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Abstract: The accuracy of unknown parameters determines the accuracy of photovoltaic (PV) models
that occupy an important position in the PV power generation system. Due to the complexity of the
equation equivalent of PV models, estimating the parameters of the PV model is still an arduous task.
In order to accurately and reliably estimate the unknown parameters in PV models, in this paper, an
enhanced Rao-1 algorithm is proposed. The main point of enhancement lies in i) a repaired evolu-
tion operator is presented; ii) to prevent the Rao-1 algorithm from falling into a local optimum, a new
evolution operator is developed; iii) in order to enable population size to change adaptively with the
evolutionary process, the population size linear reduction strategy is employed. To verify the validity
of ERao-1 algorithm, we embark a study on parameter estimation of three different PV models. Ex-
perimental results show that the proposed ERao-1 algorithm performs better than existing parameter
estimation algorithms in terms of the accuracy and reliability, especially for the double diode model
with RMSE 9.8248E-04, three diode model with RMSE 9.8257E-04 for the R.T.C France silicon cell,
and 2.4251E-03 for the three diode model of Photowatt- PWP201 cell. In addition, the fitting curve of
the simulated data and the measured data also shows the accuracy of the estimated parameters.

Keywords: Parameter estimation; photovoltaic model; Rao-1 algorithm; parameter extraction

1. Introduction

Currently, the renewable energy is receiving more and more attention due to its some promising
features such as clean, no pollution, and widespread, which is incomparable to traditional energy
sources [1]. In general, these are commonly used renewable energy sources such as solar energy,
wind energy, nuclear energy, tidal energy, and geothermal energy [2]. Among these energies, the solar
energy and wind energy are considered the most promising energy sources, because they can be widely
available. Compared with wind energy, solar energy plants are easier to install. With the development
of photovoltaic (PV) technology, solar energy has drew more and more attention. For a PV system,
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choosing an accurate model is very important, which is of great significance on evaluation of solar cell
performance. To this end, three PV models. namely single diode mode (SDM) [3], double diode model
(DDM) [4], three diode model (TDM), and its variants on PV module (PVM) [5] are proposed for the
PV system. For the SDM and single PVM, it is composed of a photo-generated current source, diode,
equivalent series resistance and equivalent parallel resistance. While for the DDM and TDM, different
from the former, there are two and three diodes. However, there is no free lunch. These PV models
have unknown parameters that need to be estimated. For example, five unknown parameters such as
photo-generated current (Ipg), diode reverse saturation current (Irs), series resistance (Rse), shunt re-
sistance (Rsh), and non-physical diode ideality factor (n) need to be identified in the SDM and single
PVM. These parameters are critical to PV models, which is helpful for the design and optimization of
the solar cell. Therefore, regardless of the PV model used in the PV system, these unknown parame-
ters must be accurately identified. Thus, designing an effective PV parameter estimation algorithm is
becoming more and more urgent.

Over the past few years, researchers have come up with various of methods for parameter estima-
tion of PV models. To sum up, three categories such as analytical methods, deterministic methods
and heuristic methods can be broadly divided into according to the characteristics of the method. The
analytical method is a simple and fast method, which reduces the complexity of the problem by an-
alyzing the equivalent equations of PV models based on some hypothesis. The advantage is that it
is simple and does not consume a lot of computing resources. However, the accuracy of this method
depends heavily on the correctness of the hypothesis. The deterministic method such as Newton-
Raphson method [6] and Lambert W-functions method [7], does not require pre-assumptions, but it
needs to provide an initial guess in advance. However, this method is susceptible to the initial esti-
mates, and if the initial estimates are not good enough, it is easy to obtain the estimated unknown
parameters with low precision. In addition, this method has a strict requirement on the optimization
objective that should be continuous, convex, and differentiable [5]. Unfortunately, these requirements
are often difficult to meet for the PV models equivalent equations. In order to alleviate the short-
comings of the above methods, researchers have employed and developed many heuristic methods to
estimate the unknown parameters of PV models. The heuristic method is a kind of trial-and-error
based method inspired by natural environment phenomena. This approach is simple to implement, and
more importantly, it does not require any assumptions, but also does not depend on the characteristics
of the problem. In addition, it has no additional requirements for the optimization objective. There-
fore, in recent years, more and more heuristic methods and their improved variants such as simulated
annealing algorithm (SA) [8], pattern search (PS) [9], particle swarm optimization (PSO) [10], differ-
ential evolution (DE) [11, 12], hybrid teaching-learning-based optimization and differential evolution
(ATLDE) [13], whale optimization algorithm (WOA) [14], generalized oppositional teaching learning
based optimization (GOTLBO) [15], improved JAYA algorithm (IJAYA) [16], multiple learning back-
tracking search algorithm (MLBSA) [17], hybrid teaching-learning-based optimization and artificial
bee colony (TLABC) [18], performance-guide JAYA algorithm (PGJAYA) [19], improved teaching
learning based optimization (ITLBO) [20], and so on, have been developed to identify the unknown
parameters in PV models. Figure 1 shows an overview survey on some recent and popular algorithms
for PV model parameter estimation, where the PSO, DE, TLBO, JAYA, and hybird methods are the
most used. In addition, many new heuristic methods are developed to solve this problem in recent
years. There is no doubt that these methods have achieved better results than previous ones. However,
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Figure 1. An overview survey on some recent and popular algorithms for PV model param-
eter estimation.

the performance of most algorithms is affected by their arithmetic parameters, which makes it diffi-
cult for users to give a suitable parameter value for different problems. When solving a new problem,
users need to do a lot of pre-experiments to get a suitable parameter value, which greatly increases the
computational burden.

Rao-1 algorithm is a simple and parameter-free heuristic method, which is proposed for solving
optimization problems with and without constraints [21]. Different from some of the algorithms
mentioned earlier, on the one hand, Rao-1 algorithm has no additional control parameter except the
common parameter known as the population size. For example, the inertia weight and acceleration
coefficients are need to set in PSO. In DE, the scaling factor and crossover rate should be given ac-
cording to different problems. Benefit from parameter-free, Rao-1 algorithm can relieve the burden of
user choosing an appropriate parameter value. On the other hand, the Rao-1 algorithm only has one
evolution operator when solving optimization problems, which makes it easy to implement and can
quickly provide an optimal solution. Therefore, the Rao-1 algorithm has been applied for engineering
optimization problems such as mechanical system optimization [22], reduced-order active disturbance
rejection control [23], PV models parameter estimation [24, 25], etc. As can be observed, the Rao-1
algorithm also has been applied for PV models optimization. However, the results in [24] show that
it is easy to fall into local optimum. While in [25], it needs a lot of computing resources to obtain
satisfactory results. Thus, a simple and effective improved Rao-1 algorithm becomes urgent.

Inspired by the promising features of Rao-1 algorithm, in this paper, for the purpose of accurately
and reliably estimating the unknown parameters in PV models, an enhanced Rao-1 algorithm referred
as ERao-1 is proposed. In ERao-1, firstly, a repaired evolution operator is proposed to reduce the
randomness in original evolution operator of Rao-1 algorithm; secondly, a new evolution operator is
developed to prevent the Rao-1 algorithm from falling into a local optimum; thirdly, the population
size linear reduction strategy is introduced to enable population size to change adaptively with the
evolutionary process. In order to prove the validity of ERao-1 algorithm, three different PV models
such as SDM, DDM, and TDM have been used as the suites. The experimental results demonstrate
that ERao-1 algorithm can provide competitive performance in the accuracy and reliability of estimated
parameters when comparing with some well-established algorithms.
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Figure 2. Equivalent circuit diagram of various PV models [12].

In summary, the main contributions of this paper can be summarized as follows:

• An enhanced Rao-1 algorithm is developed for parameter estimation of PV models, where a
repaired evolution operator is proposed to reduce the randomness in original Rao-1 algorithm.

• Design a new evolution operator to prevent Rao-1 algorithm from falling into local optimum.
• A population size linear reduction strategy is employed to make population size to change adap-

tively with the evolutionary process.
• The performance of ERao-1 algorithm has been demonstrated by estimating unknown parameters

in various PV models.

The structure of the remainder of this paper is organized as follows. The definition of PV models
and optimization objectives are described in Section 2. In Section 3, a brief introduction about the
original Rao-1 algorithm is described. Section 4 gives the detailed description of the proposed ERao-
1 algorithm, and Section 5 reports the experimental results. Lastly, the conclusion of this paper is
concluded in Section 6.

2. Definition of PV models and optimization objectives

As described in Introduction, there are three commonly used PV models namely the SDM, DDM,
and TDM. In this section, the definition of these PV models and the optimization objective will be
introduced.

2.1. SDM

The equivalent circuit diagram of the SDM is given in Figure 2(a), in which there are a photo-
generated current source Ipg, a diode D, two resistances Rse and Rsh. According to [26], the output
current IL of this model is calculated as follows:

IL = Ipg − Id − Ish (2.1)

where Id denotes the diode current, the current of the shunt resistor is represented as Ish. The two
currents can be worked out by using the Shockley equation and Kirchhoffs Voltage Law, which is
shown as follows

Id = Irs

[
exp

(
(VL + ILRse) · q

nkT

)
− 1

]
(2.2)
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Ish =
VL + ILRse

Rsh
(2.3)

where VL denotes the output voltage of the model, Irs represents the diode reverse saturation current,
n is the diode ideality factor, q is the a electron charge and its value is 1.60217646 × 10−19 C, k is the
Boltzmann constant and its value is 1.3806503 × 10−23 J/K, while T is the current temperature, which
will be converted into Kelvin units when calculating.

On the basis of Eqs. (2.1)-(2.3), the output current IL can also be written as

IL = Ipg − Irs

[
exp

(
(VL + ILRse) · q

nkT

)
− 1

]
−

VL + ILRse

Rsh
(2.4)

where five unknown parameters Ipg, Irs, Rse, Rsh, and n need to be estimated.

2.2. DDM

Figure 2(b) shows the equivalent circuit of DDM, where there are two diodes D1 and D2. For this
model, the output current IL can be formulated as below [26]:

IL = Ipg − Id1 − Id2 − Ish (2.5)

where Id1 and Id2 represent the first and second diode currents, respectively, and their formula is shown
as follows

Id1 = Irs1

[
exp

(
(VL + ILRse) · q

n1kT

)
− 1

]
(2.6)

Id2 = Irs2

[
exp

(
(VL + ILRse) · q

n2kT

)
− 1

]
(2.7)

where Irs1 is the diffusion current, Isd2 denotes the saturation current, n1 is the first ideal coefficient of
the non-physical diode, and n2 denotes the second ideal coefficient of the non-physical diode.

On the basis of Eqs. (2.5)-(2.7), the output current IL in DDM can be represented as

IL = Ipg − Irs1

[
exp

(
(VL + ILRse) · q

n1kT

)
− 1

]
− Irs2

[
exp

(
(VL + ILRse) · q

n2kT

)
− 1

]
−

VL + ILRse

Rsh
(2.8)

where seven unknown parameters Ipg, Irs1 , Irs2 , Rse, Rsh, n1, and n2 need to be estimated in the DDM.

2.3. TDM

Similar to the DDM, there is another model named three diode model (TDM). The output current
of the TDM is calculated as follows:

IL = Ipg − Irs1

[
exp

(
(VL + ILRse) · q

n1kT

)
− 1

]
− Irs2

[
exp

(
(VL + ILRse) · q

n2kT

)
− 1

]
−Irs3

[
exp

(
(VL + ILRse) · q

n3kT

)
− 1

]
−

VL + ILRse

Rsh

(2.9)
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where Irs3 , n3 represent the third diode saturation current and ideal coefficient, respectively. As could
be seen, there are nine unknown parameters to be identified.

2.4. PVM

As shown in Figure 2(c), the single PVM is similar to the SDM. The difference is that there are Ns

diodes in series and Np diodes in parallel in PVM. For the single PVM, the manner of calculating the
output current IL is shown as follows [13, 14]:

I = IpgNp − IrsNp

[
exp

(
(VLNp + ILRseNs) · q

nNsNpkT

)
− 1

]
−

VLNp + ILRseNs

RshNs
(2.10)

where there are five unknown parameters like the SDM need to be estimated.
In addition, the double-diode and three-diode based PVM are similar to the DDM and TDM. Note

that the Ns and Np are set to 1 for the single, double, and three diode model, except the PVM.

2.5. Optimization objectives

When employing the heuristic method to estimate the unknown parameters of PV models, the op-
timization objective need to be developed first. In general, for the PV model optimization, we need
to minimize the error between the experimentally measured output current and the output current ob-
tained through simulation. Thus, the error function f (∗) of the measured and simulated current data
should be defined, which is shown as follows:

• SDM:

f (VL, IL, x) = Ipg − Irs

[
exp

(
(VL + ILRse) · q

nkT

)
− 1

]
−

VL + ILRse

Rsh
− IM (2.11)

• DDM:

f (VL, IL, x) = Ipg−Irs1

[
exp

(
(VL + ILRse) · q

n1kT

)
− 1

]
−Irs2

[
exp

(
(VL + ILRse) · q

n2kT

)
− 1

]
−

VL + ILRse

Rsh
−IM

(2.12)
• TDM:

f (VL, IL, x) = Ipg − Irs1

[
exp

(
(VL + ILRse) · q

n1kT

)
− 1

]
− Irs2

[
exp

(
(VL + ILRse) · q

n2kT

)
− 1

]
−Irs3

[
exp

(
(VL + ILRse) · q

n3kT

)
− 1

]
−

VL + ILRse

Rsh
− IM

(2.13)

• SPVM:

f (VL, IL, x) = IpgNp − IrsNp

[
exp

(
(VLNp + ILRseNs) · q

nNsNpkT

)
− 1

]
−

VLNp + ILRseNs

RshNs
− IM (2.14)
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where x is a vector containing unknown parameters to be estimated, and IM is the simulated current
which is calculated by substituting the value of unknown parameters estimated by the proposed ERao-1
algorithm into Eqs. (2.4), (2.8), (2.9), and (2.10).

Then, in order to better reflect the overall error between the measured current data and the simulated
current data, in this paper, the root mean square error (RMSE) has been employed as the objective
function, which has been used in many published literature [26, 27, 9, 28, 29, 30, 30, 4, 31, 14, 16, 19,
32, 17, 15, 33, 18, 20, 34, 35]. The definition of RMSE is shown as follows

minimize RMSE(x) =

√√
1
N

N∑
i=1

( f (VLi , ILi , x) − IMi)2 (2.15)

where N represents the number of datasets used in the experiment.
From Eq. (2.15), it can be concluded that the smaller RMSE value the more accurate of the estimated

parameters are.

3. Rao-1 algorithm

Rao algorithm as a simple but effective heuristic algorithm was proposed by Rao in 2020 [21]. In
the Rao algorithm, there are three sub-algorithms called Rao-1, Rao-2, and Rao-3. Different from
Rao-2 and Rao-3, the structure of Rao-1 is simple and has a fast convergence, so the Rao-1 algorithm
has attracted much attention. In Rao-1 algorithm, there are three core operations including population
initialization, evolution operator, and selection, which are briefly introduced in the following section.

3.1. Population initialization

Assume that there are np individuals in a population P, where each individual can be seen as a
D-dimension vector. In this regard, noting that each individual can be considered a candidate solution.
In population initialization, each individual is initialized in a given search space. For example, the i-th
individual is initialized as follows

xi, j = a j + r · (b j − a j), j ∈ [1,D] (3.1)

where a j and b j represent the low bound and upper bound of the j-dimension, respectively. While r is
a random number between 0 and 1.

3.2. Evolution operator

Evolution operator is a core operator in Rao-1 algorithm, which is used to generate the promising
offspring. The idea of this operator comes from the learning experience that the worst individual in
the population learns from the best individual. For example, the i-th individual’s evolution operator is
formulated as follows

x′i, j = xi, j + r j · (xbest, j − xworst, j) (3.2)

where x′i denotes the i-th individual after evolution operator, r j is a random number between 0 and 1
in the j-dimension, xbest and xworst are the best and worst individual in the population P, which is done
according to the objective function value in ascending order.
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Then, the generated x′i may will be checked for outside the specific search space. If x′i oversteps the
search bounds at the j-dimension, then the j-dimension of x′i will be re-initialized using Eq. (3.1).

3.3. Selection

After the evolution operator, all newly generated x′i are evaluated by calculating the fitness value
(objective function value in this paper). Thereafter, the algorithm will decide whether the original
individual xi or the new individual x′i survives the next generation. In Rao-1 algorithm, the one to one
greedy choice strategy is adopted, which is expressed as follows:

xi =

{
x′i , if f (x′i) ≤ f (xi)
xi, otherwise

(3.3)

where the xi after selection operator will be used as the individual in the next generation population.

4. Enhanced Rao-1 algorithm

4.1. Motivations

Despite the success enjoyed by Rao-1 algorithm, it is worth noting that there are three points worth
further studying. Firstly, the evolution operator in Rao-1 algorithm has too much randomness. From
Eq. (3.2), it can be seen that each dimension of the new generated individual is produced by the dimen-
sion of best and worst individuals with a random number. If the dimension of the problem is higher,
the greater the randomness of each dimension. Due to randomness improvements in other dimensions,
improvements in one dimension may result in poor performance. Secondly, in Rao-1 algorithm, there
is only one evolution operator shown as Eq. (3.2), namely only use the best and worst individuals
to guide searching, which may result in the algorithm not being able to balance exploration and ex-
ploitation capabilities well. Thirdly, although the Rao-1 algorithm enjoyed the parameter-free when
compared many heuristic methods, there is still a common parameter namely population size np that
needs to be set by user. Taking above points into consideration, an enhanced Rao-1 algorithm referred
as ERao-1 is proposed. In ERao-1, a repaired evolution operator is presented to reduce the randomness
in Rao-1 algorithm. Then a new evolution operator is developed to prevent the Rao-1 algorithm from
falling into local optimum. Finally, the population size linear reduction strategy is employed to adap-
tively adjust the population size as it evolves. A detailed description about these improvements will be
introduced in following sections.

4.2. Repaired evolution operator

To reduce the randomness of Rao-1 algorithm, in this subsection, a repaired evolution operator is
presented. In the repaired evolution operator, there is only a random number r on all dimensions rather
than j random numbers on each dimension. The repaired evolution operator is formulated as follows

x′i = xi + r · (xbest − xworst) (4.1)

where r is a random number in interval 0 to 1.
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From Eq. (4.1), it is straightforward to see that the new individual x′i is generated by a random
number r through the differential vector of the xbest and xworst. In this way, a large amount of randomness
in the Rao-1 algorithm can be avoided, thus speeding up the convergence of the algorithm.

4.3. New evolution operator

As mentioned earlier, there is only a single evolution operator in the Rao-1 algorithm, which may
not be a good compromise between the exploitation and the exploration. In addition, in Eq. (3.2), only
the best and the worst individuals are used to guide search, which may lead to under-utilization of
information from other individuals in the population and easy to trap into local optimum. Inspired by
the mutation in DE [36, 37], a new evolution operator is proposed, which is defined as below

x′i = xi + r1 · (xbest − xworst) + r2 · (xp − xq) (4.2)

where r1 and r2 are two random numbers between 0 and 1. xp and xq are two individuals randomly
selected from the current population P, and f (xp) ≤ f (xq). Noting that p , q , i.

From Eq. (4.2), it can be seen that there is another differential vector (xp − xq) that is used to guide
search. There are two benefits that can be obtained from the new evolution operator. On the one hand,
it can make better use of the information of other individuals in the population. On the other hand, it
can avoid the algorithm falling into local optimum. However, it should be pointed out that this new
evolution operator may slow down the convergence speed. Thus, to alleviate the situation, the repaired
evolution operator and the new evolution operator are called adaptively according to the individuals
objective function values, which is shown as

xi =

{
xi + r1 · (xbest − xworst) + r2 · (xp − xq), if ind(i) < np/2
xi + r · (xbest − xworst), otherwise

(4.3)

where ind(i) represents the index of the i-th individual objective function value sorted in ascending
order.

From Eq. (4.3), it is clear that the better individuals adopt the new evolution operator to prevent
from falling into local optimum while the worse individuals take the repaired evolution operator to
accelerate convergence. By this way, the exploitation and exploration abilities can be made a good
tradeoff.

4.4. Population size linear reduction strategy

In order to make the Rao-1 algorithm parameter-free, in this subsection, a population size linear
reduction strategy is employed. In this strategy, the population size np decreases linearly with evolution
process. Given that the current population size is npG, npG+1 is the next generation population size,
which is updated as Eq. (4.4)

npG+1 = round
[
npmax − (

npmax − npmin

M FEs
) · FEs

]
(4.4)

where npmax and npmin denote the the maximum population size and the minimum population size,
respectively. While FEs and M FEs represent the number of function evaluations currently called and
the allow maximum number of function evaluations, respectively.
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4.5. Overview of proposed ERao-1 algorithm

The main three improvements have been described in above section, then based on these improve-
ments, the enhanced Rao-1 algorithm namely ERao-1 is proposed. Algorithm 1 provides the pseudo-
code of the proposed ERao-1 algorithm, where it can be observed that the proposed ERao-1 algorithm
does not introduce new parameters, and it still has a simple structure. Noting that the repaired evo-
lution operator and new evolution operator are used in lines 9-12, while the population size linear
reduction strategy is used in line 17. In addition, as for the algorithm complexity, the Rao-1 algorithm
complexity is O(Gmax · np ·D), where Gmax is the maximum number of generations and it can be calcu-
lated as Gmax = M FEs/np. Since the proposed ERao-1 algorithm does not introduce other additional
computational burdens. Therefore, the algorithm complexity of ERao-1 is also O(Gmax · np · D).

Algorithm 1: The pseudo-code of ERao-1 algorithm
Input: Control parameters: M FEs

Output: Optimal estimated parameters
1 load the measured VL − IL data;
2 Set FEs = 0, np = npmax = 30, npmin = 3;
3 Randomly initialize the population P using Eq. (3.1);
4 Using Eq. (2.15) to evaluate each individual in P;
5 FEs = FEs + np;
6 while FEs < M FEs do
7 for i = 1 to np do
8 Sort the population P according to the objective function values to get the index ind;
9 if ind(i) < np/2 then

10 Using the new evolution operator Eq. (4.2) to generate x′i ;

11 else
12 Using the repaired evolution operator Eq. (4.1) to generate x′i ;

13 Using Eq. (3.1) to deal with the generated x′i ;
14 Evaluate the generated x′i using Eq. (2.15);
15 Selection using Eq. (3.3);

16 FEs = FEs + np;
17 Update the population size np using Eq. (4.4);

5. Experiments and results

With the aim of verifying the performance of proposed ERao-1 algorithm, it is evaluated by esti-
mating the unknown parameters of three different PV models including SDM, DDM, TDM, and its
expansion in PVM. First, the 57 mm diameter commercial R.T.C France silicon cell is selected, where
there are 26 pairs of VL-IL data that are measured under 1000 W/m2 at 33 °C. For the PVM, the poly-
crystalline Photowatt-PWP201 is selected, where there are 25 pairs of VL-IL data that are measured
under 1000 W/m2 at 45 °C. In addition, the search ranges of unknown parameters are given in Table 1.

As for the comparison algorithms, in this paper, seven well-established parameter estimation meth-
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Table 1. Search ranges of unknown parameters.

Parameter R.T.C France silicon cell Photowatt-PWP201 cell

a b a b

Ipg (A) 0 1 0 2
Irs, Irs1, Irs2, Irs3 (µA) 0 1 0 50
Rse (Ω) 0 0.5 0 2
Rsh (Ω) 0 100 0 2000
n, n1, n2, n3 1 2 1 50

ods including GOTLBO [15], IJAYA [16], MLBSA [17], TLABC [18], PGJAYA [19], ITLBO [20],
and original Rao-1 algorithm [21] are selected. Table 2 gives the experimental settings of these algo-
rithms. Note that these settings are kept consistent with their corresponding literatures. In addition,
for fair comparison, all comparison algorithms are implemented by using MATLAB2016 software,
and the allow maximum M FEs is set to be 30,000 for all PV models. It is worth mentioning that all
experiment are conducted on a desktop PC with an Intel Core i7-9700M processor @ 3.0 GHz, 32GB
RAM, under the Windows 10 64-bit operating system.

Table 2. Experimental settings of comparison algorithms.

Algorithm Settings

GOTLBO np = 50, jumping rate Jr = 0.3
IJAYA np = 20
MLBSA np = 50
TLABC np =50, limit=200, scale factor F = rand(0,1)
PGJAYA np = 20
ITLBO np = 50
Rao-1 np = 30
ERao-1 npmax = 30, npmin = 3

5.1. Results on the R.T.C France silicon cell

5.1.1. Results on the SDM of the R.T.C France silicon cell

As mentioned beforehand, five unknown parameters need to be estimated in the SDM. Table 3
reports the comparison results of ERao-1 and its competitors, where the best objective function value
(RMSE) and corresponding estimated parameter values are involved. Noting that the best RMSE
value has been marked in black bold. From Table 3, it can be observed that ERao-1, ITLBO, PGJAYA,
TLABC, MLBSA, and GOTLBO are able to obtain the same best RMSE value (9.8602E-04), followed
by IJAYA (9.8626E-04), and Rao-1 (1.1478E-03). Although the difference of IJAYA and ERao-1 is
particularly small i.e., 2.4E-07, it still makes sense. As mentioned in subsection 2.5, the smaller RMSE
value the more accurate the estimated parameters are. Besides, since the true parameter value is not
available, any reduction in the objective function value means that the estimated parameter value is
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Figure 3. The fitting curves of the measured data and simulated data on the SDM of the
R.T.C France silicon cell.

more accurate. In addition, when compared with the original Rao-1 algorithm, it is clear that the
enhanced Rao-1 algorithm has significant performance improvement.

Table 3. Estimated parameters achieved by ERao-1 and compared algorithms on the SDM
of the R.T.C France silicon cell.

Algorithm Ipg (A) Irs (µA) Rse (Ω) Rsh (Ω) n RMSE

GOTLBO 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
IJAYA 0.7608 0.3240 0.0364 53.6555 1.4815 9.8626E-04
MLBSA 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
TLABC 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
PGJAYA 0.7608 0.3230 0.0364 53.7186 1.4812 9.8602E-04
ITLBO 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04
Rao-1 0.7607 0.4176 0.0353 64.9212 1.5075 1.1478E-03
ERao-1 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04

To further explain the accuracy of the estimated parameters of ERao-1 algorithm, we calculate the
simulated current data by using the parameters estimated by the ERao-1 algorithm to substitute into
Eq. (2.4). Then, draw the fitting curve between the simulation data and the measured data shown as
Figure 3. From Figure 3(a), it can be seen that the simulated current data provided by ERao-1 is able
to fit the measured current data well. Also, the simulated power data and the measured power data
have a good consistency, which can be observed from Figure 3(b). Based on the above findings, it can
conclude that the estimated parameters by ERao-1 are very accurate for the SDM.

5.1.2. Results on the DDM of the R.T.C France silicon cell

For the DDM, seven unknown parameters Ipg, Irs1 , Irs2 , Rse, Rsh, n1, and n2 must be estimated. Obvi-
ously, compared with the SDM, the DDM has two additional unknown parameters including Irs2 and n2
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need to be estimated, which means that the dimension of the problem has increased. It is noteworthy
that the increase in dimensions can lead to the complexity of the problem. Table 4 provides the esti-
mated parameters achieved by ERao-1 and other compared algorithms. From this table, it is evident
that only ERao-1 algorithm can achieve the best RMSE value (9.8248E-04) on this model, followed by
ITLBO (9.8250E-04), PGJAYA (9.8286E-04), TLABC (9.8317E-04), GOTLBO (9.8401E-04), IJAYA
(9.8655E-04), and Rao-1 (1.2087E-03). According to this findings, it can be seen that the performance
of most well-established parameter estimation algorithms is affected by the increase of problem di-
mensions while the proposed algorithm still has good performance. Moreover, it is remarkable that the
performance of ERao-1 is also significantly superior to the original Rao-1 algorithm on the DDM.

Table 4. Estimated parameters achieved by ERao-1 and compared algorithms on the DDM
of the R.T.C France silicon cell.

Algorithm Ipg (A) Irs1 (µA) Rse Rsh (Ω) n1 Irs2 (µA) n2 RMSE

GOTLBO 0.7608 0.2470 0.0366 54.6570 1.4595 0.3443 1.8749 9.8401E-04
IJAYA 0.7607 0.0002 0.0363 53.8328 1.4817 0.3247 1.7891 9.8655E-04
MLBSA 0.7608 0.2863 0.0365 54.3445 1.4710 0.2756 1.9991 9.8424E-04
TLABC 0.7608 0.6052 0.0367 55.2625 1.4506 0.2235 1.9401 9.8317E-04
PGJAYA 0.7608 0.2531 0.0366 55.1223 1.4606 0.5341 2.0000 9.8286E-04
ITLBO 0.7608 0.2316 0.0367 55.3661 1.4531 0.7021 2.0000 9.8250E-04
Rao-1 0.7613 0.2799 0.0355 55.3796 1.4968 0.3686 1.9766 1.2087E-03
ERao-1 0.7608 0.2260 0.0367 55.4854 1.4510 0.7493 2.0000 9.8248E-04

In addition, similar to the SDM, the simulated current data is calculated by using the parameters
estimated by the ERao-1 algorithm to substitute into Eq. (2.8) for the DDM. Figure 4 plots the fitting
curve between the simulated data and the measured data. From this figure, it is evident that the simu-
lated data are highly consistent with the measured data, both for the current data and the power data.
Therefor, it can be concluded that the estimated parameters obtained by ERao-1 are pretty accurate for
the DDM.

5.1.3. Results on the TDM of the R.T.C France silicon cell

Table 5 reports the results on the TDM of the R.T.C France silicon cell, where it can observe that
ERao-1 achieves the best performance (9.8257E-04) on this model, followed by ITLBO (9.8260E-04),
MLBSA (9.8286E-04), PGJAYA (9.8351E-04), IJAYA (9.8451E-04), GOTLBO (9.8562E-04), and
TLABC (9.8622E-04). Note that although the dimension in the TDM is increased to nine dimensions,
the proposed algorithm can still provide the smallest RMSE value. Besides, from the Figure 5, it is
clear that the simulated data obtained by ERao-1 is also consistent with the measured data.

5.2. Results on the Photowatt-PWP201 cell

5.2.1. Results on the single PVM of the Photowatt-PWP201

The comparison results of ERao-1, GOTLBO, IJAYA, MLBSA, TLABC, PGJAYA, ITLBO, and
Rao-1 are reported in Table 6, where what can be observed is that all algorithms can provide the
best RMSE value (2.4251E-03) except the IJAYA (2.4254E-03) and Rao-1 (2.4418E-03). It can be
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Figure 4. The fitting curves of the measured data and simulated data on the DDM of the
R.T.C France silicon cell.

Table 5. Estimated parameters achieved by ERao-1 and compared algorithms on the TDM
of the R.T.C France silicon cell.

Algorithm Ipg (A) Irs1 (µA) Rse Rsh (Ω) n1 Irs2 (µA) n2 Irs3 (µA) n3 RMSE

GOTLBO 0.7608 0.1804 0.0366 54.5868 1.4411 0.1870 1.6582 0.1122 1.7383 9.8562E-04
IJAYA 0.7607 0.1739 0.0366 55.0750 1.8796 0.2484 1.4594 0.2703 1.9995 9.8451E-04
MLBSA 0.7608 0.9452 0.0369 56.1208 1.9987 0.2020 1.4417 0.0107 1.9996 9.8286E-04
TLABC 0.7608 0.2898 0.0367 55.8789 1.7438 0.1824 1.8668 0.1834 1.4388 9.8622E-04
PGJAYA 0.7608 0.0024 0.0365 54.6491 1.9341 0.2740 1.4672 0.0364 2.0000 9.8351E-04
ITLBO 0.7608 0.4404 0.0367 55.3099 2.0000 0.2354 1.9956 0.2342 1.4540 9.8260E-04
Rao-1 0.7603 0.1833 0.0367 65.3903 1.8100 0.1509 1.4517 0.1576 1.5204 1.4205E-03
ERao-1 0.7608 0.2092 0.0368 55.6504 1.4466 0.0108 1.5108 0.8108 2.0000 9.8257E-04
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Figure 5. The fitting curves of the measured data and simulated data on the TDM of the
R.T.C France silicon cell.
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Figure 6. The fitting curves of the measured data and simulated data on the SPVM.

concluded that the enhanced ERao-1 algorithm performs better than IJAYA, and comparable to other
algorithms such as GOTLBO, MLBSA, TLABC, PGJAYA, and ITLBO for the single PVM. In addi-
tion, Figure 6 draws the fitting curve between the simulated current (power) data and the measured
current (power) data. From Figure 6, it can be seen that the simulated current (power) data provided by
ERao-1 is well agreed with the current (power) data, which also demonstrates that ERao-1 can provide
pretty accurate parameter values for the single PVM.

Table 6. Estimated parameters achieved by ERao-1 and compared algorithms on the single
PVM of the Photowatt-PWP201 cell.

Algorithm Ipg (A) Irs (µA) Rse (Ω) Rsh (Ω) n RMSE

GOTLBO 1.0305 3.4823 1.2013 981.9823 48.6428 2.4251E-03
IJAYA 1.0306 3.4594 1.2021 970.0370 48.6176 2.4254E-03
MLBSA 1.0305 3.4823 1.2013 981.9820 48.6428 2.4251E-03
TLABC 1.0305 3.4823 1.2013 981.9823 48.6428 2.4251E-03
PGJAYA 1.0305 3.4817 1.2013 981.7622 48.6422 2.4251E-03
ITLBO 1.0305 3.4823 1.2013 981.9822 48.6428 2.4251E-03
Rao-1 1.0300 3.5278 1.1994 1024.4284 48.6910 2.4418E-03
ERao-1 1.0305 3.4823 1.2013 981.9822 48.6428 2.4251E-03

5.2.2. Results on the double PVM of the Photowatt-PWP201

The results on the double PVM of the Photowatt-PWP201 are provided in Table 7. From this table,
GOTLBO, PGJAYA, ITLBO, and proposed ERao-1 algorithms can provide the smallest RMSE value
(2.4251E-03). MLBSA and TLABC achieved the best results in the single PVM while it does not
achieve the best performance on this model. In addition, it is worth mentioning that the optimal value
of the double PVM of the Photowatt-PWP201 is almost the single PVM. Lastly, from the fitting curves
of ERao-1 shown in Figure 7, it also fits the measured data very well, both for voltage-current and
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Figure 7. The fitting curves of the measured data and simulated data on the double PVM of
the Photowatt-PWP201 cell.

voltage-power.

Table 7. Estimated parameters achieved by ERao-1 and compared algorithms on the double
PVM of the Photowatt-PWP201 cell.

Algorithm Ipg (A) Irs1 (µA) Rse Rsh (Ω) n1 Irs2 (µA) n2 RMSE

GOTLBO 1.0305 2.1004 1.2013 982.0163 48.6514 1.3824 48.6313 2.4251E-03
IJAYA 1.0303 0.0258 1.2005 1017.3298 49.9869 3.5002 48.6823 2.4265E-03
MLBSA 1.0306 0.0000 1.2021 974.3427 18.1787 3.4565 48.6144 2.4254E-03
TLABC 1.0306 3.4405 1.2025 967.8519 48.5968 0.1100 43.0812 2.4253E-03
PGJAYA 1.0305 0.6276 1.2015 976.6385 48.4807 2.8456 48.6676 2.4251E-03
ITLBO 1.0305 2.6303 1.2013 981.9822 48.6428 0.8519 48.6428 2.4251E-03
Rao-1 1.0286 0.5738 1.1878 1398.3744 48.7330 3.5520 49.3947 2.5075E-03
ERao-1 1.0305 3.2619 1.2013 981.9822 48.6428 0.2203 48.6428 2.4251E-03

5.2.3. Results on the three PVM of the Photowatt-PWP201

For the three PVM of the Photowatt-PWP201, there are also nine unknown parameters including the
Ipg, Irs1 , Irs2 , Irs3 , Rse, Rsh, n1, n2, and n3 that need to be estimated. The comparison results of proposed
ERao-1 and other state-of-the-art algorithms are given in Table 8, where it is obvious that only MLBSA
and ERao-1 are able to achieve the best RMSE value (2.4251E-03), followed by ITLBO (2.4252E-
03), PGJAYA (2.4253E-03), IJAYA (2.4254E-03), GOTLBO (2.4257E-03), TLABC (2.4329E-03), and
Rao-1 (2.4905E-03). In particular, when comparing with the original Rao-1 algorithm, the proposed
ERao-1 has a significant performance superiority. Further, the fitting curves of ERao-1 plotted in
Figure 8 also prove the accuracy of its identified parameters.
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Table 8. Estimated parameters achieved by ERao-1 and compared algorithms on the three
PVM of the Photowatt-PWP201 cell.

Algorithm Ipg (A) Irs1 (µA) Rse Rsh (Ω) n1 Irs2 (µA) n2 Irs3 (µA) n3 RMSE

GOTLBO 1.0307 0.0001 1.2025 956.9990 48.3808 0.3869 49.0381 3.0482 48.5387 2.4257E-03
IJAYA 1.0305 1.1725 1.2009 986.4440 48.9538 2.3266 48.5232 0.0000 1.0000 2.4254E-03
MLBSA 1.0305 0.0000 1.2013 982.0953 49.8462 3.4824 48.6430 0.0000 9.6969 2.4251E-03
TLABC 1.0305 2.7339 1.2016 993.5425 49.2577 0.3163 46.1710 0.5671 48.9363 2.4329E-03
PGJAYA 1.0305 0.0000 1.2002 991.8341 45.2952 3.5117 48.6863 0.0077 47.6045 2.4253E-03
ITLBO 1.0305 0.0004 1.2018 978.6182 43.4304 3.4684 48.6295 0.0000 46.6646 2.4252E-03
Rao-1 1.0309 0.1818 1.1946 928.9720 47.3377 1.3244 48.1476 2.2048 49.6399 2.4905E-03
ERao-1 1.0305 0.0000 1.2013 981.9823 48.8882 1.5794 48.6428 1.9029 48.6428 2.4251E-03
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Figure 8. The fitting curves of the measured data and simulated data on the three PVM of
the Photowatt-PWP201 cell.
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5.3. Statistical results analysis

From subsection 5.1-5.2, we have analyzed the best RMSE value of ERao-1 and other well-
established approaches. Based on above analysis, we can find that some algorithms such as GOTLBO,
MLBSA, TLABC, PGJAYA, and ITLBO can achieve the best result like ERao-1, especially for the
SDM and single PVM. In the context of this, in order to further show the superiority of the proposed
ERao-1 algorithm, the statistical results analysis such as the minimum RMSE (Min), maximum RMSE
(Max), average RMSE (Ave), standard deviation (Std), FEs to reach the optimal solution (FEs), CPU
time of 30 times independent runs, and two non-parametric statistical tests namely Wilcoxon signed-
ranks test and Friedman Aligned test are conducted. Noting that all algorithm are run independently
30 times under the above mentioned experimental environment, and the non-parametric statistical test
is carried out by the KEEL tool [38]. In addition, the convergence curves of all compared algorithms
on different PV models are plotted.

Table 9. Statistical results achieved by ERao-1 and compared algorithms on the R.T.C France
silicon cell.

Model Algorithm RMSE FEs CPU time (s) Wilcoxon Signed Ranks test

Min Max Mean Std R+ R− p-value Sig.

SDM GOTLBO 9.86021878E-04 1.13918657E-03 1.00159113E-03 3.34E-05 28906 2.07 397.0 68.0 3.80E-04 +
IJAYA 9.86257498E-04 1.16541327E-03 1.01536934E-03 3.96E-05 30000 4.31 465.0 0.0 1.86E-09 +
MLBSA 9.86021878E-04 9.98586264E-04 9.86927884E-04 2.47E-06 30000 6.67 426.0 39.0 1.40E-05 +
TLABC 9.86021878E-04 1.36553943E-03 1.04841480E-03 9.79E-05 30000 13.41 454.5 10.5 9.13E-08 +
PGJAYA 9.86021878E-04 9.89166838E-04 9.86309825E-04 6.68E-07 30000 2.49 430.0 5.0 3.73E-08 +
ITLBO 9.86021878E-04 9.86021878E-04 9.86021878E-04 2.57E-17 20452 2.92 232.5 232.5 ≥ 0.2 ≈

Rao-1 1.14778123E-03 2.10098078E-03 1.37929726E-03 2.00E-04 30000 1.54 465.0 0.0 1.86E-09 +
ERao-1 9.86021878E-04 9.86021878E-04 9.86021878E-04 2.13E-17 6735 5.76

DDM GOTLBO 9.84007532E-04 2.02180375E-03 1.21589875E-03 3.03E-04 30000 2.37 447.0 18.0 4.71E-07 +
IJAYA 9.86551948E-04 1.38705516E-03 1.09860914E-03 1.31E-04 30000 4.94 465.0 0.0 1.86E-09 +
MLBSA 9.84240741E-04 1.37423619E-03 1.00561219E-03 7.25E-05 30000 7.70 396.0 69.0 4.18E-04 +
TLABC 9.83167498E-04 2.71422115E-03 1.19318928E-03 3.83E-04 30000 13.64 443.0 22.0 9.98E-07 +
PGJAYA 9.82864797E-04 1.04716705E-03 9.89906250E-04 1.18E-05 30000 2.78 401.0 64.0 2.56E-04 +
ITLBO 9.82504296E-04 1.00042927E-03 9.85663194E-04 3.08E-06 30000 3.15 259.0 176.0 ≥ 0.2 ≈

Rao-1 1.20872604E-03 2.76432400E-03 1.75883822E-03 3.79E-04 30000 1.83 465.0 0.0 1.86E-09 +
ERao-1 9.82484852E-04 9.89138102E-04 9.84975061E-04 1.75E-06 30000 5.84

TDM GOTLBO 9.85618492E-04 3.73585977E-03 1.60977967E-03 7.81E-04 30000 2.66 412.0 23.0 2.38E-06 +
IJAYA 9.84513706E-04 1.48969353E-03 1.15827319E-03 1.57E-04 30000 5.29 462.0 3.0 9.31E-09 +
MLBSA 9.82863342E-04 1.25317389E-03 1.00444139E-03 5.20E-05 30000 8.18 333.0 132.0 3.84E-02 +
TLABC 9.86215434E-04 3.73696660E-03 1.47370620E-03 6.54E-04 30000 14.41 459.0 6.0 2.61E-08 +
PGJAYA 9.83509044E-04 1.08885492E-03 9.93412110E-04 2.15E-05 30000 3.12 306.0 159.0 1.35E-01 +
ITLBO 9.82597856E-04 1.30506970E-03 1.01123804E-03 7.37E-05 30000 3.60 257.0 208.0 ≥ 0.2 ≈

Rao-1 1.42051514E-03 3.22942508E-03 2.30993781E-03 4.77E-04 30000 2.20 465.0 0.0 1.86E-09 +
ERao-1 9.82572360E-04 1.02338992E-03 9.87592443E-04 7.64E-06 30000 6.11

Table 9 and Table 10 report the statistical results, where the Min, Max, Ave, Std, FEs, CPU time, and
Wilcoxon signed-ranks test results are provided, where R+ (R−) is the sum of ranks for the optimization
objective on which ERao-1 outperforms (loses) its competitors, p-value denotes the significance which
will decide whether the statistical hypothesis (α = 5%) should be rejected, and “+” and “≈” indicate
that ERao-1 significantly performs better or similar to its competitors. From these tables, it can be seen
that

• As can be seen from Table 9, for the SDM in R.T.C France silicon cell, it is obvious that most
algorithms can get the best Min except IJAYA and Rao-1, while only ERao-1 and ITLBO are
capable of achieving the best Max and Ave, especially for Ave that can reflect the accuracy of
the algorithm. In addition, from the perspective of the Std, it is clear that ERao-1 and ITLBO
have obvious advantages over other algorithms, which indicates that the proposed ERao-1 and
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Table 10. Statistical results achieved by ERao-1 and compared algorithms on the Photowatt-
PWP201 cell.

Model Algorithm RMSE FEs CPU time (s) Wilcoxon Signed Ranks test

Min Max Mean Std R+ R− p-value Sig.

SDM GOTLBO 2.42507487E-03 3.07572577E-03 2.45462947E-03 1.21E-04 12788 2.05 330.0 105.0 1.38E-02 +
IJAYA 2.42541187E-03 2.69195878E-03 2.45694390E-03 4.88E-05 30000 4.57 465.0 0.0 1.86E-09 +

MLBSA 2.42507487E-03 9.05516699E-03 2.66367904E-03 1.21E-03 17633 6.68 360.0 105.0 7.61E-03 +
TLABC 2.42507487E-03 2.84110334E-03 2.44752164E-03 7.73E-05 15564 13.32 396.0 39.0 2.78E-05 +
PGJAYA 2.42507492E-03 2.43377624E-03 2.42596008E-03 1.85E-06 24517 2.49 433.5 1.5 9.31E-09 +
ITLBO 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.04E-17 11166 2.89 232.5 232.5 ≥ 0.2 ≈

Rao-1 2.44184971E-03 2.77946734E-03 2.57063490E-03 9.05E-05 30000 1.56 465.0 0.0 1.86E-09 +
ERao-1 2.42507487E-03 2.42507487E-03 2.42507487E-03 1.72E-17 4432 5.77

DDM GOTLBO 2.42507552E-03 2.18457789E-02 3.61434948E-03 4.10E-03 24320 2.28 455.0 10.0 8.01E-08 +
IJAYA 2.42651786E-03 2.86150253E-03 2.48310492E-03 8.42E-05 30000 5.00 465.0 0.0 1.86E-09 +

MLBSA 2.48921545E-03 8.39623324E-03 2.83716901E-03 1.39E-03 30000 7.59 426.5 38.5 1.31E-05 +
TLABC 2.42530765E-03 3.65688874E-03 2.65397183E-03 3.74E-04 30000 14.11 452.0 13.0 1.64E-07 +
PGJAYA 2.42513255E-03 2.46134760E-03 2.43247931E-03 8.70E-06 30000 2.72 465.0 0.0 1.86E-09 +
ITLBO 2.42507487E-03 2.43565714E-03 2.42573456E-03 2.11E-06 16320 3.18 307.0 158.0 1.29E-01 +
Rao-1 2.50750455E-03 3.05475485E-03 2.67852422E-03 1.54E-04 30000 1.81 465.0 0.0 1.86E-09 +

ERao-1 2.42507487E-03 2.43551343E-03 2.42542540E-03 1.91E-06 10916 5.93

TDM GOTLBO 2.42569790E-03 6.91482937E-02 7.01688369E-03 1.50E-02 23830 2.65 464.0 1.0 3.73E-09 +
IJAYA 2.42536062E-03 2.96867809E-03 2.52127917E-03 1.14E-04 30000 5.25 465.0 0.0 1.86E-09 +

MLBSA 2.42507490E-03 3.27787002E-03 2.47513743E-03 1.54E-04 23724 8.08 397.0 38.0 2.43E-05 +
TLABC 2.43288325E-03 2.38566346E+00 1.11964280E-01 4.53E-01 30000 14.08 465.0 0.0 1.86E-09 +
PGJAYA 2.42529671E-03 2.58631693E-03 2.44895394E-03 3.18E-05 25286 3.11 452.0 13.0 1.64E-07 +
ITLBO 2.42518618E-03 2.79774037E-03 2.46098942E-03 7.67E-05 19732 3.49 445.0 20.0 6.91E-07 +
Rao-1 2.49047959E-03 3.73190068E-03 2.81845626E-03 2.64E-04 30000 2.18 465.0 0.0 1.86E-09 +

ERao-1 2.42507487E-03 2.43322333E-03 2.42556432E-03 1.50E-06 8386 6.16

ITLBO have excellent reliability on the SDM. For the DDM and TDM, only ERao-1 proposed in
this paper can obtain the best RMSE result on Min, Max, Ave, and Std. While those who have
achieved good results in SDM do not obtain the best result on the two models, which indicates
that the proposed ERao-1 algorithm is still valid on the DDM and TDM. On the other hand, this
also shows that with the increase of estimated unknown parameters, the performance of most
algorithms has deteriorated. Besides, in view of the FEs, the proposed ERao-1 consumes the
minimum FEs to find the optimal RMSE value for all models.

• From Table 10, it can be observed that ERao-1 and ITLBO achieve the best performance on the
SDM in terms of the Min, Max, Mean, and Std, but ERao-1 only uses FEs = 4432 to find the best
RMSE. For the DDM and TDM, ERao-1 achievs the best results on almost all indicators, except
the CPU time.

• With respect of the Wilcoxon signed-ranks test results of the R.T.C France silicon and Photowatt-
PWP201 cells, regardless of which models, it can be observed that ERao-1 performs better than
GOTLBO, IJAYA, MLBSA, PGJAYA, Rao-1, while it is similar to ITLBO. In particular, for the
DDM and TDM of Photowatt-PWP201 cell, ERao-1 significantly performs than its all competi-
tors.

• As for the CPU time, it can be clearly seen that the original Rao-1 algorithm consumes the least
time, while the proposed algorithm adds a certain amount of time. This is acceptable to a certain
extent, because it has improved a lot in accuracy.

In addition, Figure 9 provides the Friedman test results on different PV models. It is worthwhile
to mention that the smaller the average ranking of Friedman’s test, the better the performance. From
Figure 9, it can be seen that the average ranking of ERao-1 is significantly smaller than GOTLBO,
IJAYA, MLBSA, TLABC, PGJAYA, and Rao-1 on the SDM, DDM, and TDM. Although the average
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Figure 9. Friedman test result of ERao-1 and compared algorithms on different PV models.

ranking of ITLBO and ERao-1 is not obvious on the SDM, ERao-1’s average ranking is significantly
smaller than ITLBO’s on the DDM and TDM. Finally, Figure 10 plots the convergence curves of
ERao-1 and its competitors, where it can be seen that ERao-1 has a faster convergence speed for the
SDM, DDM and TDM of the R.T.C France silicon cell. In particular, for the DDM, IJAYA, GOTLBO,
and MLBSA have a quick convergence in the early stage, but ERao-1 converges significantly faster
to the optimum value after FEs = 10000. While for the Photowatt-PWP201 cell, ERao-1 obviously
converges quickly on the SDM. Note that although ERao-1 in the other two models converges slower
than its comparators in the early stage, it can be clearly seen that in the later stage, ERao-1 can converge
to a more accurate RMSE value.

5.4. Compared with other reported results

In this section, the results of ERao-1 have been compared with some recent works such as enhanced
Lévy flight bat algorithm (ELBA) [39], classified perturbation mutation PSO (CPMPSO) [40], niche-
based PSO with parallel computing (NPSOPC) [41], improved equilibrium optimizer (IEO) [42], en-
hanced JAYA (EJAYA) [43], enhanced adaptive butterfly optimization algorithm (EABOA) [44], shuf-
fled frog leaping with memory pool (SFLBS) [45], modified teachingClearning based optimization
(MTLBO) [46], novel hybrid differential evolution and artificial bee colony (nDEBCO) [47], modified
Rao-1 (MRao-1) [25], comprehensive learning JAYA (CLJAYA) [48], backtracking search algorithm
with competitive learning (CBSA) [49]. The comparison result is given in Tables 11, 12, 13. Note
that since there are too few studies on TDM of the R.T.C France silicon cell, and DDM, TDM of the
Photowatt-PWP201 cell, we have not compared these results here. From these tables, it can observe
that:

• For the SDM, almost all compared algorithms can provide the best RMSE (9.8602E-04), except
the NPSOPC. While only EJAYA and proposed ERao-1 consume the least FEs to obtain the best
solution.

• In terms of the DDM, it can be seen that most of the algorithms proposed in 2021 can obtain
the best results. However, with the allowed maximum FEs consideration, it is evident that only
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Figure 10. Convergence curves of ERao-1 and compared algorithms on different PV models.

ERao-1 uses the least FEs 30000, while 50000 for MRao-1, nDEBCO, and MTLBO.
• With respect to the single PVM of the Photowatt-PWP201, similar to the SDM, except for

EABOA, other algorithms can obtain the optimal RMSE (2.4251E-03). CLJAYA, EJAYA, and
ERao-1 consume the least FEs, while IEO is up to 1500000.

In summary, the proposed ERao-1 can not only obtain a comparable optimal solution when com-
pared these well-established parameter estimation algorithms, but also uses the least FEs.

Table 11. Results of ERao-1 compared with other reported results on the SDM of the R.T.C
France silicon cell.

Algorithm Ipg (A) Irs (µA) Rse (Ω) Rsh (Ω) n RMSE FEs

ELBA (2020) [39] 0.760776 0.323021 0.036377 53.718523 1.481185 9.8602E-04 50000
CPMPSO (2020) [40] 0.760776 0.323021 0.036377 53.71852 1.481184 9.8602E-04 50000
NPSOPC (2020) [41] 0.7608 0.3325 0.03639 53.7583 1.4814 9.8856E-04 NA
IEO (2020) [42] 0.760775529 0.323 0.036377 53.71852 1.481183 9.8602E-04 1500000
EJAYA (2021) [43] 0.76078 0.32302 0.03638 53.71852 1.48118 9.8602E-04 30000
EABOA (2021) [44] 0.760771077 0.322929 0.036379593 53.76600144 1.481153457 9.8602E-04 50000
SFLBS (2021) [45] 0.76078 0.323021 0.03638 53.7185 1.481184 9.8602E-04 60000
MTLBO (2021) [46] 0.76077553 0.323 0.03637709 53.7185251 1.48118359 9.8602E-04 50000
nDEBCO(2021) [47] 0.76077553 0.323020774 0.036377093 53.71852061 1.481180682 9.8602E-04 50000
MRao-1(2021) [25] 0.760776 0.323021 0.036377 53.718522 1.481135 9.8602E-04 50000
ERao-1 0.7608 0.3230 0.0364 53.7185 1.4812 9.8602E-04 30000

6. Conclusions

Aiming at the shortcomings of the original Rao-1 algorithm, this paper designs an enhanced Rao-1
algorithm short for ERao-1, to accurately and reliably estimate the unknown parameters in PV models.
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Table 12. Results of ERao-1 compared with other reported results on the DDM of the R.T.C
France silicon cell.

Algorithm Ipg (A) Irs1 (µA) Rse Rsh (Ω) n1 Irs2 (µA) n2 RMSE FEs

ELBA (2020) [39] 0.760781 0.749338 0.03674 55.48544 2 0.225975 1.451018 9.8248E-04 50000
CLJAYA (2020) [48] 0.76078 0.226051 0.03674 55.48599 1.45105 0.74876 1.99999 9.8249E-04 48000
CPMPSO (2020) [40] 0.76078 0.74935 0.03674 55.48544 2 0.22597 1.45102 9.8248E-04 50,000
IEO (2020) [42] 0.760781 0.749 0.03674 55.48544 1.451016 0.226 1.999999 9.8248E-04 1500000
EABOA (2021) [44] 0.76082865 0.25072 0.0366266 55.3660129 1.45988481 0.72069 1.99997318 9.8607E-04 50000
SFLBS (2021) [45] 0.76077 0.775995 0.036755 55.5496 2 1.449857 9.8249E-04 60000
MTLBO (2021) [46] 0.760781 0.7493 0.03674043 55.485447 1.9999999 0.22597 1.451016 9.8248E-04 50000
nDEBCO(2021) [47] 0.760781079 0.749359716 0.036740432 55.48545905 1.451013864 0.22597418 2 9.8248E-04 50000
MRao-1(2021) [25] 0.760781 0.225959 0.03674 55.486045 1.450963 0.749667 2 9.8248E-04 50000
ERao-1 0.7608 0.7493 0.0367 55.4854 2.0000 0.2260 1.4510 9.8248E-04 30000

Table 13. Results of ERao-1 compared with other reported results on the single PVM of the
Photowatt-PWP201 cell.

Algorithm Ipg (A) Irs (µA) Rse (Ω) Rsh (Ω) n RMSE FEs

CLJAYA (2020) [48] 1.030514 3.4822628 1.201271 981.982279 48.64283 2.4251E-03 30000
CBSA (2020) [49] 1.0275389 4.747459 1.340999 1087.81738 49.927517 2.4251E-03 25000
IEO (2020) [42] 1.030514254 3.48 1.201269 981.9956 48.64292 2.4251E-03 1500000
EJAYA (2021) [43] 1.03051 3.48226 1.20127 981.98235 48.64283 2.4251E-03 30000
EABOA (2021) [44] 1.03044416 3.5084 1.200630203 991.9830745 48.67132719 2.4252E-03 50000
SFLBS (2021) [45] 1.030514 3.48226 1.201271 981.9804 48.6428 2.4251E-03 60000
MTLBO (2021) [46] 1.0305143 3.4823 1.201271 981.9823732 48.6428349 2.4251E-03 50000
MRao-1(2021) [25] 1.030514 3.4823 1.201271 981.9821 48.64131 2.4251E-03 50000
ERao-1 1.0305 3.4823 1.2013 981.9822 48.6428 2.4251E-03 30000

In ERao-1, there are three main improvement points. First, a repaired evolution operator is presented to
reduce the randomness of the original operator. Second, a new evolution operator is proposed to make
full use of the population information and avoid the algorithm falling into a local optimum. Third, to
make population size adaptively adjust, a population size linear reduction strategy is employed. ERao-
1 is evaluated by estimating the unknown parameters of three different PV models. Experimental
results demonstrate that the enhanced Rao-1 algorithm not only can achieve the best RMSE values
(9.8602E-04 and 2.4251E-03) for the SDM, but also obtains the best result (9.8248E-04) for the DDM
while its competitors can not achieve. In addition, the statistical results also prove the competitive
performance of ERao-1 on the standard deviation and the consumed function evaluations to reach the
optimal RMSE. Moreovr, two non-parametric statistical tests and the convergence curves also illustrate
the superiority of proposed ERao-1 algorithm. Although the ERao-1 is not significantly optimal in
terms of CPU time, it is acceptable to sacrifice less time to obtain more accurate solutions. Finally,
it is worth noting that ERao-1 is only suitable for solving single-objective unconstrained optimization
problems. If there are constraints, it needs to introduce constraint handle technology.

In future works, ERao-1 will be adopted to solve more complex optimization problems such as
maximum power point tracking in PV system [50], optimal power flow in power system [51, 52],
non-linear equation optimization problem [53], and so on.
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