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Abstract: In this paper, the distributed state estimation problem of genetic regulatory networks
(GRNs) with hidden Markovian jumping parameters (HMJPs) is explored. Furthermore, in order to
improve the communication efficiency among state estimation sensors, the event-triggered strategy
is employed in the distributed framework for sensor networks. Particularly, by considering the fact
that the true modes are always unaccessible, a novel nonsynchronous state estimation (NSE) strategy
is utilized based on observed hidden mode information. By means of Lyapunov-Krasovski method,
sufficient stochastic state estimation analysis and synthesis results are established, such that the
concentrations of mRNA and protein in GRNs can be both well estimated by convex optimization.
Finally, an illustrative example with relevant simulations results is provided to validate the applicability
and effectiveness of the developed state estimation approach.
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1. Introduction

Along with the rapid development of biology and biotechnology, the regulation and interaction of
mRNAs and the produced proteins in genetic regulatory networks (GRNs) have attracted great research
attention, and various related applications have been available to address the burgeoning areas [1—
3]. Furthermore, much effort has been devoted to the biochemical dynamics of GRNs, which can
better describe the expression mechanisms of genes from a dynamical system perspective [4,5]. The
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dynamical behaviors of GRNs can considerably provide deeper insights into the processing conditions.
Generally speaking, differential equation and Boolean network models are employed and investigated
to characterize complex properties of mRNA and protein concentrations in GRNs [6-8]. In particular,
biological evidences have proved the existences of jumping mechanisms of GRNs. This means that
the dynamical parameters of GRNs are varying according to different modes rather than kept constant
owing to random abrupt changes during gene expressions. This means that the parameters of GRNs
should be modified according to certain modes. With this context, mathematical models of Markovian
jumping systems with Markov chains have been widely employed to mimic the intrinsic variate of
GRNs [9-11]. As a result, many remarkable results on Markovian jumping GRNs have been reported
in the literature, which includes stochastic state estimation [12], stability [13] and synchronization
issues [14].

In addition, the accessibility of true jumping mode information of GRNs has also drawn much
interest, especially for some actual applications. It is noteworthy that the exact mode information of
GRNSs in practical applications is always difficult or expensive to acquire, which is mostly because of
detection delays or unpredictable disturbances during the transcription and translation
processes [15, 16]. Especially, the mode information characterized by Markov chains for state
estimation or control issues is also challenging to main synchronous design. On the other hand,
nonsynchronous analysis and synthesis methods are more meaningful and practical for Markovian
jumping GRNs with mode-dependent designs. Lately, hidden Markovian jumping systems have been
initially investigated by external mode observations and encouraging results of the so-called
nonsynchronous designs have been reported accordingly. More precisely, on the basis of conditional
probability between true modes and observed modes, the observed models for mode information are
effectively utilized without synchronous mode operations [17-19].

On another active research line, distributed strategies for control systems have been extensively
developed due to their increasing requirements for efficiency and robustness in engineering areas.
Compared with traditional control techniques, the distributed architecture can process and fuse the
information via multiple sensors with each domain data. With respect to its advances, many
remarkable analysis and synthesis of distributed control systems can be found in recent
works [20-22]. To name a few, in [23], a novel distributed-observer-based distributed control design
is developed for affine nonlinear systems and is effectively applied to interconnected cruise control of
intelligent vehicles. In [24], the distributed observer and controller design issue is discussed for
spatially interconnected systems. In [25], the distributed state observers and disturbance observers are
proposed for cooperative output regulation of LTI system to ensure the reference tracking properly.
In [26], a distributed Nash equilibrium seeking scheme is designed with nonlinear dynamical system.
In [27], the leader-following output consensus problem is concerned with distributed nonlinear
observers. These notable works have proven that distributed frameworks can effective improve the
system performance for complex dynamical systems. However, the problems of network
communication burden must be faced among the nodes. It should be emphasized that traditional
time-triggered periodic communication schedules have certain drawbacks in computation and
network resources. Fortunately, the emerging event-triggered schemes are developed aiming at
necessary transmission only when speechified triggering conditions are satisfied [28—-30]. Hence, the
event-triggered mechanism could lead to less network consumptions and could be more reliable in
line with practical network implementation. Furthermore, in view of distributed control systems,
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distinguishing advantages can also been made by adopting event-triggered communications [31-33].
Nevertheless, there are challenging problems for distributed event-triggered control in corresponding
algorithm complexity. For the consideration of GRNs with HMJPs, it is reasonable and significant to
apply the distributed event-triggered design. Unfortunately, until now, distributed event-triggered state
estimation problem of GRNs has not been entirely studied, not to mention the case of HMJPs with
NSE. This motivates the authors for current study to shorten such a gap.

To deal with the aforementioned issue, the key idea in this paper is to investigate the distributed
event-triggered state estimation problem for GRNs with HMJPs based on the NSE scheme. Compared
with most existing literature, the primary novelties of our work are highlighted as follows:

1) The attempt to deal with the distributed NSE design of GRNs with HMJPs is made for the
first time, which can better model GRNs dynamics and mode jumping phenomena during the state
estimation procedures.

2) The distributed nonsynchronous state estimation framework is also introduced for GRNs with
nonsynchronous event-triggered communications, such that more estimation efficiency for
concentrations of mRNAs and proteins can be achieved with effective mode information utilization.

3) The sufficient mode-dependent analysis criteria are established by novel Lyapunov-Krasovski
functions, and then the desired nonsynchronous mode-dependent estimator gains can be derived with
convex optimization.

The remainder of this paper is stated by the following lines. Section 2 introduces some background
information regarding GRNs with HMJPs and formulates the state estimation problem. Subsequent
session of Section 3 presents the main theoretical developments with details. Section 4 approves the
correctness of our developed results through a numerical example. Section 5 concludes the paper and
addresses future challenges.

All referred notations are standardly utilized. %" stands for n-Euclidean space. Matrix P > 0
means that P is symmetric positive definite, and vise versa. (O, F, P) corresponds a probability space,
where O denotes sample space, F represents d-algebra of subsets within O and P stands for probability
measurement. [E means the mathematical expectation and * implies a induced term in symmetry
matrices, respectively.

2. Problem statement and preliminaries

Consider the equilibrium points of GRNs model shifted to the origin and the following GRNs model
with HMJPs can be described by:

K (1) = =A (r () % () + B(r (0) g (%, (£ = (1)) + En (r () 01 (D),
iy (1) = =C (r (1) x, (1) + D (r (1)) X (t = d(1) + E,, (r (1)) wa2),
CEm) 13 zu@® = U, (r () x, (1), (2.1)
2, () = U, (r (1) x, (1), o
Xm (t) = ‘pm(t)’ Xp (t) = Sop(t)’ Yt e [- max(dp, dm)’ 0),

where x,, (1) = [Xp1 (), X2 (1) 5. .., X (D] € X", X, (1) = [xp1 (1), x0(0) ..., Xy O] € %" with
Xmi (1) and x,; (1), i = 1,2,...,nrepresenting the concentrations of mRNAs and proteins, respectively;
Zn(®) = [z )2 @) 5.z DT € B, 2, () = (200 ), 20 )., 2 (D] € A" with z, (1) and
(1), k=1,2,...,1being the concentrations of certain mRNAs and proteins to be estimated through
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expression level; g (xp (t - dp(t))) = [g1 (xpl (t - dp(t))> .82 (xpz (t - dp(t))) yeeer &n (xp,, (t - dp(t)))]T €
Z" stands for the nonlinear feedback regulation function of the protein on transcription, which satisfies
the following assumption

i (Xi
i )SS'I"XH&O;

Xi

gl(o):()al: 1,2,...,”,
g:diag{glaCZ’--'agn} > 0.

0<

i.e.,
g () (g(x)—¢x)<0;

0 < dy(n < Jp and 0 < d,(t) < d, are the translation delay and the feedback regulation delay,
respectively; w;(7) and w,(¢) refers to the external disturbances that belongs to £,[0, o).

The degradation or dilution rates of mRNAs and proteins can be described by known matrices
A(r@) = diagla) (r(0),a(r@),...,a,(r @)}, C(r(0) = diaglc; (r(0),c2(r(@)),...,c, (r()},
D(r (1)) = diagld, (r (t)),d> (r(t)),...,d, (r (1))}, and the coupling matrix B (r (t)) = (b;; (r (1)) € #"
can be defined by the following

b; i (r (1) if transcription factor j is an activator of gene i,
bij(r(n)=3 0 if there is no link from node j to i,
—b; i (r(z)) if transcription factor j is an repressor of gene i.

Furthermore, U,, (r (1)), U, (r (1)), E,, (r (¢)) and E, (r () are also known matrices for a certain mode
r().

Moreover, the continuous-time discrete-state Markov process r(f) € S = {1,..., N} on (O, F,P) is
given to model the HMJPs, which can be defined by II = (71;;) yxn, With

. | miA+o(D), i#
Pr(r(t + A) = jlr(t) = i) = { L4+ mA+o(A), iz (2.2)
N
and ;= — Z 7T,'j.
=1, %]
In this paper, a direct graph G ={V,E, A} is given to describe the communication topology of N
sensor nodes, where V ={vy,v,,---,vy} and E € V X V stand for the set of nodes and edges,

respectively, A = [ai j] € RV*N represent the adjacency matrix with a; = 0 for any i. A is associated
with the edges of G are positive, 1.e., a;; > 0 & ¢g;; € E. In addition, the corresponding Laplacian
matrix of G is defined as L.

Moreover, the distributed measurement is achieved by N mode-dependent sensor nodes as follows:

) - { (0 = Hy(r0)x,(1) + G, (r®)ws(0), 23
57 a0 = Hy(r)x,(1) + G (r(1)wa(2), '
where yﬁn(t) and yﬁ,(t), [ =1,2,...,N, represent the measurements of mRNAs and proteins on sensor

I, respectively; ws(f) and wy(r) are measurement disturbances; H,,(r(1)), H,(r(1)), G.,(r(t)), G',(r(1)) are
known constant matrices.
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Then, define the sensor estimation errors jifn(t) and yﬁ,(t) as follows

{ yL.(0) = ¥, () — HL (r(0)) 2, (1), 0.4

(1) = Vi(0) = Ho,(r(0))%,,(0),

where £, (1) and £/(r) denote the filter state for sensor /.

By considering the event-triggered strategy for data transmission with ZOHs, it is assumed that the
sampling period h; with sampling instants #; is assumed to be A = f;.; — ty < h, h > 0. Furthermore,
the transmission instant té for sensor / is determined by the event generation functions as follows:

éﬂ=ggﬂmw%u—ﬁ%MZKW%@m, (2.5)

where 7'(1) = [(5,,(t)", (7,(1)"1" and 0 < « < 1 is a scalar parameter.

Consequently, the following distributed mode-dependent state estimation filter (Xr) can be designed
for system (Xy,):

&, (1) = =A@ 0) % () + Br®)g(%,(t - d,(1)))
+%wmﬁ@+mmmé%M@rﬁ%m

(1) ==C(r) &, +D(r ) fcmN(t — du(1)) 2.6)
+ Fo@)3,a) + Kyow) X a |50 - 5,0

20 =U,r@)s, @),
20 =U,r@)i @,

Zrp) :

where t € [té, f 1) ,8* = arg min,, {t — Bl > t;} , 2, (t) and 2/ (1) stand for estimation of z,, (1) and z, (1),
respectively; F,(o(1)), Fl,(o(1)) and K], (07(t)), K},(o°(1)) represent the nonsynchronous mode-dependent
filter gains to be determined later. More precisely, o(1) € ¥ = {1,..., F} represents another Markov

process corresponds to r (¢) with

Prio() = plr (1) = i} = 4y,
and ¥/ 4, = 1.

Remark 1. As event-triggered control strategy for networked control systems becomes more
important, it is reasonable to investigate the analysis and synthesis issues for GRNs over sensor
networks with event-triggered schemes. In comparison with common time-triggered strategies with
extensive data transmissions, the event-triggered framework can considerably reduce the
communication burden by generated events. Moreover, our developed event-triggered mechanism is
related with both measurements of mRNAs and proteins, which is more efficient for potential
applications.
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Then, it can be deduced by dividing [tl s +1) into U . i e [tk, tes+1) that

2,0 =-Ar®) 2,0 +Br®) g (% (r-d,0))
+ FL(oc0))7, () — FL(o()eh, (1)

1 al ) 3l
R COPNIREARESA

_ Kl ul s ol
Ko, ((®) X ais 2,00 = #,w0)|

%, () = =C(r®)) %, (1) + D (r (1) &, (t = d(0)) 27
+ F(c(0)5,(w) = F (o), ()

N

+ K (00) 3 an [5300 = 5,w)]
N

- Ky (o) % ai |25 - &hw)].

2L (6) = Up (r(0) £, (1),
()= U, r(@) £ (),

where &), (u) = 3, () — 3,,(t5) and &), (10) = 7, () = 3,(t5), 15 <y < 13, represent the event-triggered
measurement errors, respectively.

As a result, by denoting e}, (f) = x(1) — &,,(1), e,,(1) = x(t) — 2,(1), 2,,(t) = z(1) - 2,,(¢) and Z,(r) =
z(f) — 2},(1), one can deduce that

&) = -A(r @) el, () +Br®)g(x,(t—d)1)) - Ber®)g(&(t - dy(1))
— FL(0(0)H, (r(t))e,,(w) + F,,(o(1))e], (1)

N
- K1) X an [H} r(0)esw) = H,(r0)e), @)

N
+ Knl(e 1) X as [, = &,
+ E, (r (1) (Ul(t) F (c)G,,(r0)ws(u)
~ K}, (o) z (G, (r())ws(u) — Gl rO)ws(w)],

én(t) = —C(r(t))e (t) +D(r(0) e, (t = dy(1)) (2.8)
- F, ((T(t))H’ (r(t)e,(u) + Fy(o(D)el, (w)

N
- K (o) X a | H3(r()ey(w) - HY(r(e)el, ()]

N
+ K (o) 3 an[gyw) - &)
+ B, (1 (0) 03(0) = Fy(e0)GriD)os @)
~ K (o) z an[G3(r)ws(w) - G (rt)waw)l,

() = Uy (r (1) em(t)
z,(0 = U, (r(1) e, (),
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For simplicity, the resulting closed-loop filter system can be rewritten as follows:

where

Mathematical Biosciences and Engineering

en(®) = —A () e (1) + B ()2 (e, (t - d,(0)))

- (Ii‘m(p) - I:{m(p)l:‘)ﬁm(l)em(tk)

+ (_Fm(p) - Km(p){d)gm(tk) _ o

+ Ep () wi(t) = (Fin(p) = Kn(©)L)Gm(Dws (1),
ép(t) = _? (l) €p ({) + l)_(l)_em (t - dm(t))

~ (Fp) ~ Ky(@)D A, (e, (w)

L (F)) - K@D

+ E), () wo(t) = (Fp(p) = Kp(p)L)G p(D)wa(u),
Zn(t) = Uy, (D) en(1),
Zp(t) = Up (@) ep(t)’ t € [ty tis)

enlt) = [ 1), €y(0), ... 0]
ep(t) = [l (0. ey, ... ey 0)]
20(0) = |20 (0. 250, .. Z )]
2,0) = [Z.(0. 250, .. Zy 0]

T T
en(t) = |epy (0. 80,0, ... epy (@]
£p(1) = [1,(0. (D). 1y )]

A(i) = Iy ® AGi),

B(i) = Iy ® B(i),

glep(n) = [(g(ep () — 8@ (M), (gle, () — (20 ()))',
-+ (glep(0) = g,

Fu(p) = diag{F)(0). F1(p). ... Fa(p)} .
Fyp) = diag (F,(0), F(p)..... F}l ()}
K.(p) = diag K} (p). K2 (p). ... K} (p)}.
Ky(p) = diag {K}(0), K} (¢), ... K}/ (0)}
A,(i) = diag {H,,(i), Hy(i). ..., H)(D)}
(i) = diag {H)(i), HX(i), ... H) (i)}

E,(i) = 1y ® E,(0),
E (i) = 1y ® E, (),

Un(i) = Iy ® Un(D),
T,3) = 1y ® U, (i),

Gouli) = [(GLN. (G2 GN@)']

(2.9)
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G,(i) = |Gy (G D) ... (G (i))T]T :
L=L®I,

Remark 2. It is noticed that the adoption of conditional probability has been proved to be effective
to cope with the Markov or semi-Markov jump systems with limited mode information. For the GRNs
with hidden Markovian jumping parameters, lack of true operation modes of Markov chains would
lead to control performance degradation or even unstable with mode-dependent designs. In this paper,
the nonsynchronous mode information corresponds to the distributed sensor mode information, which
implies that mode information mismatch between true GRNs model and our developed distributed state
estimators is considered during the design. As a consequence, we have developed a novel distributed
nonsynchronous filter framework, where the observed Markovian jumping modes are utilized for more
practical distributed event-triggered state estimators.

Consequently, by applying the input-delay approach, it can be obtained that

en() = —A () e (1) + B ()2 (e, (1 - d,(1))
- (Ii'm(p) - I:(m(p)l:f)[:lm(l)em(t - T(t))
+ (F(p) = Rn0)Don(t = 7(0)
+ En (D) w1(1) = (Fu(p) = Kn(0)L)Gn(Dws(t = 7(1)),
ép(t) = _g (l) €p ({) + D_(l)_em (t - dm(t)) (210)
— (Fylp) = Ko@) D) eyt - (1)
+(Fylp) - Rylp)Deyli -0
+E), (D) o (1) = (Fp(p) = Kp(p)L)G p(D)wa(t = 7(1),
Zn(®) = U (i) en(1),
Zp(t) = Up (@) ep(t)’ t € [u, Lk+l) s

where 7(¢) ;== t — ¢, with 0 < 7(¢) < 7.

The aim of our paper is to design the desired nonsynchronous state estimator gains, such that the
modified H,, performance y can be satisfied in the mean-square sense for augmented state estimation
error system with zero initial conditions, if it can hold that

| f G (02n(0) + 2 (12, (0)d)
0

<y f oo(a)lT(t)wl(t) +wy () wy () + w5 (t — T(O)ws(t — T(2)) + W) (t — T(O)wa(t — T(@)dt.  (2.11)
0

In the sequel, the following lemmas are employed for later theoretical derivations.

Lemma 1. [34] For any matrix M > 0, scalars & > 0, &(t) satisfying 0 < &(f) < &, vector function
%(t) : [-€,0] — R" such that the concerned integrations are well defined in (2.12), then

-7 f X (9Mi(s)ds < "(HUL(1), (2.12)
1-&

where
L) =[x" (1), x" (1 = E@)), x" (1 = D,
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-M M 0
U= = -2M M
* * —M

Lemma 2. [35] If there exists a parameter & and real matrices X, Y, Z, W, and it holds that

X Z+eWT
[ e —eT — &Y ] 0, (2.13)
then one has
X+ZTeTWT + We'Z < 0. (2.14)

3. Main results

In this section, sufficient modified H, performance conditions are first established for the
augmented state estimation error system and the distributed state estimator gains are further designed
in terms of convex optimization.

Theorem 1. For given d,, d,,, T and mode-dependent filter gains F,,(p), F,(0) and K} (p), K(p), the
modified H, filtering can be satisfied over distributed sensor networks according to Definition 1, if
there exist mode-dependent matrices P, (i) > 0, P,(i) > 0, and matrices Q,, > 0, Q, > 0, O, > 0,
R, >0 R, >0 R >0, suchthat Z; <O, foralli e N, k =1,2,...,Nandp € ¥,k =1,2,...,F,
where

L | B E) ]
=30) = —_ s
O= ¥ =50
R N 0) EIZ(i)]
=) = _ |
@=L =60
[ Ei1() Ei12(0) 0 0 R, 0 0
* 5113(i) RT 0 0 0 0
* * -0:.-R; 0 0 0 0
En@) = * * * -On—-R, R} 0 0 1.
* * * * -2R,, 0 0
* * * % * —Qp Rp Rp
* % * % * * -2R, |

Ein@) =- 2Pm(l)A O+ 0n+0r—Ry—R;
+ U5 @) U () + ) 3P,

JEN

F
Eina(i) = = Y APl F(0)Hni)

p=1
F

+ " AipPu(DRo(O)LH,(0) + Rs,
p=1

E113() = - 2R, + KHL (i) H,, (i),
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Ep() =

0 0 0 P,(i)B(»i)
0 00 0
0 00 0
0 00 0
D' ()P,(i)) 0 0 0
0 00 0
R, 0 0 S

Eini (D)
—*HT (i)
0

S O O O

F F
Zi01(0) = ) ApPuF () = >~ ipPuDR(p)L,
p=1 p=1

Ep() =

B E(
* 13300
k %
k k
%k %k

) O 0 0
) R; 0 0
-R, O 0 ,
x*  =2f 0
* x  KI-1

Ei31(i) = =2P,()0C (D + Qp + O —R, — R;

+ 0700, 6) + Y Py 0.

JEN

F
Eisai) = = Y APy F (o)A, (i)

p=1

p=1

F
+ D APy ()R, (0)LA, (D) + R,

E133(1.) = - Q‘r - 2RT + KZH; (l) I:Ip (l) >

(i) = [E21(D), Enn(@)],

B0 (i) =

Ezz(i) =

o O o o O

0 P.()E, @)
0 0

S O OO

0

[ _CZmAT (l)

Ele(i)

0

0
0
0
0

Eo11(0)

0

o o O

0
0
0
0
0
0
0

0
—7A" (i)
E213(9)

0

o o o o

Mathematical Biosciences and Engineering

K*Hy, (i) Gu(D)

0
0

0

0

0

0

0 ]

0

0

0

0

DT (i)
0
0

Volume 19, Issue 12, 13878-13910.



13888

'-—*211(1) - Z /Lme(l)Fm(p)Gm(l) + Z /ltme(l)Km(p)LGm(l)

p=1

Ea1a(i) = = dy Z A HDE () + diy Z A H (DL K (o),
p=1 p=1

F F
Eais(i) = =7 ) ApHy(VF (o) + 7 ) AL (DL K (o),
p=1 p=1

and

E31(0) =

E31(0) Es(D) ]
*  Ha@) |’
E311(0) 0 P,(DE,()
-K*Hl (i) 0 0
0 0 0
0 0 0
0 0 0
Kl -1 0 0
* —yI 0
* * —yI
k %k k
k k k

GG (i) — yI

%

F F
E31(i) = ) ApPpFy(0) = ) APy, (p)L,
p=1 p=1

F F
3l == ) | pPpDF )Gy + D APy, (P)LG (),

Exp(i) =

E3i(i) = -

p=1
0 —CZPCT (D)
0 E301(0)
0 0
d BT (i) 0
E323(0) 0
=0 E305(7)
d.E, () 0
0 dE ()
F
LS
p=1
F

=1
0
0
0
BT (i)
E304(0)
0
TE,, (i)

—1CT (i) ]
E300(0)
0
0
0 b
E306(1)
0
TET (i) |

B =-7 Z /llpHT(l)FT(p) +7T Z /l,pHT(z)LTKT(p)

p=1

Mathematical Biosciences and Engineering

E312(7)
K*HY ()G, (i)

0

G (DG (i) = I |
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F F
3323(i) :d_m Z /lthnC(P) - sz Z AiPZ‘TKm(p)’
p=1 p=1

F F
(i) =T Z A Fl (o) -7 Z A, L"K ] (p),
p=1

p=1

F F
E35(i) =d, Z /L'pF;(P) ~d, Z ﬂipiTk;(p),
p=1 p=1

F F
Eas(i) =7 ) ipFy(0) =7 ) 4, LK} (o),
p=1 p=1

[ E331(0) 0 E332(0) 0
0 E333(0) 0 E334(0)
E1a(i) = —Rr_n1 0 0 0
% —R;l 0 0 ’
* * —R;l 0
* * * —R;l

F F
() = = d ), 4G D) +du ) 4,Gr ()L K} (o),
p=1

p=1

F F
(i) = =7 ) 4G (F () +7 ) 4,GL(OL' K} (o),
p=1

p=1

F F
(i) =—d, » . 4,GHOFI(p) +d, » 4,GLHLT K (p),

p=1 p=1

F F
Exsald) = =7 ) 4,GEOF) (o) + T )" 4,65 LK (p).

p=1 p=1

Proof. Construct the following mode-dependent Lyapunov-Krasovski functions:

V(@i,t) = Vi(i,1) + Vo(i, 1) + V3, 1),
where

Vi(i, 1) =ey, (1) Pu(i)ey, (1)
+e) (1) Pplie, (1),

Va(i, 1) = f e) (5) Omen (s)ds
t—d,,
+f_ eg(s)Qpep(s)ds

-d,

+ f (e, (5) Qren (5) + ¢, (5) Orey, (5))ds,
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0 t
Vi, ) =d, f f ¢ (&) Rnen () dds
—Jm t+e

0
+d, f f e; (©)Rye, () dpds
—d, Jit+¢
0 !
+7 f (en, (@) Ree (@) + €], (9) Ree, (@))dpds.
-7 Ji+p
Then, for all r(t) = i and o(¢) = p, by defining the weak infinitesimal operator £ of V(i, ¢) as follows
1
LVG,n = lim K{E{V(r(t +A), 1+ A)r(®) = i,1} = Vi, 0}, (3.2)
it can be deduced that

LV1(i, 1) = B{2e], (1) Pu(i)en (1) + 2€) (1) Py(i)é, (1)
+ D mien () Pu(fen (1) + ) myey (1) Pyide, (1)

JEN JEN
=2ey, (1) [=Pu(DA (D]ew (1) + 2¢}, (1) [Pu()B ()12 (e, (£ — dy (1))

F
+2 Z Aigey, () [=Pu(D)(F(p) + Kn(p)D)H, (i)]en(t — 7(2))
p=1

F
+2 3" el () [Pu()(F(p) = Kn(p)Dlen(t = 7(1))

p=1

F
+2e,, (0 [Pu()E,, (D)]w) (1) + 2 Z Aipen, (1) [=Pu(D)(Fn(p)

p=1
~ Kn(0) DG (D)]ws(t — 7(1))
+2e) (1) [=P,()C (D)]e, (1) + 2¢;, (1) [P, ()D (i)]en (t = dy(1))
+2¢7 () [P,(DE, (D]wn(1)

F
+2 3" Ael () [=Py()(Fp(p) = Ky (0)D)H(D]ey(t — 7(1))
=1
pF
+2 > el () P, ()(F(p) = Kp(p)D)]ey(t = 7(1)
p=1

F
+2 Z Ape, (O [=P,(D(F () = K (0)D)G ()] wa(r — 7(1)

p=1
+ D men (0 Pu(ien () + D myel (1) Pylide, (1), (3.3)
JEN JEN

Similarly, it can be deduced that
LVy(i, 1) = (1) Quen (1) = €, (1 = d) Omew (t = dn) + €} (1) Qpe, (1)
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—ep (t=d,) Qpe, (t = dy) + ehy (1) Qe (1) + €, (1) Ore, (1)
—em (t—7)0.e,(t—T7) —e; (t—7)Qre,(t—T)
=ep, (1) (Qn + Q)en () + € (1) (Qp + Qe (1) — by (£ = dn) Qe (1 = din)
—e)(t=d,) Que, (t—d,) — el (t=7) Qren (t =) =€) (1= T) Qre, (1= T), (34

and
LV3(i, 1) =E{d, e, (1) Ruén (1) + doe] () Ryé, (1)
+72e), (1) Reéw (1) + T2¢), (1) Reé,y (1)

! !
~d, f ér, (@) Ruéw () dp — d, f & () Ryé, (9) dy
t t—d,

—dpn b
7 [ dorendo-7 [ d@re @l

-7

=Y (OF uRuFy, + FpR,F, + FRFD(1)
! !
— dyy f en (@) Ruéw (p)do — d, f & (@) Rye, (@) do
t—d, t—dp
t t
-7 f e, (P Reé, (9)dp — 7 f &l () R, () dep, (3.5
-7 -7

where
W (1) = e, @), et = TO), et = sef, (1= dn) s ehy (1 = du(®) e (1 = dp) s e (1 = (D) e (D, e (1 =
(1), el (t = 7). 3" (e, (t = dp(0))) . &t = 7(0)), (2 = 7(1)), ] (1), W] (1), W} (¢ = 7(), W] (¢ — 7(1))]" and

—d AT (i) 0
—sz 25:1 /llpH_IZ;(l)(FI?};(p) - Z,T[_(HC(p)) 0
0 0
0 0

0 1,D" (i)
0 0
0 0

0 ~d,C7 (i)

Fin = 0 Fp=| =dp Zpm 4pH )(F} (0) = LTK] (0))
0 0
d,B" (i) 0
dn Sy Dip(F (o) = LK (0)) 0
0 dy 3] Aip(F}(p) = LK1 (p))

d,E, (i) 0

0 d,ET (i)
~dy 31 .G (FL(p) — LK (p) 0

0 _ | ~d, 31 4,GL()(F} (o) — LK} () |
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—TA" (i)
—T 30 A HLD(F () — LTK ] (p))
0

(=B eloloNoNe)

0
BT (i)
Y0 Ap(FL(p) — LT (p))
0
TE,, (i)
0
-7 25:1 Ap,GL(FL(p) — LTK},(p))
0

| - 30 4G (Fl(p) — LK (p)) |

—7CT (i)
— 30 A HL()(F1(p) — LTK (p))
0
0
0

T30 Aip(F () = LTK] (p))
0
TE] (i)
0

In the sequel, by virtue of Lemma 1, one can obtain that

!
t—dy

T

61{1(0 _Rm Rm
<| el(t—d®) x  —2R,
el'(t—d,) * *

!
_d, f (@R, () dy
t—d

4

eg(t) -R, R,
<| e (t— d,y(1)) * —2R,
el (t—dp) * *
!
-7 [ d@ran s
-7
ez;;(t) ! _R‘r R‘r
<| el —7(r)) x*  —2R,
e;(t -7) * *
!
—z f S ORe s
el (1) -R. R,
<| el (z—1(1)) x 2R,
e;(t - 7) * *

Then, it can be deduced that

0 en()
Rm em(t - dm(t)) } ’ (36)
_Rm em(t - Jm)
0 e, (1)
R, || ep(t—dy(1) (3.7)
-R, ey(t —dp)
0 en(t)
R: en(t — 7(1)) } (3.3)
—R, en(t—7)
0 e, (1)
R, e,(t — (1)) ] . 3.9)
-R; e,(t—7)

LV(@i,t) <n" () An ()

Mathematical Biosciences and Engineering

Volume 19, Issue 12, 13878-13910.



13893

where 7 (1) = [} (©),n; (), 3 (1), 73 (D] with

and A = A+ A

() =] b et-11) -7 el (r-dn) el (t—d,) |,
) =[ el (t-d,) el (t-dyn) el elt-tw) -7 |,
s (0 =] & (e, (1 - dp(0)) eht—1(0) &ht—7) |,

0 =] W[ Wi Wi-T0) Wit-T0) |,

szAg + A3RPA§ + A4RTA£ + AsRTAg with

A Ap
Al B i * A22
x  —2R; R, 0 0 0 0
* x  —0Q;—R; 0 0 0 0
Ay =] = % * —-Qn-R, RI 0 0 ,
* * % * -2R,, 0 0
* * * * * -On—-R, R,
| x * * * * * —2R, |
At = = 2Py(DA ) + Qp + Qr = Ry = Re + > 1i;Pu(),
JEN
F F
Az == D A Pu@DF @) Hn(@) + Y A Pu(Rn(0)LH, (i) + Ry
p=1 p=1
0 0 0 P,()B(G) Ay 0 P,(DE,(i) O A O]
0 0 0 0 0 O 0 0 0 O
0 00 0 0 O 0 0 0 O
A = 0 00 0 0 O 0 0O 0 0],
D" () P,(i)) 0 O 0 0 O 0 0 0 O
0 0 0 0 0 O 0 0 0 O
R, 00 0 0 O 0 0 0 O]

Ay =

F

p=1 p=1

bl

F F
A == > ApPuDFu@Gn() + D dpPuDKn()LG (i)

Mathematical Biosciences and Engineering
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[ A Ao 0 00 Aps 0 P p(i)Ep @) 0 Ay
* -0.-2R, R, 00 O O 0 0 O
* * -R, 00 O O 0 0 O
* * * 00 0 O 0 0 O
Aoy = * * * %= 0 0 0 0 0 O
S * « o+ % 0 0 0 0 0 |
" * % ok % * 0 0 0 O
* * * % ok % % 0 0 O
* * * * % * * * 0 O
* * * * ¥ * * * * 0

A1 = =2P,()C (D) + Qp + Qr = Ry = Re + Y miiPy(0),
JEN

F F
Aoy = - Z AipPp(DF y(p)H (i) + Z AipPp(DK(p)LH, (i) + R,

p=1 p=1

F F
Aoy = ) 4Py (VFp(0) = ) g Py, (p)L
p=1 p=1

F F
Ao == D" APy (DF )Gy + D AP p(DK,(0)LG (i)
p=1 p=1
~d, A" (i)
=dy 1 A ()(F(p) = LK ()
0

0
0
0
0
0
0
0

) d,B” (i)
dn X5y ip(Fl(p) = LK} (p))
0
A B (0)
0
~d, ) 4 GLO(Fh(p) — "KL (p))
0
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) ~d,C" (i)
As=| =d, 3] ApHLO)(FL (p) — LT K ()
0

-

0
0

dy 31y 4(FLp) ~ LT R(p)
0

dE

<N

()

)

| —d, 5 4G (FL(p) - LTKT(p)) |
[ —7AT (i) 1
—T 30 A HE)(FL(p) — LTK ] (p))

S OO O OO

A4: 0 s

BT (i)
Y] Ap(Fl(p) — LTK (p))
0

TE, (i)
0
—T 30 4pGr)(Fr(p) = LTK ] (p))
0
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S O O

(]

DT (i)

)

-7CT (i)
~t 3 F A HYG)F () - LK (p))
0
0
0

Y0 Ap(Fl(p) — LTKT (p))
0

A5:

TE] (i)
0
| -7 3/, 4,GL(FL(p) - LK (p)) |

Furthermore, considering the nonlinear properties for the GRNS, it yields that

2(ep(1-a,0)) | [ or g ] 2(ey (t- 4,0))
[ €p (t - dp(t)) } S 0 e, (t _ dp(l‘)) 2 0. (3.10)
In addition, by recalling the event-triggering conditions, one has

N

N
D W - 2 5w - £l - ) 16w e w) 2 0, (3.11)
=1

=1
where 7' (1) = [(55,(0))", 7)) 17, &'(w) = [(e},w)", (€, ()] and it can be further verified that

N
D T e (1) + Gl (Dws (1) = &, THY (e 1) + Gl (Dews(t) = £h,w)]

=1

N
+ > RTH el () + Gh(Dwalu) = )] TH i)l (1) + Ghiwa(w) - &)
=1

~ (En(t = 7)) &n(t = T(1) = (&,(1 = (1) £,(t = (1)) = 0. (3.12)

As a consequence, it can be derived by Schur complement that the modified H,, performance can
be achieved under the mean-square sense when Z(i) < O is satisfied according to Theorem 1, which
implies that

LV(@i,t) + el )T (i) U, (i) en(t) + EZ(I)UZ () U, (i) e,(t) — yw! (Hw (t)
— yw (1) wy () — ywi (1 = T(D))ws(t — T(1)) — yw, (t — 7)) wa(t — 7)) < 0 (3.13)

and therefore completes the proof. O
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Remark 3. The above established sufficient convex optimization conditions are derived with aid of
linear matrix inequality technique, which can be easily solved by Matlab LMI toolbox or other
mathematical softwares. It should be pointed out that the matrix dimension dependents on both
system mode information and the sensor networks structure, which means that the more system modes
and sensors are involved, the more computational consumption is needed. As a result, the distributed
state estimators should be well designed for practical system implements with considerable
computational efficiency.

Theorem 2. For given d,, d,,, T and the modified H., filtering can be satisfied over distributed sensor
networks according to Definition 1, if there exist mode-dependent matrices P, (i) > 0, P,(i) > 0,
Xn(i) > 0, X,(i) > 0, Ye (0), Ye, (0), Y (), Yk, (0), and matrices Q,, > 0, Q, > 0, Q; > 0,
R, >0,R, >0, R, >0, such that 2; < 0, forallie N, k=1,2,...,Nandp e F,k=1,2,...,F,
where

= E1(0) E20)
0= 7 20|
. En@) En)
=) = * E13(1') ]’
Nz Emn(@) Enn)
=uf) = * E1150) ]’
E1111(30) %1112(1') 0 0 R, 0 0
* E13(0) R 0 0 0 0
* s -0.—-R; 0 0 0 0
SOE * * * -Qn-R, RL 0 0 |,
* * * * -2R,, 0 0
* * * * * -0,-R, R,
* * * * * " ~2R,, |
0 0 0 P,()B() Ejn@ 0]
0 00 0 —KZI:I; @ 0
0 0 0 0 0 0
Zi20) = 0 00 0 0 0|,
DT (i) P,i) 0 O 0 0 0
0 0 0 0 0 0
R, 00 ¢ 0 0
[ E11310) -?1132@) 0 0 0 E1133(30)
¢ i@ R0 0 —k*H] (i)
. . + R0 0 0
Enz() = N N « 0] 0 0 ,
* * * x K -1 0
* * * * * K —1

é1111(l') =—2P,(DA()+ Qu+ QOr — Ry, — R,

+ 00 () Up )+ ) 7P,
JEN
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F
Emz(i) = - Z /lipYF,m(p)Hm(i)

p=1
F
+ DAY LH, () + Re,

p=1
B3 = - 2R, + H, (i) H, (i),

F F
EIIZI (l) = Z /lipYF,m(p) - Z /lipYK,m(p)l_',
p=1 p=1
Bz = - 2Pp(i)é D+0,+0:—R,—R;
+ 07T, () + Y Py,
JEN

F
Eps) = - Z Ao Yrp(0)H (i)
p=1

F
+ D Y p()LH, () + Re,

p=1
F F
En3s(i) = Z AipYFEp(p) — Z AipYk p(P)L,
p=1 p=1

Enss(i) = - Q- — 2R + K°H] () H, (i),

én(i) _ ?121(12) ?122(1:) ]
| Ei3() Epa(@d) |’
[ Pu()E, (i) 0 Eian Q) 0
0 0 K2HT (i) G (i) 0
0 0 0 0
= . 0 0 0 0
B = 0 0 0 0 >
0 0 0 0
0 0 0 0
0 Pp(l)Ep (l) 0 E1212(1.) |

F
Zion(@) == ) A Yen(p)Gon(i)
p=1

F
£ A Yin)LG i),

p=1

F
Epn() = - Z AipYEp(0)G (i)

p=1
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F
+ D A Y (0)LG (),
p=1
[ —d, AT (i) P,, (i) 0 —TA" (i) P,, (i)
B 1201 (i) 0 E1om (i)
0 0 0
= . 0 0 0
Ein() = 0 'pDT (i) P, (i) 0
0 0 0
0 0 0
0 -d,CT (i) P, (i) 0
F
é1221(l') = - sz Z ﬂipHZ(i)Y;,m(P)
=1
F
+dn ) A HLOLYE,(0),
=1
F
i) = =7 ) A i)Y}, (0)
p=1
F
+7 ) G HL LY, (),
p=1
00 0 KA HG,0) 0
00 0 0 0
E@ =0 0 0 0 d,B" (i) P, (i) |,
0 0 -G, 0 E131(0)
00 0 -G, (i) 0
F
Zio31(D) =dn D A YF(p)
p=1
F
—dn ) A L"YE,(p),
p=1
E1241(i) 0 E1242(i)
0 0 0
Eioa(i) = 0 7B (i) P,, (i) 0 ,
=0 E1243() =0
E]z44(i) 0 51245(i)

F F
Eon() =—d, Y LA )Y} ) +d, > 4, AT DLTYE (o),

E1242(i) -

Mathematical Bioscien

p=1

p=1

F F
— 2 3 R A DYE (o) +7 Y A ALOLTYE (o).
p=1 p=1

ces and Engineering

0
0
0
0

£D7 (i) P, (i)
0

0
—7CT () P, (i) |

-
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p=1

F F
Z126() =T ) 4p¥F(0) =7 ) AL Y, (0),
p=1
F F
Ei1p44(i) =d, Z Aingp(p) —-d, Z /ll.pLTy,Qp(p),
p=1 p=1

F F
E0us(i) =T Z ApYp(p) =T Z LT YE (p),
p=1 p=1

En(i) _ é]:ﬂ(i) %132(1:) ],
| x Ei133(0)
[ —yI 0 0 0
- . x =yl 0 0
@=L @GOG I 0 ’
| = *¢ * Kzég(i)ép(i) -1
[ dEon (i) Py i) 0 7E,, (i) Py i) 0
s ol L0 @E QRGO 0 TE PG
Hin() = E 211 (i) 0 E1312(0) 0 ,
_ 0 Z 13150 0 E1314(0)
[ R, — 2P, (i) 0 0 0
. ) Ry = 2P, (i) 0 0
Eis(d) = " s R. = 2P, (i) 0 ’
« " * R, -2P, (i)

F F
Zia1() = = dn ) ApGnDY,0) + d Y 4GOI Y, (0),
p=1 p=1
F F
i) = =7 ) 4GLOYE ) +7 ) 4GOI YE, (o),
p=1 p=1

F
.§1313(i) = - c?p /llpG;(l)Y;:’p(p) + dp Z /lz;;G_g(l)l_'TYIY;p(p),
p=1

M=

1

T3

F
B = =7 ) 4,GLOYF,(0) +T ) 4,GriLTYE (o),
p=1

p=1
= o | B ExnG)
20=1 2 () &) ]

E51(0) = [é211(i), é212(1')] 5

_ _ /11'1(Xm (1) - P_m(l))

Eo1() =| &HLOXF, (1) =LTYE (D) |,
0
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/liF(Xm (F) - Pm(l))

) | QX (2) = Py()
Zanli) = | euHL0(YE,2) - LTYE,(2)
0

E50(i) = [E221(i)’ E222(1')] ,

0
=) An(X, (1) = P, (D)
R HL((YE () - LTYE (1)
0
0
. An(X, (2) = Py(i)
== e AT G)(YE () - LTYE (2)
0

Ens(i) = [é231(i), é232(0] ,
fm(ZTYIEm(l) - Y/,(1)
0
0
0
enGhL (Y], (1) = LTYE (1))
0
dndit (X (1) = Py(i))
0
A it (X, (1) = Py(i)
0
en(L'YF,(2) = Y1, (2))
0
0
0
enGLOYE,2) - LTYg (2) -
0
‘zm/liZ(Xm (2) - Pm(l))
0
sz/liZ(Xm (2) - Pm(l))
0

En31(7) =

Eon(i) =

Eo4(i) = [§241(l'), E242(1')] ,

Mathematical Biosciences and Engineering

&nt, ()Y [, (F) = LTYg ,(F)) |,

0

0
Aip(X), (F) = Pp(1))

e,H, ()(Y[ (F) = L"Yg (F))
0

e LTYL, (F) = YL, (F))
0
0
0
erGL()YE, (F) - LTYL (F))
0
0
0
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and

Eou (i) =

[1]:

the aforementioned feasible solutions,

242(1) =

0
e(LTYL (1) =YL (1))
0

0
0
&G (YE (1) - LTYE (1))
0
dpdin (X, (1) = Py(0)
0
Jp/lil(Xp (1) - Pp(l))
0
e(LTYL () - YL (2))
0

0
0
&G (2) - LTYE (2))
0
d_p/liZ(Xp (2) - Pp(l))
0
(Zp/liZ(Xp (2) - Pp(l))

-

0
e (L"YL (F) - YL (F))
0
0
0
e GL(OY] (F) =LYy (F))
0
Czp/liF(Xp (F) - Pp(l))
0
Czp/liF(Xp (F) - Pp(l))

-

= | E31(0) ?32(1')
=) = | * E33(0) G194
[ —26,X,,(1) : 0
* -2, X,2) --- 0
25130 = : : N : (3.15)
* —ZEme(F)
Z4,(i) =0, (3.16)
[ —2¢,X,(1) 0
5 % —26,X,(2) --- 0
Exi)=| e | (3.17)
* *  —2€,X,(F)

the desired mode-dependent filter gains

F fn(O'(t)), F Z((T(t)) and K,ln(O'(t)), KIZ,(O'(t)) can be obtained by the following calculation:

Yem (0) X,,! (0) =F(p),
Yrp (0) X, (0) =F (p),
Y (0) X, (0) =K(p),
Yi, (0) X' (0) =K,(p).

Mathematical Biosciences and Engineering
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Proof. By pre- and post-multiplying diag{l,I,1,1,1,1,1,1,1,1,1,P,, (i), P, (@), P, (i), P, (i)} to E(i) <
0, Lemma 2 is employed accordingly.

Eventually, de_ﬁne YF,m (,0) = Xm (p) Fm(p)’ YF,p (p) = Xp (P) Fp(p)a YK,m (P) = Xm (P) I_(m(p),
Yk, (0) = X, (p) K, (p), then the remainder of proof will follow directly from Theorem 1. O

Remark 4. The proposed modified H., performance is more applicable for the distributed sensor
networks design. In addition, the performance index y can be further optimized by solving the following
convex optimization problem:

minimize vy,
subject to E; <0,ieN,peTF. (3.18)

4. Numerical examples

This section is dedicated to validate the applicability of our proposed distributed nonsynchronous
designs, while illustrative studies have been performed with simulation results.
Consider the following HMJP GRNs model with a set of biological simulated parameters as

an=| tao=| T
B[ 03 02 |@=|51 oz
c=|y 5 .co=|y 7|
D(l):’o(.)s o(.)s]’D(z):[ldl 1(.)3]’
o=y =] 17,
B=| 1, | B
e[} O %]
Uf’(l):—(l) ?]’UP(Z):[L(()H 1.(())1}’

where the transition rate matrix with two modes of hidden Marko chain are assumed by

-02 02
H‘[ 0.8 —0.8]'

For the sensor networks, it is assumed that two networked sensors are deployed for mRNAs as well
as proteins, such that the communication topology matrix for each network is given by

L:[_ll ‘11].
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Moreover, the mode-dependent sensor parameters are set as follows:

=l | me=l %
O P VAR |
o[ L e[ 8]
O P P
Gi1<1>:ii:,6,;<2):“1],
=] |- "
G},(1)=>1,G,1,(2)=[(1)'9],
soo-| o] |

In the simulation example, the sampling interval of networked sensors is set by A 0.1s.

Furthermore, the probability matrix of observed modes is supposed to be
A [ 0.7 03 ] |

02 0.8
which indicates that the nonsynchronous mode information is utilized instead of true system modes.
Consequently, with these simulation parameters, the optimized nonsynchronous mode-dependent
filter gains are solved by Theorem 2 as follows:

P =] Soisa oosea 7@ =] 2007 orony |
=008, 0% | [t 0|
0= St Goms |19 S Goses |
o= %00t oot |- =| Sooa0s oosss |
KL (1) = 0038 00323 K @)= [ Co0ms 0051 ]
K0=| T oo | 4@=| o oo |
K0=| 2000 oo | =| 01 oorss |
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As a result, the concentrations of mRNAs and proteins estimation errors over sensor networks are
depicted in Figures 1-4, where the jumping modes of GRNs and sensors are illustrated in Figure 5,
respectively. It can be seen that all the sensors can display effective estimations without true GRNs
system mode information and thus provides an improved nonsynchronous distributed state estimation
approach. Furthermore, the triggering events of the sensors are shown in Figures 6 and 7, respectively.
Compared with common time-triggered strategies, one can clearly found that the event-triggered
scheme can achieve a considerable improvement of communication efficiency. Therefore, these
simulation results well demonstrate our distributed state estimation approach and supports our
theoretical findings.
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Figure 1. Concentrations of mRNAs estimation errors of sensor 1.
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5. Conclusions

This paper is centered on the state estimation for GRNs with HMJPs over distributed sensor
networks. More precisely, a novel event-triggered sensing scheme is developed for more effective
estimation. In addition, since the modes of HMJPs might be nonsynchronous with the sensors, the
nonsynchronous distributed state estimation is developed with aid of observed information, which is
more practical for the implementations. On the basis of model transformation, sufficient
mode-dependent conditions for ensuring the modified H., performance are established and the desired
nonsynchronous state estimation gains are designed by matrix manipulation techniques. In the end,
numerical simulations are performed to show the usefulness and advantages of our theoretical results.
It is noted that one interesting research issue of our future work is extending the current method to the
cases with more complicated mode jumping features.
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