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Abstract: African swine fever (ASF) is an acute, hemorrhagic and severe infectious disease caused
by the African swine fever virus (ASFV), and leads to a serious threat to the pig industry in China. Yet
the impact of the virus in the environment and contaminated swill on the ASFV transmission is unclear
in China. Then we build the ASFV transmission model with the virus in the environment and swill.
We compute the basic reproduction number, and prove that the disease-free equilibrium is globally
asymptotically stable when R0 < 1 and the unique endemic equilibrium is globally asymptotically
stable when R0 > 1. Using the public information, parameter values are evaluated. PRCCs and eFAST
sensitivity analysis reveal that the release rate of ASFV from asymptomatic and symptomatic infectious
pigs and the proportion of pig products from infectious pigs to swill have a significant impact on the
ASFV transmission. Our findings suggest that the virus in the environment and contaminated swill
contribute to the ASFV transmission. Our results may help animal health to prevent and control the
ASFV transmission.
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1. Introduction

African swine fever virus (ASFV) is an ancient virus and was first discovered in 1921 in Kenya.
African swine fever (ASF) is caused by ASFV which is a large double-stranded DNA virus, and ASF is
a highly contagious hemorrhagic disease of pigs [1, 2]. Pigs of all breeds and ages can be infected [3],
and the outbreaks of ASF lead to a mass of death of pigs [4, 5]. The clinical manifestation includes
high fever, bleeding, and other symptoms [6]. In general, the incubation period ranges from 4 to
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19 days [2]. For highly pathogenic ASFV strains, the fatality rate could reach 100% [7]. Since the
outbreak in East Africa in the 1900s, the spread of ASF ranges from Africa and Europe to South
America and Caribbean [8]. Ever since the first outbreak was reported in Shenyang in August 2018,
ASF has quickly spread in China and led to millions of pigs culled [9]. In the absence of a vaccine,
ASF poses a serious threat to the domestic and foreign trade of pigs and pork products [10, 11].

ASF could be transmitted by direct transmission and indirect transmission. The direct transmission
includes the direct contact between susceptible pigs and infected pigs (effective transmission distance
within 1 km), and feeding contaminated pig products [12–14]. The indirect transmission occurs by the
virus in the environment and ticks [4]. The important routes of transmission of ASF may be feeding
noxious swill and exposure to the virus from infected pigs, and other possible routes for the spread
of ASFV in China may be the widespread use of contaminated swill and pig products [15]. Thus, the
virus in the environment and contaminated swill play an important role in the ASFV transmission.

Mathematical modeling is an important method to explore the spread of diseases such as ASF, and
prevent and control the disease spreading using public information [16–24]. Guinat et al. [25] used
a stochastic SEIR model to estimate the basic reproduction number in Georgia. Barongo et al. [26]
developed a stochastic dynamical model to evaluate the impact of control strategies at different times
on disease-related mortality. O’Neill et al. [27] developed a wild boar ASF model to explore the pivotal
transmission and infection maintenance processes. Based on the effectiveness of control measures, Li
et al. [28] proposed a generalized SEIR model and estimated the important epidemiological parameter
values. Although some research focuses on the dynamics of ASFV transmission, little research con-
tributes to the impact of contaminated swill and virus in the environment on the ASFV transmission so
far.

In this paper, to examine the impact of contaminated swill and virus in the environment on the ASFV
transmission, we propose an ASFV transmission model with swill and virus in the environment. The
basic reproduction number is computed using the next-generation matrix. We prove the global stability
of the disease-free equilibrium and endemic equilibrium by constructing the Lyapunov function. Based
on the public information, parameter values are estimated, and sensitivity analysis will be performed
by PRCC and eFAST. Numerical simulations are implemented to validate the theoretical results and
assess the impact of contaminated swill and virus in the environment on the ASFV transmission.

This paper is organized as follows. In Section 2, we formulate an ASF transmission dynamics
model, and the nonnegativeness and boundedness of solutions are proved. In Section 3, the basic
reproduction number is calculated, and the global dynamics are proved. In Section 4, parameter values
are estimated using the reported cases in Aijuan, and sensitivity analysis and numerical simulations are
implemented. Section 5 gives the conclusion and discussion.

2. Model formulation

Based on the mechanism of ASFV transmission [29, 30], the population of the pig is divided into
susceptible pigs (S), asymptomatic infectious pigs (I1) and symptomatic infectious pigs (I2). Also,
ASFV is transmitted by feeding contaminated swill and contact with the virus in the environment. Then
we assume that V denotes the virus load in the environment and W denotes the amount of contaminated
swills. Given the mechanism of ASFV transmission and previous work [27, 28], we build the ASFV
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transmission model

dS (t)
dt
= b − d1S (t) − β1S (t)I1(t) − β2S (t)I2(t) − β3S (t)V(t) − β4S (t)W(t),

dI1(t)
dt
= β1S (t)I1(t) + β2S (t)I2(t) + β3S (t)V(t) + β4S (t)W(t) − (α + d1)I1(t),

dI2(t)
dt
= αI1(t) − d2I2(t),

dV(t)
dt
= δ1I1(t) + δ2I2(t) − c1V(t),

dW(t)
dt
= p1I1(t) + p2I2(t) − c2W(t),

(2.1)

with nonnegative initial values

S (0) > 0, I1(0) ≥ 0, I2(0) ≥ 0,V(0) ≥ 0 and W(0) ≥ 0, (2.2)

where p1 = pd1, p2 = pd2. The detailed descriptions of state variables and related parameters in
model (2.1) are shown in Table 1. The flow chart in Figure 1 depicts the transmission of ASFV.

Figure 1. The flow chart of ASFV transmission.

Theorem 2.1. The solutions of the model (2.1) with nonnegative initial values (2.2) are nonnegative
and ultimately bounded.

Proof. Form model (2.1) with nonnegative initial values (2.2), we can get

S (t) = e−
∫ t

0 (d1+β1I1(s)+β2I2(s)+β3V(s)+β4W(s))ds(S (0) +
∫ t

0
be
∫ s

0 K1dγds) > 0

where
K1 = (d1 + β1I1(γ) + β2I2(γ) + β3V(γ) + β4W(γ)),
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Table 1. Description of state variable and related parameters in model (2.1).

Parameter Description Units
b The recruitment rate of pigs head/day
β1 The transmission rate from asymptomatic 1/(head.day)

infectious pigs to susceptible pigs
β2 The transmission rate from symptomatic 1/(head.day)

infectious pigs to susceptible pigs
β3 The transmission rate from virus in 1/(TCID50.day)

environment to susceptible pigs
β4 The transmission rate from swill 1/(kg.day)

to susceptible pigs
d1 The removal rate of asymptomatic infectious 1/day

pigs including slaughtering and death
pigs including slaughtering and death

d2 The removal rate of symptomatic infectious pigs 1/day
including slaughtering and death

c1 The clearance rate of virus in environment 1/day
c2 The clearance rate of swill 1/day
δ1 The release rate of ASFV from TCID50/(head.day)

asymptomatic infectious pigs
δ2 The release rate of ASFV from TCID50/(head.day)

symptomatic infectious pigs
p The proportion of pig products from none

infectious pigs to swill
α The transfer rate from asymptomatic 1/day

infectious pigs to symptomatic infectious pigs
State variables Description Units

S The susceptible pigs head
I1 The asymptomatic infectious pigs head
I2 The symptomatic infectious pigs head
V The virus load in the environment TCID50
W The amount of contaminated swills kg

I1(t) = e−
∫ t

0 (α+d1)ds(I1(0) +
∫ t

0
K2e

∫ t
s (α+d1)dϵds)

where

K2 = (β1S (s)I1(s) + β2S (s)I2(s) + β3S (s)V(s) + β4S (s)W(s)),

and

I2(t) = e−
∫ t

0 d2ds(I2(0) +
∫ t

0
(αI1(s))e

∫ t
s d2dϵds),
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V(t) = e−
∫ t

0 c1ds(V(0) +
∫ t

0
(δ1I1(s) + δ2I2(s))e

∫ t
s c1dϵds),

W(t) = e−
∫ t

0 c2ds(W(0) +
∫ t

0
(pd1I1(s) + pd2I2(s))e

∫ t
s c2dϵds)

with S (t) ≥ 0, I1(t) ≥ 0, I2(t) ≥ 0,V(t) ≥ 0 and W(t) ≥ 0. Therefore, the nonnegativity of solutions is
proved.

Now, we prove the ultimate boundedness of solutions. From the model (2.1),

d(S (t) + I1(t) + I2(t))
dt

= b − d1S (t) − d1I1(t) − d2I2(t) ≤ b − d(S (t) + I1(t) + I2(t)),

where d = min{d1, d2}. According to the comparison theorem [31], we have

lim
t→∞

sup(S (t) + I1(t) + I2(t)) ≤
b
d
, lim

t→∞
sup V(t) ≤

b(δ1 + δ2)
c1d

, lim
t→∞

sup W(t) ≤
b(pd1 + pd2)

c2d
.

Therefore, the nonnegativity and boundedness of solutions of model (2.1) are proved. □

The feasible region

Ω = {(S , I1, I2,V,W) ∈ R5
+ : S + I1 + I2 ≤

b
d
,V ≤

b(δ1 + δ2)
c1d

,W ≤
b(pd1 + pd2)

c2d
},

is the positive invariant set of model (2.1).

3. Threshold dynamics

3.1. The basic reproduction number and equilibria

Obviously, system (2.1) always has a disease-free equilibrium E0 = (S 0, 0, 0, 0, 0), where S 0 = b/d1.
Using the theory in [32], we could compute the basic reproduction number. Let X = (I1, I2,V,W), then
model (2.1) can be expressed as

dX(t)
dt
= F − V ,

where

F =


β1S (t)I1(t) + β2S (t)I2(t) + β3S (t)V(t) + β4S (t)W(t)

0
0
0

 ,

V =


αI1(t) + d1I1(t)
−αI1(t) + d2I2(t)

−δ1I1(t) − δ2I2(t) + c1V(t)
−pd1I1(t) − pd2I2(t) + c2W(t)

 .
The Jacobian matrices of F and V at E0 gives

F =


β1S 0 β2S 0 β3S 0 β4S 0

0 0 0 0
0 0 0 0
0 0 0 0

 ,V =

α + d1 0 0 0
−α d2 0 0
−δ1 −δ2 c1 0
−pd1 −pd2 0 c2

 .
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Using the spectral radius of the matrix FV−1, we have the basic reproduction number

R0 =
β1S 0

(α + d1)
+
αβ2S 0

(α + d1)d2
+

(δ1d2 + δ2α)β3S 0

c1(α + d1)d2
+

p(d2α + d1d2)β4S 0

c2d2(α + d1)
.

When R0 > 1, the unique endemic equilibrium of model (2.1) is E1(S ∗, I∗1, I
∗
2,V

∗,W∗), where

S ∗ =
S 0

R0
, I∗1 =

b
α + d1

(1 −
1
R0

), I∗2 =
αI∗1
d2
, V∗ =

δ1I∗1 + δ2I∗2
c1

, W∗ =
pd1I∗1 + pd2I∗2

c2
.

3.2. Local stability

Theorem 3.1. When R0 < 1, the disease-free equilibrium E0 = (S 0, 0, 0, 0, 0) of model (2.1) is locally
asymptotically stable in Ω.

Proof. The Jacobian matrix J1 at E0 gives

J1 =


−d1 −β1S 0 −β2S 0 −β3S 0 −β4S 0

0 β1S 0 − α − d1 β2S 0 β3S 0 β4S 0

0 α −d2 0 0
0 δ1 δ2 −c1 0
0 pd1 pd2 0 −c2


.

Obviously, the characteristic equation of J1 always has a negative real root λ1 = −d1, and the other
roots are determined by the following equation

(λ + α + d1)(λ + d2)(λ + c1)(λ + c2) =β1S 0(λ + c2)(λ + d2)(λ + c1) + αβ2S 0(λ + c1)(λ + c2)
+ β3S 0αδ2(λ + c2) + β3S 0δ1(λ + d2)(λ + c2)
+ β4S 0((λ + d2)(λ + c1)pd1 + (λ + c1)pd2α).

Assume that Re(λ) ≥ 0. Then we can divide by (λ + α + d1)(λ + d2)(λ + c1)(λ + c2) and take absolute
values on both sides of the equation, and we have

1 =
∣∣∣∣∣ β1S 0

(λ + α + d1)
+

αβ2S 0

(λ + α + d1)(λ + d2)
+

δ2αβ3S 0

(λ + α + d1)(λ + d2)(λ + c1)

+
β3δ1S 0

(λ + α + d1)(λ + c1)
+

β4S 0 pd1

(λ + α + d1)(λ + c2)
+

β4S 0 pd2α

(λ + α + d1)(λ + c2)(λ + d2)

∣∣∣∣∣.
If λ = x + yi, where i is the imaginary unit, then

|(λ + α + d1)| ≥ (x + α + d1) ≥ (α + d1),

|(λ + α + d1)(λ + d2)| ≥ (x + α + d1)(x + d2) ≥ (α + d1)d2,

|(λ + α + d1)(λ + d2)(λ + c1)| ≥ (x + α + d1)(x + d2)(x + c1) ≥ (α + d1)d2c1,

|(λ + α + d1)(λ + c2)(λ + d2)| ≥ (x + α + d1)(x + c2)(x + d2) ≥ (α + d1)d2c2,

Hence,

1 ≤
∣∣∣∣∣ β1S 0

(λ + α + d1)

∣∣∣∣∣ + ∣∣∣∣∣ αβ2S 0

(λ + α + d1)(λ + d2)

∣∣∣∣∣
Mathematical Biosciences and Engineering Volume 19, Issue 12, 13028–13049.
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+

∣∣∣∣∣ δ2αβ3S 0

(λ + α + d1)(λ + d2)(λ + c1)

∣∣∣∣∣ + ∣∣∣∣∣ β3S 0δ1

(λ + α + d1)(λ + c1)

∣∣∣∣∣
+

∣∣∣∣∣ β4S 0 pd1

(λ + α + d1)(λ + c2)

∣∣∣∣∣ + ∣∣∣∣∣ β4S 0 pd2α

(λ + α + d1)(λ + c2)(λ + d2)

∣∣∣∣∣
≤
β1S 0

(α + d1)
+
αβ2S 0

(α + d1)d2
+
δ2αβ3S 0

(α + d1)d2c1
+
β3S 0δ1

(α + d1)c1

+
β4S 0 pd1

(α + d1)c2
+
β4S 0 pd2α

(α + d1)c2d2
= R0,

which contradicts with R0 < 1. All roots of characteristic equation have negative parts when R0 < 1.
Thus, the disease-free equilibrium of model (2.1) is locally asymptotically stable in Ω. □

Theorem 3.2. When R0 > 1, the unique endemic equilibrium E1(S ∗, I∗1, I
∗
2,V

∗,W∗) of model (2.1) is
locally asymptotically stable in Ω.

Proof. The Jacobian matrix J2 at E1 gives

J2 =


−d1 − β1I∗1 − β2I∗2 − β3V∗ − β4W∗ −β1S ∗ −β2S ∗ −β3S ∗ −β4S ∗

β1I∗1 + β2I∗2 + β3V∗ + β4W∗ β1S ∗ − α − d1 β2S ∗ β3S ∗ β4S ∗

0 α −d2 0 0
0 δ1 δ2 −c1 0
0 pd1 pd2 0 −c2


.

The characteristic equation of J2 leads to

(β1I∗1 + β2I∗2 + β3V∗ + β4W∗)[(λ + α + d1)(λ + d2)(λ + c1)(λ + c2)] + A

= pd1(λ + d1)β4S ∗(λ + d2)(λ + c1) + pd2(λ + d1)(λ + c1)β4S ∗α

+ (λ + d1)(λ + d2)(λ + c1)(λ + c2)β1S ∗ + (λ + d1)(λ + c2)β3S ∗αδ2

+ (λ + d1)(λ + c2)(λ + d2)β3S ∗δ1 + (λ + d1)(λ + c2)(λ + c1)β2S ∗α,

where
A = (λ + d1)(λ + α + d1)(λ + d2)(λ + c1)(λ + c2).

Using the similar discussion in Theorem 3.1, we assume that Re(λ) ≥ 0. Then we can divide the two
sides of the above equation by A and take the absolute value of both sides of this equation, and we have

1 +
(β1I∗1 + β2I∗2 + β3V∗ + β4W∗)

(λ + d1)
> 1.

The right side of equation gives∣∣∣∣∣ β1S ∗

(λ + α + d1)
+

β2S ∗α
(λ + α + d1)(λ + d2)

+
β3S ∗αδ2

(λ + α + d1)(λ + c1)(λ + d2)

+
β3S ∗δ1

(λ + α + d1)(λ + c1)
+

pd1β4S ∗

(λ + c2)(λ + α + d1)
+

pd2β4S ∗α
(λ + α + d1)(λ + c2)(λ + d2)

∣∣∣∣∣
≤
β1S ∗

(α + d1)
+
β2S ∗α

(α + d1)d2
+

β3S ∗αδ2

(α + d1)(λ + c1)d2
+
β3S ∗δ1

(α + d1)c1
+

pd1β4S ∗

c2(α + d1)
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+
pd2β4S ∗α

(α + d1)c2)d2
≤

1
R0

R0 = 1,

which leads to a contradiction. All roots of characteristic equation have negative parts when R0 > 1.
Thus, the unique endemic equilibrium of model (2.1) is locally asymptotically stable in Ω. □

3.3. Global dynamics

In this section, we prove that the disease-free equilibrium and endemic equilibrium of model (2.1)
are globally asymptotically stable by constructing Lyapunov function. Let

F(x) = x − 1 − ln x, x ∈ (0,∞).

Note that F(x) ≥ 0 when x > 0, and Fmin(x) = F(1) = 0.

Theorem 3.3. When R0 < 1, the disease-free equilibrium E0 = (S 0, 0, 0, 0, 0) of model (2.1) is globally
asymptotically stable in Ω.

Proof. Define the Lyapunov function

L0(t) = S 0F
(S (t)

S 0

)
+ I1(t) +

c1c2β2b + δ2c2β3b + c1β4bpd2

c1c2d1d2
I2(t) +

β3b
c1d1

V(t) +
β4b
c2d1

W(t).

The time derivative of L0 along the solution of model (2.1) gives

dL0(t)
dt

∣∣∣∣∣
(2.1)
=
(
1 −

S 0

S (t)

)
(b − d1S (t) − β1S (t)I1(t) − β2S (t)I2(t) − β3S (t)V(t) − β4S (t)W(t))

+ (β1S (t)I1(t) + β2S (t)I2(t) + β3S (t)V(t) + β4S (t)W(t) − αI1(t) − d1I1(t))

+
c1c2β2b + δ2c2β3b + c1β4bpd2

c1c2d1d2
(αI1(t) − d2I2(t))

+
β3b
c1d1

(δ1I1(t) + δ2I2(t) − c1V(t)) +
β4b
c2d1

(pd1I1(t) + pd2I2(t) − c2W(t))

= −
d1(S (t) − S 0)2

S (t)
+
(β1bI1(t)

d1
+
β2bI2(t)

d1
+
β3bV(t)

d1
+
β4bW(t)

d1

)
− αI1(t) − d1I1(t) +

c1c2β2b + δ2c2β3b + c1β4bpd2

c1c2d1d2
(αI1(t) − d2I2(t))

+
β3b
c1d1

(δ1I1(t) + δ2I2(t) − c1V(t)) +
β4b
c2d1

(pd1I1(t) + pd2I2(t) − c2W(t))

= −
d1(S (t) − S 0)2

S (t)
+
(β3b

d1
−
β3b
d1

)
V(t) +

(β4b
d1
−
β4b
d1

)
W(t)

+
(β1b

d1
− (α + d1) +

αc1c2β2b + αδ2c2β3b + αc1β4bpd2

c1c2d1d2
+
β3bδ1

c1d1
+
β4bpd1

c2d1

)
I1(t)

+
(β2b

d1
−

c1c2β2b + δ2c2β3b + c1β4bpd2

c1c2d1
+
β3bδ2

c1d1
+
β4bpd2

c2d1

)
I2(t)

≤ −
d1(S (t) − S 0)2

S (t)
+ (R0 − 1)I1(t).

Mathematical Biosciences and Engineering Volume 19, Issue 12, 13028–13049.



13036

Note that L′0(t) < 0 when R0 < 1. In addition, L′0(t) = 0 if and only if S = S 0, I1 = 0, I2 = 0,V = 0,W =
0. The single point set E0 is the largest invariant set of model (2.1) on set {(S (t), I1(t), I2(t),V(t),W(t)) ∈
Ω | L′0(t) = 0}. Using LaSalle’s Invariance Principle [33] and the local stability of E0, then the disease-
free equilibrium E0 is globally asymptotically stable in Ω when R0 < 1. □

Theorem 3.4. When R0 > 1, the unique endemic equilibrium E1(S ∗, I∗1, I
∗
2,V

∗,W∗) of model (2.1) is
globally asymptotically stable in Ω.

Proof. Define the Lyapunov function

L1(t) =S ∗F
(S (t)

S ∗
)
+ I∗1F

( I1(t)
I∗1

)
+
(c1c2β2S ∗ + c2β3S ∗δ2 + c1β4S ∗pd2

c1c2d2

)
I∗2F
( I2(t)

I∗2

)
+
β3S ∗

c1
V∗F
(V(t)

V∗
)
+
β4S ∗

c2
W∗F
(W(t)

W∗

)
.

Calculating the derivative of L1(t) along the solution of model (2.1) gives

dL1(t)
dt

∣∣∣∣∣
(2.1)
=
(
1 −

S ∗

S (t)

)
(b − d1S (t) − β1S (t)I1(t) − β2S (t)I2(t) − β3S (t)V(t) − β4S (t)W(t))

+
(
1 −

I∗1
I1(t)

)
(β1S (t)I1(t) + β2S (t)I2(t) + β3S (t)V(t) + β4S (t)W(t) − αI1(t)

− d1I1(t)) +
β2S ∗c1c2 + c2β3S ∗δ2 + c1β4S ∗pd2

d2c1c2

(
1 −

I∗2
I2(t)

)
(αI1(t) − d2I2(t))

+
β3S ∗

c1

(
1 −

V∗

V(t)

)
(δ1I1(t) + δ2I2(t) − c1V(t))

+
β4S ∗

c2

(
1 −

W∗

W(t)

)
(pd1I1(t) + pd2I2(t) − c2W(t))

=d1S ∗
(
2 −

S ∗

S (t)
−

S (t)
S ∗
)
+ β1S ∗I∗1

(
2 −

S ∗

S (t)
−

S (t)
S ∗
)

+ β2S ∗I∗2
(
3 −

S ∗

S (t)
−

I∗1S (t)I2(t)
I1(t)S ∗I∗2

−
I∗2I1(t)
I2(t)I∗1

)
+
β3S ∗δ1I∗1

c1

(
3 −

S ∗

S (t)
−

I∗1S (t)V(t)
I1(t)S ∗V∗

−
V∗I1(t)
V(t)I∗1

)
+
β3S ∗δ2I∗2

c2

(
4 −

S ∗

S (t)
−

I∗1S (t)V(t)
I1(t)S ∗V∗

−
I∗2I1(t)
I2(t)I∗1

−
V∗I2(t)
V(t)I∗2

)
+
β4S ∗pd1I∗1

c2

(
3 −

S ∗

S (t)
−

I∗1S (t)W(t)
I1(t)S ∗W∗

−
W∗I1(t)
W(t)I∗1

)
+
β4S ∗

c2
pd2I∗2

(
4 −

S ∗

S (t)
−

I∗1S (t)W(t)
I1(t)S ∗W∗

−
I∗2I1(t)
I2(t)I∗1

−
W∗I2(t)
W(t)I∗2

)
.

Using F(x) = x − 1 − ln x, x ∈ (0,∞), we have

dL1(t)
dt

∣∣∣∣∣
(2.1)
= − d1S ∗

[
F
( S ∗

S (t)

)
+ F
(S (t)

S ∗
)]
− β1S ∗I∗1

[
F
( S ∗

S (t)

)
+ F
(S (t)

S ∗
)]

− β2S ∗I∗2
[
F
( S ∗

S (t)

)
+ F
( I∗1S (t)I2(t)

I1(t)S ∗I∗2

)
+ F
( I∗2I1(t)
I2(t)I∗1

)]
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−
β3S ∗δ1I∗1

c1

[
F
( S ∗

S (t)

)
+ F
( I∗1S (t)V(t)

I1S ∗V∗
)
+ F
(V∗I1(t)

V(t)I∗1

)]
−
β3S ∗δ2I∗2

c2

[
F
( S ∗

S (t)

)
+ F
( I∗1S (t)V(t)

I1(t)S ∗V∗
)
+ F
( I∗2I1(t)
I2(t)I∗1

)
+ F
(V∗I2(t)

V(t)I∗2

)]
−
β4S ∗pd1I∗1

c2

[
F
( S ∗

S (t)

)
+ F
( I∗1S (t)W(t)

I1(t)S ∗W∗

)
+ F
(W∗I1(t)

W(t)I∗1

)]
−
β4S ∗

c2
pd2I∗2

[
F
( S ∗

S (t)

)
+ F
( I∗1S (t)W(t)

I1(t)S ∗W∗

)
+ F
( I∗2I1(t)
I2(t)I∗1

)
+ F
(W∗I2(t)

W(t)I∗2

)]
.

Note that L′1(t) < 0 when R0 > 1. Besides, L′1(t) = 0 if and only if S (t) = S ∗, I1(t) = I∗1, I2(t) =
I∗2,V(t) = V∗,W(t) = W∗. The single point set E1 is the largest invariant set of model (2.1) on set
{(S (t), I1(t), I2(t),V(t),W(t)) ∈ Ω | L′1(t) = 0}. Using LaSalle’s Invariance Principle [33] and the local
stability of E1, then the endemic equilibrium E1 is globally asymptotically stable inΩwhen R0 > 1. □

4. Numerical simulations

Using the public information, parameter values and initial values are estimated. This section gives
the sensitivity indexes of the basic reproduction number R0 and state variables I1, I2, V and W. Numer-
ical simulations are implemented to illustrate our theoretical results and assess the impact of the virus
in the environment and swill on the ASFV transmission. All simulations are conducted by Matlab.

4.1. Parameter estimation

4.1.1. Data source

In August 2018, an ASF outbreak occurred at an Aiyuan farm of Jiangsu Jiahua Breeding Pig
Company in Siyang County, China. There are 14929 pigs in the 13 pigpens. The ASF outbreak is
possibly caused by the introduction of contaminated vehicles and employees. The data from January 8,
2019 to January 11, 2019 are obtained from the China Animal Health Endemic Center (CAHEC) [34]
and reference [35]. Our data includes new ASF cases in Table 2. All data used are from the public
information.

It is worth noting that as a major pig producing country in the world, China has suffered great
economic losses from the ASF outbreaks to her domestic pig market. Since there is no effective
treatment for ASFV at present, the Chinese government attaches great importance to the prevention
and control of ASF at an early stage. For example, when pig farmers are suspected of being infected
with ASFV, the relevant departments will immediately conduct an epidemiological investigation and
clinical diagnosis, and collect samples for testing in a short time. Once the outbreak of the epidemic is
determined, all pigs in the epidemic site and within a certain range should be culled immediately [10].
At the same time, carcasses and pollutants should be destroyed innocuously, and vehicles, facilities
and relevant personnel in the epidemic site should be disinfected and cleaned. Further intervention
measures will be implemented according to the development of the epidemic, including restrictions on
the movement of pigs and pork products, timely monitoring and quarantine. Therefore, the epidemic
foci usually only have time series data within a few days.
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Table 2. Daily new infectious pigs in Aiyuan.

Date No. of infectious pigs
Jan. 8, 2019 48
Jan. 9, 2019 87
Jan. 10, 2019 102
Jan. 11, 2019 196

4.1.2. Parameter estimation

Based on our mathematical model and the cumulative number of ASF cases and using the Least
Square method (LSM), our model is fitted to the real data. Parameters values β3 and α and initial
values I1(0) with 95% confidence interval (CI) are estimated in Tables 3 and 4. Other parameter values
are obtained from the real data and references.

4.1.3. Fitting results

Given the uncertainty of parameter values and initial values, LSM is used to assess our model
with evaluated parameter values and initial values in Tables 3 and 4. Figure 10 gives the estimated
cumulative number of ASF cases with real data on the Aiyuan pig farm. Our simulations are consistent
with the real data, which verifies the accuracy of the model.
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Figure 2. The fitting results of estimated cumulative number of ASF cases with real data.
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Table 3. Related parameters in model (2.1).

Parameter Description Value (Range) 95% CI Source
b The recruitment rate of pigs [9 × 103, 1.1 × 104] - [28]
β1 The transmission rate from

asymptomatic infectious pigs
to susceptible pigs

[9×10−7, 1.1×10−8] - [36]

β2 The transmission rate from
symptomatic infectious pigs
to susceptible pigs

[1.35 × 10−8, 1.65 ×
10−7]

- [37]

β3 The transmission rate from
virus in environment to
susceptible pigs

1.28 × 10−9 [1.49×10−10, 1.49×
10−9]

Fitted

β4 The transmission rate from
swill to susceptible pigs

[2.7 × 10−10, 3.3 ×
10−10]

- [28]

d1 The removal rate of
asymptomatic infectious pigs
including slaughtering and
death

[0.002, 0.0035] - [26]

d2 The removal rate of
symptomatic infectious pigs
including slaughtering and
death

[0.4, 0.6] - [37]

c1 The clearance rate of virus in
environment

[0.05, 0.1] - [35]

c2 The clearance rate of swill [0.011, 0.0035] - [28]
δ1 The release rate of ASFV

from asymptomatic infectious
pigs

[1, 9] - [35]

δ2 The release rate of ASFV
from symptomatic infectious
pigs

[1, 9] - [28]

p The proportion of pig
products from infectious pigs
to swill

[0.1, 1] - [28]

α The transfer rate from
asymptomatic infectious pigs
to symptomatic infectious
pigs

0.157 [0.12, 0.35] Fitted
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Table 4. The initial values in Aiyuan.

Initial
values

Description Value 95%CI Source

I1(0) Initial value of asymptomatic pigs 256 [254, 256] Fitted
S (0) Initial value of susceptible pigs 14929 - Data
I2(0) Initial value of symptomatic pigs 0 - Data
V(0) Initial value of virus load in the

environment
2.6 × 107 - Data

W(0) Initial value of contaminated swills 0 - Data

4.2. Sensitivity analysis

Partial rank correlation coefficients (PRCCs) and variance decomposition (obtained by an extended
version of the Fourier Amplitude Sensitivity Test (eFAST)) are used to carry out the sensitivity analy-
sis [38]. We calculate PRCCs and eFAST sensitivity indexes of R0 and I1, I2, V , W to have a complete
and informative uncertainty and sensitivity (US) analysis.

4.2.1. Sensitivity indexes of R0

The PRCCs and eFAST sensitivity results about R0 are illustrated in Figure 3 using the bar charts.
PRCCs in Figure 3 give that b, β2, δ1, d1, c1, α and δ2 have a significant impact on R0. The first order
S i and the total order S Ti are given for each parameter (including a dummy parameter) in Figure 3.
The red bar represents the sum of the influence of a single parameter and its interaction with other
parameters, denoted as S Ti (total order sensitivity index) and the blue bar indicates the sensitivity of
the independent effect of a single parameter, expressed as S i (first-order sensitivity index). Considering
only p < 0.01, the relationship of S i is c1 > δ1 > α > d1 > b > β2, and the size relationship of S Ti is
δ1 > α > c1 > d1 > b > β2.

Therefore, Figure 3 finds that b, β2, δ1 and δ2 have a significant positive impact on R0, while d1, c1

and α have a significant negative impact on R0. However, b and β2 have high PRCCs sensitivity indexes
and low eFAST sensitivity indexes.

4.2.2. Sensitivity indexes of I1, I2, V , W

To evaluate whether the importance of a parameter appears in the entire time interval during the
dynamics process, we focus on state variables I1, I2,V and W. We assume that the PRCCs and eFAST
time ranges from 0 to 30, and parameter values are chosen from Table 1. We calculate the PRCCs and
eFAST (S i) indexes at multiple time points and plot the time series about state variables I1, I2,V and
W. The gray area indicates that there is no significant difference from zero.

In Figure 4(a), the parameters are divided into four categories. The PRCCs index values of the
first category including δ1, δ2, β3, b and c1 firstly rise or fall to a value over time, and then gradually
stabilize. The PRCCs index values of the second category including β2 rise to a peak at an average
speed, and then decrease rapidly until there is no significant difference from zero. The PRCCs index
values of the third category including α always remain in a steady correlation with I1. The fourth
category containing β4, d2, c2, d1, β1 and p have no effect on I1. Figure 4(b) reveals that the curve of
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Figure 3. (a) PRCCs sensitivity indexes of R0; (b) eFAST sensitivity indexes of R0.

the parameter α is very stable at early time points, and declines after 15 days and then stabilize in the
future.

Figure 5(a) shows that the curve of parameter α is positively correlated with I2 at the initial stage,
and then decreases rapidly to negative correlation until gradually reaches a stable state. Figure 5(b)
shows that α and d2 have a significant impact on I2.

Figure 6(a) demonstrates that δ1 and δ2 have a strong positive impact on V and c1 is negatively
correlated with V . Figure 6(b) demonstrates that δ1 has a strong positive impact on V .

Figure 7(a) explains that α and p have a strong positive impact on W and c2 is negatively correlated
with W. Figure 7(b) explains that p has a strong positive impact on W.

4.3. Numerical simulations

In this section, numerical simulations are implemented to illustrate our theoretical results and assess
the impact of the virus in the environment and swill on the ASFV transmission.

Set parameters b = 10587, β1 = 1.0004 × 10−8, β2 = 5.5410 × 10−8, β3 = 3.0947 × 10−10, β4 =

3.2320 × 10−10, c1 = 0.0391, c2 = 0.0545, d1 = 0.0035, d2 = 0.5885, δ1 = 1.5977, δ2 = 2.4596,
p = 0.1285, α = 0.1555, and the initial values S (0) = 10000, I1(0) = 256, I2(0) = 0, V(0) = 1000,
W(0) = 300. We get that the basic reproduction number R0 = 0.8015 < 1, and the disease-free
equilibrium of model (2.1) is globally asymptotically stable (Figure 8(a)), which illustrates the results
in Theorem 3.3.

Set parameters b = 10358, β1 = 1.0272 × 10−8, β2 = 1.5669 × 10−7, β3 = 4.2918 × 10−10, β4 =

3.1256 × 10−10, c1 = 0.0377, c2 = 0.0725, d1 = 0.0024, d2 = 0.4239, δ1 = 4.6698, δ2 = 6.2956,
p = 0.7933, α = 0.1439, and the initial values S (0) = 10000, I1(0) = 256, I2(0) = 0, V(0) = 1000,
W(0) = 300. We obtain that the basic reproduction number R0 = 4.1865 > 1, and the unique endemic
equilibrium is globally asymptotically stable (Figure 8(b)), which illustrates the results in Theorem 3.4.
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(a) (b)

Figure 4. (a) Time-varying PRCCs sensitivity indexes of I1; (b) Time-varying first-order
sensitivity indexes S i of I1.

(a) (b)

Figure 5. (a) Time-varying PRCC sensitivity indexes of I2; (b) Time-varying first-order
sensitivity indexes S i of I2.
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(a) (b)

Figure 6. (a) Time-varying PRCC sensitivity indexes of V; (b) Time-varying first-order
sensitivity indexes S i of V .

(a) (b)

Figure 7. (a) Time-varying PRCC sensitivity indexes of W; (b) Time-varying first-order
sensitivity indexes S i of W.
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Figure 8. (a) When R0 < 1, the disease-free equilibrium E0 is globally asymptotically stable.
(b) When R0 > 1, the endemic equilibrium E1 is globally asymptotically stable.

4.3.1. The effect of the virus in the environment on the ASFV transmission

The effect of the virus in the environment on the ASFV transmission is assessed by the impact of δ1

and δ2 on the symptomatic ASF cases. Set δ1 = 9, δ1 = 6 and δ1 = 3, the peak value and peak time of
symptomatic ASF cases could reach 780, 660, 570 and 60, 63, 65 days, respectively. If δ2 = 9, δ2 = 6
and δ2 = 3, the peak value of symptomatic ASF cases could reach 630, 590 and 550, respectively, and
the peak time of symptomatic ASF cases could roughly the same. Figure 9 reveals that virus in the
environment increases the peak value of symptomatic ASF cases.
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Figure 9. The effect of virus in environment on the symptomatic ASF cases.

4.3.2. The effect of swill on the ASFV transmission

The effect of swill on the ASFV transmission is assessed by the impact of p on the symptomatic
ASF cases. If p = 0.8, p = 0.6 and p = 0.5, the peak value of symptomatic ASF cases could reach
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820, 650, 550 and 59, 65, 70 days, respectively. Figure 10 reveals that contaminated swill increases
the peak value of symptomatic ASF cases and makes the peak time in advance.
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Figure 10. The effect of swill on the symptomatic ASF cases.

5. Conclusions

African swine fever is listed as an animal disease that must be reported by the World Organization
of Animal Health (OIE), and is a class I animal disease in China. The early epidemic in China mainly
occurred in small and medium-sized pig farms, which was mainly caused by swill feeding [28]. Due
to the 100% mortality rate, ASF seriously threatens the pig industry. The virus in the environment
and contaminated swill contribute to the ASFV transmission. To study the impact of the virus in
the environment and contaminated swill on the ASFV transmission, we build the ASFV transmission
model with the virus in the environment and swill.

This is the first study to show the global dynamics of the ASFV transmission model. We compute
the basic reproduction number, and prove the global stability of disease-free equilibrium and endemic
equilibrium. When R0 < 1, the disease-free equilibrium E0 is globally asymptotically stable. When
R0 > 1, the unique endemic equilibrium E1 is globally asymptotically stable.

Our findings reveal that the release rate of ASFV from asymptomatic and symptomatic infectious
pigs and the proportion of pig products from infectious pigs to swill have a significant impact on
the ASFV transmission. We use the PRCCs and eFAST to evaluate the impact of parameters on R0

and I1, I2, V , W. PRCCs and eFAST sensitivity analysis reveals that parameters b, β2 and δ1 have a
significant positive effect on R0, and parameters d1, c1 and α have a significant negative effect on R0.
The sensitivity indexes at multiple time points give that the release rate of ASFV from asymptomatic
and symptomatic infectious pigs and the proportion of pig products from infectious pigs to swill have
a significant impact on I1, I2, V and W.

The results show that viruses in the environment and contaminated swill contribute to the ASFV
transmission. PRCCs and eAFST indicate that δ1 and c1 have a significant effect on R0, which means
that the virus in the environment exerts a major influence on R0. PRCCs and eAFST indicate that δ1,
δ2 and p have a significant impact on I1, I2, V and W, which means that the virus in the environment
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and contaminated swill exert a major influence on I1, I2, V and W. Numerical simulations reveal that
reducing δ1 and δ2 could effectively cut down the peak value of symptomatic ASF cases, and increasing
p could reduce the peak value of symptomatic ASF cases by over 30%.

Our results indicate that contaminated swill contributes to the ASFV transmission, which is consis-
tent with the results in [28]. Therefore, banning swill feeding, improving farmers’ awareness of swill
transmission and large-scale breeding are very necessary for prevention and control measures, which
can effectively reduce the risk of ASFV transmission. Furthermore, our results show that the virus in
the environment greatly accelerates ASFV transmission. By increasing the frequency and efficiency of
disinfection, removing dead pigs in time, and strictly testing the vehicles and staff entering and leaving
the pig farm, the virus in the environment could be cleared to control the epidemic.

It is of great significance to study the impact of culling on ASFV transmission. Millions of pigs are
culled to contain the ASFV transmission in China. For future work, we may evaluate the impact of
culling on the ASFV transmission. In this paper, our findings may help animal health to prevent and
control the ASFV transmission.
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