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Abstract: In this paper, synchronization of fractional-order memristive recurrent neural networks
via aperiodically intermittent control is investigated. Considering the special properties of memris-
tor neural network, differential inclusion theory is introduced. Similar to the aperiodically strategy
of integer order, aperiodically intermittent control strategy of fractional order is proposed. Under the
framework of Fillipov’s solution, based on the intermittent strategy of fractional order systems and the
properties Mittag-Leffler, sufficient criteria of aperiodically intermittent strategy are obtained by con-
structing appropriate Lyapunov functional. Some comparisons are given to demonstrate the advantages
of aperiodically strategy. A simulation example is given to illustrate the derived conclusions.
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1. Introduction

The concept of memristor was proposed by Chua [1, 2]. The characteristic of memristive systems
is shown in Figure 1. Until more than 30 years later, Hewlett Packard laboratory [3, 4] announced the
realization of the physical devices of the memristor. The theory and application of memristor have
attracted the attention of scholars again. Memristor has the advantages of smaller size, lower energy
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consumption, and larger information storage capacity. Memristor is Therefore, memristor is the best
choice to construct the next generation neural network instead of resistor and improve the efficiency of
intelligent algorithm in machine learning [5–7]. Therefore, memristor-based neural networks can be
constructed (see Figure 2). In Figure 2, M1i1, ...,M1in and M2i1, ...,M2in are memristor, other parameters
are same as traditional neural networks with resistor [8]. Shi and Cao et al. [9] first investigated
exponential stability of complex-valued memristive neural networks. In [10], Yang and Ho analyzed
the robustness of the memristive neural network. In [11], a more general situation of mixed delays
is discussed. Mehrabbeik [12] et al. investigate synchronization of the m-Rulkov model. In addition,
memristive neural networks with time delay [13,14], time-varying delay [15,16], mixed delays [17,18]
and switching jumps mismatch [8, 19] are discussed.
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Figure 1. The state trajectories of current and voltage characteristics of the memoristor.
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Figure 2. Circuit of the i-th memristive neural networks.

Fractional calculus which was proposed in 1695, appears almost at the same time as classical cal-
culus. In later research, scholars found that some models can not be well described by using classical
integral calculus. On the contrary, fractional calculus can well describe those models. In recent years,
the theory of fractional calculus has been successfully applied to various fields. There are more and

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11717–11734.



11719

more works on fractional order dynamical systems . Wang and Yang [23] first discussed the quasi-
synchronization problem of fractional-order systems with different structures. In [24], Bifurcations
of fractional complex-valued neural networks with delays is investigated. The synchronization of
fractional order systems with discontinuous activation functions is studied in [25]. In addition, the
fractional order system is also analyzed from the mathematical point of view [20–22].

Synchronization is one of the most common collective behaviors of dynamical systems [26, 27].
Synchronization usually refers to the phenomenon of phase consistency among dynamical systems.
Synchronization not only exists widely in nature, but it is also very important in practical applications.
There are a lot of results about synchronization. In these published results, some control strategies are
used to achieve synchronization, such as predictive control [28], adaptive control [29], iterative learning
control [30], fuzzy control [31], sliding-mode control [32], event-triggered control [33–35], sampled-
date control [36], impulsive control [37–40], intermittent control [41–43] and so on. Among those
control strategies, intermittent control strategy is the most representative one, and also the one most
in line with actual needs. So, intermittent control attracts more and more attention. The intermittent
strategy can be divided into periodically intermittent and aperiodically intermittent. Synchronization
of integer order systems via periodically intermittent control or aperiodically intermittent control has
been widely studied [41–43]. Synchronization of fractional order systems via periodically intermittent
strategy has been investigated in [41, 42]. However, as far as we know, there are no literatures on
fractional order dynamical systems via aperiodically intermittent strategy.

Inspired by the idea of aperiodically intermittent strategy of integer order, aperiodically intermit-
tent strategy is extended to fractional order systems. In the works of integer-order dynamical behavior,
both periodically intermittent control and aperiodically intermittent control are widely studied. Among
those works, The advantages of aperiodically intermittent control are proven. In addition, unlike pe-
riodically intermittent control with fixed width control interval and non-control interval, aperiodically
control has fewer interval constraints(see Figure 3), which makes aperiodically intermittent control
more flexible and more in line with application requirements. This paper investigates synchronization
of fractional order memeristive neural networks via aperiodically intermittent control. Firstly, accord-
ing to the characteristics of memristive neural networks, dynamical systems with differential inclusion
is obtained. Then, in the sense of Filipov’s solution, systems with differential inclusion are transformed
into conventional forms that can be processed. Finally, based on the periodically intermittent control
theory, sufficient conditions of synchronization of memeristive neural networks via aperiodically in-
termittent control are derived. The structure of this paper is organized as follows: In Section 2, some
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tk               sk         tk+1                             sk+1                       tk+2

Figure 3. Aperiodically intermittent control.

useful definitions, basic assumptions and lemmas are recalled. In Section 3, based on the theory of frac-
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tional order periodically control, sufficient conditions for synchronization are derived by constructing
appropriate Lyapunov functional. In addition, Some comparisons with existing results are given verify
advantages of the derived conditions. In Section 4, a numerical example is given to demonstrate the
derived conditions. Conclusions are given in Section 5.

Notations. This paper is a conducted in the sense of Filippov’s. Rm×n denote the m × n real-valued
matrix set. co{x, y} represents convex hull of x and y. λmax(·) denotes the max eigenvalue of a matrix.
T denotes the matrix transposition. Inf(·) and Sup(·) denote the upper bound and lower bound. || · ||
denotes the norm of a matrix vector.

2. Preliminary

The Captuto calculus is the most common of many types of calculus. The properties of some
integer-order differentials can be applied directly, which is one of the reasons for the wide application
of Caputo calculus. In this article, Captuto calculus is used for analysis.

Definition 1. [23] For any integrable function f (t) ∈ C, the fractional integral of order α of function
f(t) is defined as

Iα f (t) =
1

Γ(α)

∫ t

t0
(t − s)α−1 f (s)ds,

where α > 0, and Γ(·) is Gamma function.

Definition 2. [23] For any function f(t), Caputo’s derivative of order α is defined by

Dα f (t) =
1

Γ(n − α)

∫ t

t0
(t − s)n−α−1 f n(s)ds,

where n is a positive number and n − 1 < α < n. Particularly, when n = 1,

Dα f (t) =
1

Γ(1 − α)

∫ t

t0

f (s)
(t − s)α

ds.

Fractional-order memristive neural networks of Caputo’s derivative are defined by

Dαx(t) = −Cx(t) + A(x(t)) f (x(t)) + I(t), (2.1)

where α is the order of Captuto’s derivative, x(t) = (x1(t), x2(t), · · ·, xn(t))T ∈ Cn, xi(t) is
the complex-valued state variable. C = diag{ci}n×n ∈ Rn×n is the ith self-feedback con-
nection weight with ci > 0 (i = 1, 2, ..., n). A(x(t)) = ai j(xi j(t))n×n are connection weights
f (x(t)) = ( f1(x1(t)), f2(x2(t)), ..., fn(xn(t)))T are activation function. I(t) = (I1(t), I2(t), ..., In(t))T ∈ Cn

are external input.

Similarly, the slave-systems are denoted as follows:

Dαy(t) = −Cy(t) + A(y(t)) f (y(t)) + I(t) + u(t), (2.2)

where u(t) = (u1(t), u2(t), ..., un(t))T are controller.
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Figure 4. Two-state current-voltage characteristics of memristor.

For the convenience of discussion, Figure 4 is used for discussion. Figure 4 is a simplified model
of Figure 1. In this case, the connection weight ai j(x j(t)) of (2.1) are defined as follows [15]

ai j(v j(s)) =

a′, |v j(s)| ≤ T,

a′′, |v j(s)| > T,

where T is the switching threshold value with master-systems (2.1) and slave-systems (2.2). a′ and a′′

denote two states of ai j(v j(t)).

Lemma 1. [42] If x(·) : [t0,∞)→ R is a continuous differential function and

Dαx(t) ≤ −ax(t), t ≥ t0,

where a and b are positive constants, then

x(t) ≤ (x(t0) −
b
a

)Eα(−a(t − t0)α), t ≥ t0 ≥ 0,

where Eα(−a(t − tα0 )) is one-parameter Mittag-Leffler function which is defined by

Eα(z) = Eα,1(z) =

∞∑
k=0

zk

Γ(α + 1)
.

Lemma 2. [41] For x(·) and y(·) are two continuous differential functions, if α, β > 0, then

DαD−βx(t) = Dα−βx(t),

Dα(x(t) ± y(t)) = Dαx(t) ± Dαy(t).

Lemma 3. [25] Let f (t) = ( f1(t), f2(t), ..., fn(t))T is a n-dimensional vector differentiable function, for
any positive definite symmetric matrix Q ∈ Rn×n. The following inequalities can be derived

Dα( f T (s)Q f (s)) ≤ 2 f T (s)QDα f (s),

where α ∈ [0, 1], 0 ≤ s.
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Assumption 1. [24] For the aperiodically intermittent strategy, the control interval and non-control
interval satisfy the following equations 

Inf
k

(sk − tk) = h,

Sup
k

(tk+1 − tk) = H,

where h and H are two positive scalars and satisfy 0 < h < H < +∞.

Based on the Assumption 1, (2.1) can be rewritten as the following differential inclusion:

Dαx(t) ∈ −Cx(t) + co[A(x(t))] f (x(t)) + I(t),
Dαy(t) ∈ −Cy(t) + co[A(y(t))] f (y(t)) + I(t).

(2.3)

Under the Assumption 1, define e j(t) = y j(t) − x j(t) for j = 1, 2, ..., n. So, error systems can be
obtained:

Dαe(t) ∈ −C(y(t) − x(t)) + co[A(y(t))] f (y(t)) − co[A(x(t))] f (x(t)) + u(t), (2.4)

u(t) =

−K(y(t) − x(t)), tk ≤ t < sk,

0, sk ≤ t < tk+1,
(2.5)

where K are gain coefficients.

Lemma 4. [42] For any activation functions f (±T ) = 0, then one can derive that

co[ai j(y(t))] f j(y j(t)) − co[ai j(x j(t))] f j(x j(t)) ≤ a∗i jl j|y j(t) − x j(t)|,

where l j is the Lipschitz condition and a∗i j is the maximum of a′ and a′′.

3. Main results

In this section, the synchronization problems of fractional order memristor-based neural netwroks
via aperiodically intermittent control strategy would be investigated. Sufficient conditions will be
derived.

Theorem 1. Under the Lemmas 1–4, and Assumption 1, fractional-order master-system (2.1) and
slave-systems (2.2) can achieve synchronization under controller (2.5), if

−||C|| + ||A||||L|| < ||K||,

Eα(−γ1hα)Eα(γ2(H − h)α) < 1,

where, γ1 = −||C|| + ||A||||L|| − ||K|| and γ2 = −||C|| + ||A||||L|| are two positive scalers.

Proof. Constructing the following Lyapunov functional

V(t) =
1
2

eT (t)e(t).
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For, tk ≤ t < sk, deriving derivative of V(t) along along with (2.3), one can get

DαV(t) ≤ eT (t)Dαe(t).

Combining the error systems (2.4) and Lemma 3,

DαV(t)
≤eT (t)(−Ce(t) + A(y(t)) f (y(t)) − A(x(t)) f (x(t)) + u(t))
≤eT (t)(−Ce(t) + (A(y(t)) f (y(t)) − A(x(t)) f (x(t))) − Ke(t)))
≤ −C||e(t)||2 + ||eT (t)||||(A(y(t)) f (y(t)) − A(x(t)) f (x(t)))|| − ||K||||e(t)||2

≤ −C||e(t)||2 + ||A||||L||||e(t)||2 − ||K||||e(t)||2

=(−||C|| + ||A||||L|| − ||K||)||e(t)||2.

According to the Theorem conditions, −γ1 = −||C|| + ||A||||L|| − ||K|| < 0, so

Dα ≤ −γ1V(t).

Based on the Lemma 4, the following equalities can be derived

V(t) ≤ V(tk)Eα(−γ1(t − ttk)
α).

Similarly, For, sk ≤ t < tk+1 Deriving derivative of V(t) along along with (2.4), one can get

DαV(t) ≤ eT (t)Dαe(t).

Combining the error system (2.4) and Lemma 3,

DαV(t)
≤eT (t)(−Ce(t) + A(y(t)) f (y(t)) − A(x(t)) f (x(t)))
≤eT (t)(−Ce(t) + (A(y(t)) f (y(t)) − A(x(t)) f (x(t)))))
≤ −C||e(t)||2 + ||eT (t)||||(A(y(t)) f (y(t)) − A(x(t)) f (x(t)))||
≤ −C||e(t)||2 + ||A||||L||||e(t)||2

=(−||C|| + ||A||||L||)||e(t)||2.

According to the Theorem conditions, γ2 = −C + Al > 0, so

Dα ≤ γ2V(t).

Based on the Lemma 4, the following equalities can be derived

V(t) ≤ V(sk)Eα(γ2(t − sk)α).

According to the principle of mathematical induction, combining the control period sk − tk and
non-control period tk+1 − sk, when k = 0, one can get that:

For 0 = t0 ≤ t < s0, based on the Lemma 2, one can get

V(t) ≤ V(t0)Eα(−γ1(t − t0)α) = V(0)Eα(−γ1tα), (3.1)
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so, one can derive
V(s0) ≤ V(t0)Eα(−γ1(s0 − t0)α). (3.2)

For s0 ≤ t < t1,
V(t) ≤ V(s0)Eα(γ2(t − s0)α), (3.3)

so, one can derive
V(t1) ≤ V(t0)Eα(−γ1(s0 − t0)α)Eα(γ2(t1 − s0)α). (3.4)

For t1 ≤ t < s1,
V(t) ≤ V(t1)Eα(−γ1(t − t1)α), (3.5)

so, one can derive

V(s1) ≤ V(t0)Eα(−γ1(s0 − t0)α)Eα(γ2(t1 − s0)α)Eα(−γ1(s1 − t1)α). (3.6)

For s1 ≤ t < t2,
V(t) ≤ V(s1)Eα(γs(t − s1)α), (3.7)

so, one can derive

V(t2) ≤ V(t0)Eα(−γ1(s0 − t0)α)Eα(γ2(t1 − s0)α)Eα(−γ1(s1 − t1)α)Eα(γs(t2 − s1)α). (3.8)

For t2 ≤ t < s2

V(t) ≤ V(t2)Eα(−γ1(t − t2)α), (3.9)

so, one can derive

V(s2) ≤V(t0)Eα(−γ1(s0 − t0)α)Eα(γ2(t1 − s0)α)Eα(−γ1(s1 − t1)α)
Eα(γ1(t2 − s1)α)Eα(−γ1(s2 − t2)α).

(3.10)

For s2 ≤ t < t3,
V(t) ≤ V(s2)Eα(−γ1(t − s2)α), (3.11)

so, one can derive that

V(t3) ≤V(t0)Eα(−γ1(s0 − t0)α)Eα(γ2(t1 − s0)α)Eα(−γ1(s1 − t1)α)Eα(γs(t2 − s1)α)
Eα(−γ1(s2 − t2)α)Eα(−γ1(t − s2)α).

(3.12)

According to the principle of mathematical analogy, when k = m, one can assume
For tm ≤ t < sm,

V(t) ≤ V(t0)
m−1∏
k=1

(Eα(−γ1(sk − tk)α)Eα(tk+1 − sk))Eα(−γ1(t − tm)α), (3.13)

so, one can derive that

V(sm) ≤ V(t0)
m−1∏
k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α))Eα(−γ1(sm − tm)α). (3.14)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11717–11734.
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For, sm ≤ t < tm+1,

V(t) ≤ V(s0)
m−1∏
k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α))Eα(−γ1(sm − tm)α)Eα(γ2(t − sm)), (3.15)

so, one can get that

V(tm+1) ≤V(s0)
m−1∏
k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α))Eα(−γ1(sm − tm)α)Eα(γ2(tm+1 − sm))

=V(t0)
m∏

k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α)).

(3.16)

Suppose the Eqs (3.13)–(3.16) are hold. According to the principle of mathematical recursive rea-
soning, when tm+1 ≤ t < sm+1, one can get

V(t) ≤ V(tm+1)(−γ1Eα(t − tm+1)α). (3.17)

One can derive

V(sm+1) ≤ V(t0)
m∏

k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α))(−γ1Eα(sm+1 − tm+1)α). (3.18)

For sm+1 ≤ t < tm+2,

V(t) ≤ V(t0)
m∏

k=1

(Eα(−γ1(sk − tk)α)Eα(γ2(tk+1 − sk)α))Eα(−γ1(sm+1 − tm+1)α)Eα(γ2(t − sm+1)α). (3.19)

Based on the Assumption 1, one can have that the lower bound of sk − tk is h and the upper bound
of tk+1 − tk is H. The upper bound of tk − sk is H − h. Therefore, one can obtain that:

For tm+1 ≤ t < sm+1,

V(t) ≤ V(t0)
m∏

k=1

(Eα(−γ1(h)α)Eα(γ2(H − h)α))Eα(−γ1(t − tm+1)α). (3.20)

For sm+1 ≤ t < tm+2,

V(t) ≤ V(t0)(Eα(−γ1(h)α)mEα(γ2(H − h)α))mEα(−γ1(h)α)Eα(γ2(t − sm+1)α). (3.21)

From the condition (Eα(−γ1hα)mEα(γ2(H − h)α))m < 1 and 0 ≤ t − h − tm < H − h, we can derive
that (Eα(−γ1hα)mEα(γ2(t − h − tk)α))m is bounded. So, one can obtain

lim
m→∞

(Eα(−γ1(h)α)mEα(γ2(H − h)α))m = 0.

Then, limt→∞ V(t) = 0, the proof of theorem is over.
This completes the proof of Theorem.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11717–11734.
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Remark 1. In Theorem 1, by using aperiodically intermittent controller, synchronization problem is
investigated. Based on the property of Mittag-Leffler function, through strict mathematical reasoning,
we can derive V(t)→ 0 when t → ∞. Therefore, we can get that the theorem holds.

Remark 2. Intermittent synchronization strategy has been studied [41] and [42]. In [41], synchroniza-
tion via aperiodically intermittent strategy is first given in the form of a theory. Compared with [41]
and [42], aperiodically intermittent strategy is more general. In Theorem 1, if the control interval
tk − sk ≡ h and tk − sk ≡ H, aperiodically intermittent strategy is degraded to periodically intermittent
control. That is to say, periodically intermittent control is a special form of aperiodically intermit-
tent strategy. Aperiodically intermittent strategy owns more practical characteristics. In this case, a
corollary (see Corollary 1) is given.

Remark 3. Synchronization of integer order dynamical systems via aperiodically intermittent control
has been investigated. As far as we know, there are no works on fractional order. As is known to all,
integral order derivative is a special case of fractional order derivative. When the fractional order
derivative a = 1, the derived conclusion can be directly applied to the integral order works. That is to
say, the works of integer order on aperiodically intermittent are a special case of Theorem 1.

Corollary 1. When tk − sk ≡ h and tk − tk+1 ≡ J, the controller (2.5) is degenerated into

u(t) =

−K(y(t) − x(t)), tk ≤ t < sk + h,

0, sk + h ≤ t < tk+1.
(3.22)

Controller (3.22) is rewritten as

u(t) =

−K(y(t) − x(t)), kH ≤ t < kH + h,

0, kH + h ≤ t < (k + 1)H.
(3.23)

Under the Lemmas 1–4, and Assumption 1, fractional-order master-system (2.1) and slave-systems
(2.2) can achieve synchronization under controller (3.22) or (3.23), if

−||C|| + ||A||||L|| < ||K||,

Eα(−γ1hα)Eα(γ2(H − h)α) < 1,

where, γ1 = −||C||+ ||A||||L|| − ||K|| and γ2 = −||C||+ ||A||||L|| are two positive scalers. All the parameters
are the same as Theorem 1.

4. Simulation

In this section, an example is given to verify the validity of the sufficient conditions derived by the
Theorem 1.

Example 1. Considering three-neuron fractional-order MRNNs, the master-systems are as follows:

Dαy(t) = −Cx(t) + A(x(t)) f (x(t)) + I(t), (4.1)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11717–11734.
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where α = 0.95, I j(t) = (0, 0, 0), j = 1, 2, 3

C =


3 0 0
0 3 0
0 0 3

 ,
f j(x j(t)) = tanh(x j(t)) ( j = 1, 2, 3),

and

a11(x1(t)) =

2, |x1(t)| ≤ 1,
1.85, |x1(t)| > 1,

, a12(x2(t)) =

1.6, |x2(t)| ≤ 1,
1.5, |x2(t)| > 1,

, a13(x3(t)) =

−9, |x3(t)| ≤ 1,
−8.8, |x3(t)| > 1,

,

a21(x1(t)) =

−9, |x1(t)| ≤ 1,
−8.8, |x1(t)| > 1,

, a22(x2(t)) =

2, |x2(t)| ≤ 1,
1.85, |x2(t)| > 1,

, a23(x3(t)) =

1.6, |x3(t)| ≤ 1,
1.5, |x3(t)| > 1,

,

a31(x1(t)) =

1.6, |x1(t)| ≤ 1,
1.5, |x1(t)| > 1,

, a32(x2(t)) =

−9, |x2(t)| ≤ 1,
−8.8, |x2(t)| > 1,

, a33(x3(t)) =

2, |x3(t)| ≤ 1,
1.85, |x3(t)| > 1.

The slave-systems of MRNNs are considered as follows:

Dαy(t) = −Cy(t) + A(y(t)) f (y(t)) + I(t) + u(t), (4.2)

some parameters are given as follows: H = 2, h = 1.4, K = 18, l1 = l2 = l3 = 1, one can get
γ1 = −||C|| + ||L||||A|| − K < 0, γ2 = 7.5357 > 0 Eα(−γ1hα)Eα(γ2(H − h)α) = 0.5730 < 1. The state
trajectories of x1(t), x2(t), x3(t) are depicted on Figure 5 with initial condition x(0) = [1,−2, 3]T . Under
the initial condition of y(0) = [−1, 2,−3]T , Figure 6 depicts the errors of x(t) and y(t) without control.
Figures 7–9 depict synchronization state trajectories of (x1(t), y1(t))), (x2(t), y2(t)) and (x3(t), y3(t)) with
control. Each dimensional synchronization error is described in Figure 10. From synchronization
states Figures 7–9, one can derive that master-slave systems can get synchronization with designed
controller. Synchronization error Figure 10 also verifies the derived theory.

5. Conclusions

In this paper, by using aperiodically intermittent controller, the synchronization problem of
fractional-order memristor-based recurrent neural networks is investigated. Although there have been
some results about aperiodically intermittent control, those results are studied in integer domain. In
the case of fractional calculus, as far as we know, there are only some works on periodically inter-
mittent control. With reasonable assumptions and suitable lemmas, by means of Lyapunov method,
synchronization is obtained via aperiodically intermittent control. A simulation example is presented
to illustrate the validity of derived sufficient conditions which. Delays are widespread in dynamical
systems. Different kinds of delay will have different effects on the dynamical system. It is of great
significance to study the influence of delay on dynamical system. In this paper, system are considered
without delay. Therefore, in the future, we consider the situation with delays. Furthermore, In addition,
the selection of parameters usually depends on experience, resulting in high control costs. Therefore,
in the future, optimization algorithm is considered to find the optimal parameter.
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Figure 5. The phase trajectories of x1, x2, x3.
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Figure 6. The error trajectories without control.
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Figure 7. The synchronization trajectories of x1, y1 with control.
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Figure 8. The synchronization trajectories of x2, y2 with control.
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Figure 9. The synchronization trajectories of x3, y3 with control.
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