py),
minf g fn TGS s go@™ (1 = po)

and

then condition (3.13) reduces to

1
g™ (1 - > —,

which, by Theorem 3.2, guarantees that all nonoscillatory solutions of (3.39) tend to zero at infinity.
4. Conclusions

In this paper, several new results for (1.1) and (1.2) have been presented which complement and
expand some results introduced in the cited papers in the introduction. We obtain the conditions by
using Riccati transformation and some analytical skill. In fact, our results are applicable in the case
where « is a ratio of odd positive integers. We supported the results obtained in this paper with two
examples. An interesting problem for further research is to study the problem of nonoscillation for

(a@ (")) +q @) £ @) = 0 where f () > ky” and y # k.
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