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Abstract: We deal with a single-machine scheduling problem with an optional maintenance activity
(denoted by ma), where the actual processing time of a job is a function of its starting time and position.
The optional ma means that the machine will perform a ma, after ma is completed, the machine will
return to the initial state. The objective is to determine an optimal job sequence and the location of the
maintenance activity such that makespan is to be minimized. Based on some properties of an optimal
sequence, we introduce a polynomial time algorithm to solve the problem, and the time complexity is
O(n4), where n is the number of jobs.
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1. Introduction

In actual industrial production, the processing times of jobs have deterioration (aging) effects, i.e.,
the later of a job starts, the longer it takes to process it (see Wang and Wang [1]). Wang and Wang [2]
considered the single-machine makespan minimization problem with time dependent processing
times and group technology. Under ready times of the jobs, they proved that the problem can be
solved in polynomial time. Wang and Wang [3] investigated the single-machine weighted sum of the
hth power of waiting times problems with simple linear deterioration and precedence constraints.
Under some precedence constraints, they proved that these problems remain polynomially solvable.
Cheng et al. [4] studied single-machine problems with an accelerating deterioration effect. They
proved that some regular and non-regular objective functions can be solved in polynomial time. Yin et
al. [5] addressed some two-agent scheduling problems with deterioration effects on a single-machine.
Zhang et al. [6] considered single-machine problems with time-dependent processing times. Under
the common and slack due window assignments, they proved that two non-regular objective function
minimizations can be solved in polynomial time. Liu et al. [7] considered single-machine group
scheduling with deteriorating jobs. For the makespan minimization with ready times, they proposed
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branch-and-bound algorithm and heuristic algorithm. Wang and Liang [8] studied single-machine
group scheduling with deterioration effects and resource allocation. For the makespan minimization
under limited resource availability constraint, they proposed branch-and-bound and heuristic
algorithms. Gawiejnowicz [9] reviewed scheduling problems with deteriorations effects
(time-dependent processing times). In addition, with the deterioration (aging) effects, the machine can
perform the maintenance activities and increase work efficiency, so, the scheduling problems with
maintenance activities have also been considered (see Ma et al. [10] and Wang and Wei [11]). Hsu et
al. [12] considered unrelated parallel-machine problem with rate-modifying activities. For the total
completion time minimization, they proposed a more efficient algorithm. Ji et al. [13] studied
single-machine slack due date assignment problem with job-dependent aging effects. Under a
deteriorating maintenance activity, that proved that a non-regular objective minimization can be
solved in polynomial time. Rustogi and Strusevich [14, 15] considered single-machine scheduling
problems with rate modifying activities. Liu et al. [16] studied single-machine multiple common
due-date assignments scheduling with deterioration effects. Under an maintenance activity, they
proved that the linear weighted sum of earliness, tardiness, and the due dates minimization can be
solved in polynomial time. Xiong et al. [17] considered the single-machine common due date
assignment problem potential machine disruption. Zhu et al. [18] investigated multitasking
scheduling problems with multiple rate-modifying activities. For the single-criterion and
multi-criteria minimizations, they proposed optimal algorithms.

Recently, Zhang et al. [19] studied machine scheduling problems with deteriorating effects. Under
the deteriorating rate-modifying activities, they proved that some objective function minimizations
can be solved in polynomial time. Wang and Li [20] studied the unrelated parallel processors problem
with deterioration effects and deteriorating maintenance activities. For some regular objective
function minimizations, they proved that the problem can be solved in polynomial time. Zhang et
al. [21] considered parallel machines scheduling problems with linear deteriorating jobs and
maintenance activities. Under the resumable and non-resumable cases, the goal is to minimize the
expected sum of completion times. They presented the pseudo-polynomial time algorithms to solve
the problems. Zhang et al. [22] addressed single-machine scheduling problems with multiple
maintenance activities and position-and-resource-dependent processing times. For some regular and
non-regular objective function minimizations, they proposed polynomial time and pseudo-polynomial
time algorithms. Sun and Geng [23] investigated the single-machine maintenance activity scheduling
with deteriorating effects. The goal is to minimize the makespan and total completion time, they
showed that the problem can be solved in polynomial time, respectively. Wang et al. [24] examined
the single-machine common due-window assignment problem with a maintenance activity. Under
constant and time-dependent processing times, they proved that a non-regular general earliness and
tardiness minimization can be solved in polynomial time. Jia et al. [25] considered the single-machine
scheduling problem with deterioration effects. Under the deterioration maintenance activity and slack
due-window assignment, they showed that a non-regular objective function minimization can be
solved in polynomial time. He et al. [26] discussed unrelated parallel processor scheduling with
deterioration effects and maintenance activities. The objective is to minimize the total completion
time and total machine load, they showed that these problems remain polynomially solvable.

The phenomena of deteriorating jobs and machine maintenance activity occurring simultaneously
can be found in real-life situations. For example, consider a set of tasks (jobs) available for processing
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by a human operator. Perhaps the most distinguishing factor that differentiates human operators from
machines within the context of task-sequencing is the notion of fatigue and its effect on task processing.
More specifically, the rate at which a human operator performs a given task is known to be a decreasing
function of the operator‘s level of fatigue, which manifests as the task processing time taking longer
than expected. Another distinguishing characteristic is that human operators regularly engage in rest
breaks during work shifts, which allows them to recover and mitigate some of the negative effects of
fatigue (Sun and Geng [23]; Eilon [27]; Lodree and Geiger [28]). In this paper, we extend the results
of Sun and Geng [23], by studying a more general processing times that includes the one given in
Sun and Geng [23] as a special case. For the makespan minimization, we prove that the problem is
polynomial-time solvable.

The organization of this article is as follows. Section 2 gives a description of the problem. Section 3
presents a polynomial-time solution for the problem. Conclusions are presented in Section 4.

2. Problem description

There are n̈ independent jobs T1,T2, . . . ,Tn to be processed on a single-machine, and before
processing, the machine needs t̃ (t̃ > 0) preparation time. Due to the time-and-position dependent
deteriorating effects (denoted by tpdde), the machine’s production efficiency is reduced, the machine
will perform a maintenance activity (denoted by ma), and when the repair is completed, the machine
will return to the initial setting and the tpdde will start again.

It is assumed that the machine performs a ma after the kth job is completed, and the maintenance
time is D. In the case of tpdde, the actual processing time of job T j if it is scheduled in rth position in
a sequence is given by

p j =

{
(a j + b js j)rc, if r ≤ k,
(θ ja j + b j(s j −C[k] − D))(r − k)c, if r > k,

(1)

where a j (resp. b j) is the normal processing time (resp. Deteriorating rate) of T j ( j = 1, 2, . . . , n), s j

(resp. θ j (θ j > 0)) is the starting processing time (resp. Maintenance rate) of T j, c (c ≥ 0) is the
common aging rate for all the jobs, and [k] is some job scheduled in kth position. Ji et al. [29] studied
the following (i.e., simple linear deterioration and aging) model

p j =

{
b js jrc, if r ≤ k,
b j(s j −C[k] − D)(r − k)c, if r > k.

Ji et al. [29] proved that the makespan minimization

under simple linear deterioration and aging model is NP-hard in the strong sense. Sun and Geng [23]

considered the following (i.e., linear deterioration) model p j =

{
a j + bs j, if r ≤ k,
θa j + b(s j −C[k] − D), if r > k,

where b (resp. 0 < θ ≤ 1) is the common deterioration rate (resp. Maintenance rate) for all the jobs.
Sun and Geng [23] proved that the makespan and total completion time minimizations can be solved
in polynomial time, respectively.

In this paper, we mainly concentrate on the following model:

p j =

{
(a j + bs j)rc, if r ≤ k,
(θ ja j + b(s j −C[k] − D))(r − k)c, if r > k,

(2)

Let C j denote the completion time of job T j, the objective is to determine the location of the
maintenance activity and the job sequence ϕ such that the makespan Cmax = max{C1,C2, . . . ,Cn} is to
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be minimized. From Gawiejnowicz [9], this problem can be written as:

1|ma, tpdde|Cmax (3)

3. Main results

The machine is repaired after the kth job is processed, the machine can be repaired in any position
from 1 to n − 1, and the maintenance time is D, hence, from Figure 1, we have

Cmax = t̃ +

k∑
j=1

p[ j] + D + t̃ +

n∑
j=k+1

p[ j] = D + 2t̃ +

k∑
j=1

p[ j] +

n∑
j=k+1

p[ j] (4)

t̃ J[1] J[2] . . . J[k] D t̃ J[k+1] J[k+2] . . . J[n] -

Figure 1. A sample of 1|ma, tpdde|Cmax.

According to the location of ma, we are divided into the following three cases, that is, case i: k = 0,
case ii: 0 < k < n, and case iii: k = n.

3.1. Case i (k = 0)

If k = 0, the actual machining time p[ j] of the job T[ j] is

p[ j] =
(
θ[ j]a[ j] + b(s[ j] − D)

)
jc, j = 1, 2, . . . , n. (5)

If j = 1, the machine needs t̃ time to prepare and maintenance time D,
s[1] = t̃ + D, p[1] =

(
θ[1]a[1] + b(s[1] − D)

)
1c = θ[1]a[1] + bt̃.

If j = 2, s[2] = C[1] = p[1] + s[1] = θ[1]a[1] + (1 + b)t̃ + D,

p[2] =
(
θ[2]a[2] + b(s[2] − D)

)
2c

= θ[2]a[2]2c + b2c(θ[1]a[1] + (1 + b)t̃)
= θ[2]a[2]2c + b2cθ[1]a[1] + b2c(1 + b)t̃.

If j = 3, s[3] = C[2] = p[2] + s[2] = θ[2]a[2]2c + θ[1]a[1](1 + b2c) + t̃(1 + b)(1 + b2c) + D,
p[3] =

(
θ[3]a[3] + b(s[3] − D)

)
3c = θ[3]a[3]3c + b3c(θ[2]a[2]2c + θ[1]a[1](1 + b2c) + t̃(1 + b)(1 + b2c)).

......
If j = i,
s[i] = C[i−1] =

∑i−1
h=1 θ[h]a[h]hc ∏i−1

l=h+1(1 + blc) + t̃
∏i−1

l=1(1 + blc) + D,
p[i] = θ[i]a[i]ic + bic

(∑i−1
h=1 a[h]hc ∏i−1

l=h+1(1 + blc) + t̃
∏i−1

l=1(1 + blc)
)
.

......
If j = n,
s[n] = C[n−1] =

∑n−1
h=1 θ[h]a[h]hc ∏n−1

l=h+1(1 + blc) + t̃
∏n−1

l=1 (1 + blc) + D,
p[n] = θ[n]a[n]nc + bnc

(∑n−1
h=1 a[h]hc ∏n−1

l=h+1(1 + blc) + t̃
∏n−1

l=1 (1 + blc)
)
.

By the simple algebraic calculation, we have

Cmax = C[n]
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= s[n] + p[n]

=

n−1∑
h=1

θ[h]a[h]hc
n−1∏

l=h+1

(1 + blc) + t̃
n−1∏
l=1

(1 + blc) + D

+θ[n]a[n]ic + bnc

 n−1∑
h=1

a[h]hc
n−1∏

l=h+1

(1 + blc) + t̃
n−1∏
l=1

(1 + blc)


=

1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bnc
n−1∏
h=2

(1 + bhc)

θ[1]a[1]

+

2c + b3c2c + b4c2c(1 + b3c) + · · · + bnc2c
n−1∏
h=3

(1 + bhc)

θ[2]a[2]

+... + ((n − 1)c + bnc(n − 1)c)θ[n−1]a[n−1] + ncθ[n]a[n]

+

b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bnc
n−1∏
l=1

(1 + blc)

t̃ + D

=

n∑
j=1

∆ jθ[ j]a[ j] + E, (6)

where

∆1 = 1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bnc ∏n−1
h=2(1 + bhc)

∆2 = 2c + b3c2c + b4c2c(1 + b3c) + · · · + bnc2c ∏n−1
h=3(1 + bhc)

...... (7)
∆n−1 = (n − 1)c + bnc(n − 1)c

∆n = nc,

and

E = D +

b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bnc
n−1∏
l=1

(1 + blc)

t̃. (8)

3.2. Case ii (0 < k < n)

If 0 < k < n, the actual processing time of job T j is:

p[ j] =

{
(a[ j] + bs[ j]) jc, if j ≤ k
(θ[ j]a[ j] + b(s[ j] −C[k] − D))( j − k)c, if j > k

(9)

If j = 1, 2, . . . , k, we have s[1] = t̃, p[1] = (a[1] + bs[1])1c = a[1] + bt̃,
s[2] = C[1] = p[1] + s[1] = a[1] + (1 + b)t̃,
p[2] = (a[2] + bs[2])2c = a[2]2c + b2c(a[1]1c + (1 + b)t̃),
s[3] = C[2] = p[2] + s[2] = a[2]2c + a[1]1c(1 + b2c) + (1 + b)(1 + b2c)t̃,
p[3] = (a[3] + bs[3])3c = a[3]3c + b3c(a[2]2c + a[1](1 + b2c) + (1 + b)(1 + b2c)t̃),
......
s[k] = C[k−1] =

∑k−1
h=1 a[h]hc ∏k−1

l=h+1(1 + blc) + t̃
∏k−1

l=1 (1 + blc),
p[k] = (a[k] + bs[k−1])ic = a[k]kc + bkc

(∑k−1
h=1 a[h]hc ∏k−1

l=h+1(1 + blc) + t̃
∏k−1

l=1 (1 + blc)
)
,

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11756–11767.



11761

C[k] =
∑k

h=1 a[h]hc ∏k
l=h+1(1 + blc) + t̃

∏k
l=1(1 + blc).

If j = k + 1, the machine need to be repaired after the job T[k] is completed, we have

s[k+1] = C[k] + D + t̃,

p[k+1] = (θ[k+1]a[k+1] + b(s[k+1] −C[k] − D))1c = θ[k+1]a[k+1] + bt̃.

If j = k + 2, j = k + 3, . . ., j = n, we have
s[k+2] = C[k+1] = θ[k+1]a[k+1] + (1 + b)t̃ + C[k] + D,
p[k+2] = (θ[k+2]a[k+2] + b(s[k+2] −C[k] − D))2c = θ[k+2]a[k+2]2c + b2cθ[k+1]a[k+1] + b2c(1 + b)t̃.
s[k+3] = C[k+2] = θ[k+2]a[k+2]2c + θ[k+1]a[k+1](1 + b2c) + (1 + b)(1 + b2c)t̃ + C[k] + D,

p[k+3] = (θ[k+3]a[k+3] + b(s[k+3] −C[k] − d))3c

= θ[k+3]a[k+3]3c + b3c(θ[k+2]a[k+2]2c + θ[k+1]a[k+1](1 + b2c) + (1 + b)(1 + b2c)t̃)

......
s[n] = C[n−1] =

∑n−k−1
h=1 θ[k+h]a[k+h]hc ∏n−k−1

l=h+1 (1 + blc) + t̃
∏n−k−1

l=1 (1 + blc) + C[k] + D,

p[n] = θ[n]a[n](n − k)c + b(n − k)c

n−k−1∑
h=1

θ[k+h]a[k+h]hc
n−k−1∏
l=h+1

(1 + blc) + t̃
n−k−1∏

l=1

(1 + blc)

 .
Hence,

Cmax = s[n] + p[n]

=

n−k−1∑
h=1

θ[k+h]a[k+h]hc
n−k−1∏
l=h+1

(1 + blc) + t̃
n−k−1∏

l=1

(1 + blc)

+

k∑
h=1

a[h]hc
k∏

l=h+1

(1 + blc) + t̃
k∏

l=1

(1 + blc) + D

+θ[n]a[n](n − k)c + b(n − k)c

n−k−1∑
h=1

θ[k+h]a[k+h]hc
n−k−1∏
l=h+1

(1 + blc) + t̃
n−k−1∏

l=1

(1 + blc)


=

1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bkc
k−1∏
h=2

(1 + bhc)

a[1]

+

2c + b3c2c + b4c2c(1 + b3c) + · · · + bkc2c
k−1∏
h=3

(1 + bhc)

a[2]

+... + ((k − 1)c + bkc(k − 1)c)a[k−1] + kca[k]

+

(
+b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c)
+ · · · + b(n − k)c ∏n−k−1

h=2 (1 + bhc)

)
θ[k+1]a[k+1]

+

2c + b3c2c + b4c2c(1 + b3c) + · · · + b(n − k)c2c
n−k−1∏

h=3

(1 + bhc)

θ[k+2]a[k+2]

+... + ((n − k − 1)c + b(n − k − 1)c(n − k)cθ[n−1]a[n−1] + (n − k)cθ[n]a[n]
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+

(
b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bkc ∏k−1

l=1 (1 + blc)
+b + b2c(1 + b) + ... + b(n − k)c ∏n−k−1

l=1 (1 + blc)

)
t̃ + D

=

k∑
j=1

∆ ja[ j] +

n∑
j=k+1

∆ jθ[ j]a[ j] + E (10)

where,

∆1 = 1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bkc ∏k−1
h=2(1 + bhc)

∆2 = 2c + b3c2c + b4c2c(1 + b3c) + · · · + bkc2c ∏k−1
h=3(1 + bhc)

......

∆k−1 = (k − 1)c + bkc(k − 1)c

∆k = kc

∆k+1 = 1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c)
+ · · · + b(n − k)c ∏n−k−1

h=2 (1 + bhc)
∆k+2 = 2c + b3c2c + b4c2c(1 + b3c) + · · · + b(n − k)c2c ∏n−k−1

h=3 (1 + bhc)
...... (11)
∆n−1 = (n − k − 1)c + b(n − k − 1)c(n − k)c

∆n = (n − k)c,

and

E = D + t̃
(

b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bkc ∏k−1
l=1 (1 + blc)

+b + b2c(1 + b) + ... + b(n − k)c ∏n−k−1
l=1 (1 + blc)

)
. (12)

3.3. Case iii (k = n)

Similarly, if k = n, the actual processing time of T[ j] is

p[ j] =
(
a[ j] + bs[ j]

)
jc, j = 1, 2, . . . , n, (13)

we have

Cmax = (a[1] + bt̃) + (a[2]2c + b2ca[1] + b2c(1 + b)t̃)

+... +

a[n]nc + bnc

 n−1∑
h=1

a[h]hc
n−1∏

l=h+1

(1 + blc) + t̃
n−1∏
l=1

(1 + blc)

 + D

=

1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bnc
n−1∏
h=2

(1 + bhc)

a[1]

+

2c + b3c2c + b4c2c(1 + b3c) + · · · + bnc2c
n−1∏
h=3

(1 + bhc)

a[2]

+... + ((n − 1)c + bnc(n − 1)c)a[n−1] + nca[n]

+
(

b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bnc ∏n−1
l=1 (1 + blc)

)
t̃ + D

=

n∑
j=1

∆ ja[ j] + E (14)
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where

∆1 = 1 + b2c + b3c(1 + b2c) + b4c(1 + b2c)(1 + b3c) + · · · + bnc ∏n−1
h=2(1 + bhc)

∆2 = 2c + b3c2c + b4c2c(1 + b3c) + · · · + bnc2c ∏n−1
h=3(1 + bhc)

...... (15)
∆n−1 = (n − 1)c + bnc(n − 1)c

∆n = nc,

and

E = D +

b + b2c(1 + b) + b3c(1 + b)(1 + b2c) + ... + bnc
n−1∏
l=1

(1 + blc)

t̃. (16)

3.4. Optimal solution

Lemma 1. (Hardy et al. [30])
∑n

i= j µ jν j get the minimum, when sequence µ j and sequence ν j is
arranged in opposite monotonous order.

From Eqs (8), (12) and (16), we have that E is a constant.
For case i (i.e., k = 0), the problem 1|ma, tpdde|Cmax can be easily solved by Lemma 1 in O(n log n)

time, i.e., µ j = ∆ j (see Eqs (6) and (7)), ν j = θ ja j.
For case iii (i.e., k = n), the problem 1|ma, tpdde|Cmax can be easily solved by Lemma 1 in O(n log n)

time, i.e., µ j = ∆ j (see Eqs (14) and (15)), ν j = a j.
For case ii (i.e., 0 < k < n), let Z j,r = 1 if job T j is scheduled in rth position, and Z j,r = 0, otherwise.

Form Eq (10), the optimal solution of the problem 1|ma, tpdde|Cmax can be solved by the following
assignment problem:

Min

 n∑
j=1

k∑
r=1

∆ra jZ j,r +

n∑
j=1

n∑
r=k+1

∆rθ ja jZ j,r

 (17)

Subject to
n∑

j=1

Z j,r = 1, r = 1, 2, . . . , n, (18)

n∑
r=1

Z j,r = 1, j = 1, 2, . . . , n, (19)

Z j,r = 0 or 1, j, r = 1, 2, . . . , n, (20)

where ∆r (r = 1, 2, . . . , n) is given by Eq (11).
Let Cmax(k) be the makespan under a given k (k = 0, 1, 2, . . . , n), from the above analysis, we

propose the following algorithm to solve the problem 1|ma, tpdde|Cmax.

Algorithm 1
Step 1. Set k = 0, calculate µ j = ∆ j (see Eqs (6) and (7)) and ν j = θ ja j, determine a local optimal

job sequence by Lemma 1, and record the objective function Cmax(k = 0).
Step 2. Set k = 1, 2, . . . , n−1, calculate ∆r (see Eq (11)) and determine a local optimal job sequence

by an assignment problem Eqs (17)–(20), and record the objective function Cmax(k) (k = 1, 2, . . . , n−1).

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11756–11767.



11764

Step 3. Set k = n, calculate µ j = ∆ j (see Eqs (14) and (15)) and ν j = a j, determine a local optimal
job sequence by Lemma 1, and record the objective function Cmax(k = n).

Step 4. The optimal job sequence is the one with the minimum objective function value C∗max =

min{Cmax(k)|k = 0, 1, 2, . . . , n}.

Theorem 1. The problem 1|ma, tpdde|Cmax can be solved by Algorithm 1 in O(n4) time.

Proof. Steps 1 and 3 need O(n log n) time respectively. For each k (k = 1, 2, . . . , n−1), the running time
for solving each assignment problem needs O(n3) time. Step 4 needs O(n) time. Hence, the overall
time complexity of Algorithm 1 is O(n4) time. �

Example 1. Consider a 6-job problem 1|ma, tpdde|Cmax, where a1 = 3, a2 = 4, a3 = 5, a4 = 8, a5 =

9, a6 = 7, θ1 = 0.7, θ2 = 0.6, θ3 = 0.7, θ4 = 0.8, θ5 = 0.6, θ6 = 0.9, t̃ = 1, b = 0.15, c = 0.3, and D = 3.

Solution:
For k = 0, from Eqs (7) and (8), we have ∆1 = 2.7453, ∆2 = 2.8530, ∆3 = 2.6660, ∆4 = 2.3680,

∆5 = 2.0368, ∆6 = 1.7118, and E = 5.1571. The local optimal job sequence is ϕ = {J2 → J1 → J3 →

J5 → J6 → J4}, and Cmax(0) = 63.6427.
For k = 1, from Eqs (11) and (12), we have ∆1 = 1, ∆2 = 2.1845, ∆3 = 2.2701, ∆4 = 2.1214,

∆5 = 1.8842, ∆6 = 1.6207, and E = 4.6621. The local optimal job sequence is ϕ = {J6 → J2 → J1 →

J3 → J5 → J4}, and Cmax(1) = 49.6442.
For k = 2, from Eqs (11) and (12), we have ∆1 = 1.1847, ∆2 = 1.2311, ∆3 = 1.7573, ∆4 = 1.8262,

∆5 = 1.7065, ∆6 = 1.5157, and E = 4.3832. The local optimal job sequence is ϕ = {J4 → J6 → J2 →

J1 → J3 → J5}, and Cmax(2) = 44.6886.
For k = 3, from Eqs (11) and (12), we have ∆1 = 1.4317, ∆2 = 1.4879, ∆3 = 1.3904, ∆4 = 1.4317,

∆5 = 1.4879, ∆6 = 1.3904, and E = 4.2930. The local optimal job sequence is ϕ = {J3 → J1 → J6 →

J5 → J2 → J4}, and Cmax(3) = 45.8487.
For k = 4, from Eqs (11) and (12), we have ∆1 = 1.7573, ∆2 = 1.8262, ∆3 = 1.7065, ∆4 = 1.5157,

∆5 = 1.1847, ∆6 = 1.2311, and E = 4.3832. The local optimal job sequence is ϕ = {J2 → J1 → J3 →

J6 → J4 → J5}, and Cmax(4) = 50.2634.
For k = 5, from Eqs (11) and (12), we have ∆1 = 2.1845, ∆2 = 2.2701, ∆3 = 2.1214, ∆4 = 1.8842,

∆5 = 1.6207, ∆6 = 1, and E = 4.6621. The local optimal job sequence is ϕ = {J2 → J1 → J3 → J6 →

J4 → J5}, and Cmax(5) = 62.3724.
For k = 6, from Eqs (15) and (16), we have ∆1 = 2.7453, ∆2 = 2.8530, ∆3 = 2.6660, ∆4 = 2.3680,

∆5 = 2.0368, ∆6 = 1.7118, and E = 5.1571. The local optimal job sequence is ϕ = {J2 → J1 → J3 →

J6 → J4 → J5}, and Cmax(6) = 86.3039.
From above analysis, the optimal value is k = 2, the optimal job sequence is ϕ∗ = {J4 → J6 →

J2 → J1 → J3 → J5}, and the optimal value is C∗max = 44.6886.

4. Conclusions

We studied the single-machine problem with tpdde and ma, where the objective function is to
minimize the makespan. It is showed that the problem 1|ma, tpdde|Cmax can be solved in O(n4) time.
Future research may focus on the problems with general time-and-position dependent deteriorating

effects p[ j] =

{
(a[ j] + b[ j]s[ j]) jc, if j ≤ k,
(θ[ j]a[ j] + b[ j](s[ j] −C[k] − D))( j − k)c, if j > k.

Another possible challenging is to

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11756–11767.
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consider the problems under parallel machines. The model assumptions can also be extended to for
several special cases of processing set restrictions like as Scenario-Dependent Component Processing
Times or Release Dates (see Wu et al. [31]; Wu et al. [32]; Wu et al. [33]).
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