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Abstract: The need for multi-attribute decision-making brings more and more complexity, and this
type of decision-making extends to an ever wider range of areas of life. A recent model that captures
many components of decision-making frameworks is the complex q-rung picture fuzzy set (Cq-RPFS),
a generalization of complex fuzzy sets and q-rung picture fuzzy sets. From a different standpoint,
linguistic terms are very useful to evaluate qualitative information without specialized knowledge. In-
spired by the ease of use of the linguistic evaluations by means of 2-tuple linguistic term sets, and the
broad scope of applications of Cq-RPFSs, in this paper we introduce the novel structure called 2-tuple
linguistic complex q-rung picture fuzzy sets (2TLCq-RPFSs). We argue that this model prevails to
represent the two-dimensional information over the boundary of Cq-RPFSs, thanks to the additional
features of 2-tuple linguistic terms. Subsequently, some 2TLCq-RPF aggregation operators are pro-
posed. Fundamental cases include the 2TLCq-RPF weighted averaging/geometric operators. Other
sophisticated aggregation operators that we propose are based on the Hamacher operator. In addition,
we investigate some essential properties of the new operators. These tools are the building blocks of a
multi-attribute decision making strategy for problems posed in the 2TLCq-RPFS setting. Furthermore,
a numerical instance that selects an optimal machine is given to guarantee the applicability and effec-
tiveness of the proposed approach. Finally, we conduct a comparison with other existing approaches.
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1. Introduction

Multi-attribute decision-making (MADM) is a procedure in which an alternative fulfilling all re-
quirements is chosen from a set of available alternatives. Researchers have studied MADM problems
in different areas and provided their solutions. Originally it was concerned with perfectly determined
alternatives (crisp formulation) and many competing approaches have been formulated under that as-
sumption. However, after Zadeh [1] presented the idea of a robust theory, fuzzy set (FS) theory, to
tackle the vagueness and uncertainties in data during decision-making (DM). In FS theory, a mem-
bership function was formed to manage the ambiguities in data. The idea of FS is in fact the main
building block as the researchers studied its features theoretically and applied it to solve MADM prob-
lems in the fuzzy framework. Researchers studied the interval-valued FSs [2, 3]. Chen and Jong [4]
studied the fuzzy query translation for relational database systems. Chen and Niou [5] presented fuzzy
multiple-attributes group decision-making based on fuzzy preference relations. FS theory proves to
be a foundational stone as it paved the way to scholars and researchers to establish many more gen-
eral and remarkable extensions, such as intuitionistic fuzzy sets (IFSs) [6–8], Pythagorean fuzzy sets
(PyFSs) [9,10], Fermatean fuzzy sets [11], hesitant fuzzy sets [12,13], and q-rung orthopair fuzzy sets
(q-ROFSs) [14]. All these models consider separate a membership degree (MD) and a non-membership
degree (NMD) of each object a, namely, γ(a) (MD of a) and δ(a) (NMD of a), and they respectively
operate under the assumptions 0 ≤ γ(a) + δ(a) ≤ 1, 0 ≤ (γ(a))2 + (δ(a))2 ≤ 1, 0 ≤ (γ(a))3 + (δ(a))3 ≤ 1
and 0 ≤ (γ(a))q + (δ(a))q ≤ 1(q ≥ 1).

The import of these models grew with the production of elements for analysis like aggregation
operators, and decision-making applications in multiple scenarios. In view of these motivations, our
main goal in this article is to present a new model (that will be abbreviated as 2TLCq-RPFS), which is
designed to contain the interesting features and properties of several models beyond the fuzzy set spirit.
By doing so we shall establish a broad generalization of fuzzy sets and related extensions. We shall
also investigate aggregation operators and applications to group decision-making for the new model.
We proceed to expand the presentation of background and explain the motivation for these targets.

A natural improvement of fuzzy sets consisted of the introduction of a neutral or abstinence degree
(AD). To incorporate the idea of a distinct AD, Cuong and Kreinovich [15] presented picture fuzzy
sets (PFSs) as an extended version of IFSs. In a PFS we assume that the sum of MD, NMD and AD
should not exceed 1 at any object. Inspired by this idea, Li et al. [16] introduced the concept of q-rung
PFS (q-RPFS), which incorporates the spirit of Yager’s q-ROFS and relax the restriction to assume that
the sum of qth power of MD, NMD and AD should be equal or less than 1. Akram et al. [17] studied
the energy of q-ROF graphs. Khan et al. [18] studied axiomatically supported divergence measures
for q-rung orthopair fuzzy sets. In DM, sometimes it becomes quite difficult to present the judgements
quantitatively. To overcome this difficulty, Zadeh [19] pointed out a difference between numerical
and linguistic data. He set up the notion of linguistic variables and presented the idea that qualitative
information can be described by means of linguistic terms (LTs). Zhang [20] presented the concept
of linguistic IFSs in which the membership functions are represented by the LTs. Garg [21] and Lin
et al. [22] introduced the idea of linguistic PyFSs. Lin et al. [23] presented the idea of linguistic
q-ROFS (Lq-ROFS). Akram et al. [24] provided the solution of a group DM problem based on Lq-
ROF Einstein models. Herrera and Martı́nez [25, 26] proposed a new model, namely 2-tuple linguistic
representation model (2TLRM) to represent the qualitative information in MADM problems through
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LTs more clearly. Further research work can be studied from [27–31]. Notably, some researchers have
presented different optimization models and applied them to solve various types of problems [32–35].
Additional algorithmic solutions and their utilizations can be studied from [36, 37] among others.

The 2TLRM has become a very popular approach for researchers to deal with the MADM problems
with linguistic data and gives a freedom to the experts to express their judgements qualitatively, i.e.,
through LTs. Aggregation operators (AOs) are indispensable tools during DM as they combine the
data to produce results. More precisely, AOs play a very crucial role to transform the data in a single
outcome. In the last years, researchers investigated, developed and applied many AOs in DM [38–43].
Liu et al. [44] proposed the Lq-ROF generalized point weighted AOs. Particularly inspirational op-
erators were proposed by Hamacher [45]. The Hamacher sum and product on more generalized t-
norm and t-conorm have generated extensions to many frameworks. Faizi et al. [46] proposed some
Hamacher aggregation operations for intuitionistic 2-tuple linguistic sets. For further study, one may
refer to [47–52]. Ju et al. [53] presented the q-ROF 2TL Muirhead mean and the dual Muirhead mean
operators. Deng et al. [54, 55] introduced 2-tuple linguistic Pythagorean fuzzy Hamy mean and Hero-
nian mean AOs. Wei [56] introduced the 2TIF linguistic AOs and Lu et al. [57] presented the bipolar
2TL AOs. Zhang et al. [58] proposed a DM method using 2TLPyFSs. Recently, Akram et al. [59]
presented the 2-tuple linguistic Fermatean fuzzy Hamy mean operators and Akram et al. [60] proposed
a DM technique using 2TLPyFSs. However, they were not designed to cope with two-dimensional or
periodic information. To handle this matter, Ramot et al. [61, 62] originated the complex FS (CFS) by
enlarging the range of MD of a FS, from [0, 1] to the unit circle in the complex plane. Researchers
have thoroughly investigated, applied and improved CFS by suitable extensions [63, 64]. Rong et
al. [65] presented complex q-ROF 2TL Maclaurin symmetric mean operators. The most necessary
tools for their manipulation have been given, and so for example, Bi et al. [66,67] proposed geometric
and arithmetic AOs in the CF environment. Liu et al. [68] presented complex q-rung orthopair fuzzy
AOs. Luqman et al. [69] studied the hypergraph representations of complex fuzzy information. Naz et
al. [70,71] established DM methods based on 2TL information. For some additional discussion on AOs
in complex settings, the readers are referred to [72–80]. In this paper, we have considered a selection
problem [39] which is related to choosing the best machine from a set of available machines. These
machines are to be evaluated on the basis of criteria such as flexibility, reliability, etc. The following
considerations have motivated us to produce this paper:

• In 2TLRM, the evaluation information is represented by a pair of elements, i.e., by (si, α), and this
pair is called a 2T. In this 2T, si represents the ordinary LT from a LTS and the value α indicates the
symbolic translation (ST). The 2TLRM proves to be an efficient model and a novel computational
approach to represent the linguistic information. This model helps to overcome the drawbacks
of the classical linguistic representation model (LRM). In addition, the 2TL model enables us to
select the alternative, when different alternatives have the same LTs. These prominent features of
the 2TLRM stimulated our work in a 2TL environment.
• The notion of Cq-RPFS is a generalized form of many existing extensions of fuzzy sets, thus it

has enormous ability to capture quantitative uncertain information. For example, by fixing the
neutral degree to zero and q to 1, the model turns into complex intuitionistic FS (CIFS). When
the neutral degree is zero and q equals 2, the model becomes complex Pythagorean FS (CPyFS).
And by considering all the membership degrees with q equal to 1, it changes into complex picture
FS (CPFS). The 2TLCq-RPFS contains the qualities of both 2TL set and complex q-rung picture
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FS (Cq-RPFS), therefore, it is quite helpful to overcome complexities in data without loss of
information, linguistic or otherwise.
• AOs have great importance during the DM process, as they transform a large number of values

into a single value. The Hamacher AOs are a parameterized general type of AOs, which produce
the averaging and Einstein operators by suitable choices of the value of a parameter. In addition,
they consider the interrelationship between the input arguments. Therefore, the adaptability of
the Hamacher operators is a good asset for our purposes.

To summarize, from the analysis above, we observe that there is no work on 2TLCq-RPFS in the
existing literature. Apart from this, the Hamacher AOs have not been studied in the present environ-
ment. In this article, we have extended the Hamacher AOs to operate on 2TLCq-RPFSs and we have
applied them for DM. We now list the major contributions of this article:

• We introduce the concept of 2TLCq-RPFS which is the generalization of 2TL term set and Cq-
RPFS. Then we establish the fundamental operational laws between two 2TLCq-RPFNs. Fur-
thermore, we present the 2TLCq-RPFWA and 2TLCq-RPFWG operators.
• We establish Hamacher laws between two 2TLCq-RPFNs. Moreover, we introduce certain AOs

for the 2TLCq-RPF environment, namely, the 2TLCq-RPFHWA, 2TLCq-RPFHOWA, 2TLCq-
RPFHWG and 2TLCq-RPFHOWG operators. We study their fundamental properties.
• We state a step-by-step algorithm for decision making and discuss its utilization with a case

study that finds the most feasible alternative from available alternatives. Further, we perform a
comparative study with some existing operators.

The remaining of the article is structured as follows: In Section 2, we recall some auxiliary notions
related to the q-RPFS, Cq-RPFS, 2TL representation model and Hamacher operators. Section 3 dis-
cusses the idea of 2TL complex q-rung picture fuzzy sets along with its related ideas, operational laws,
and the 2TLCq-RPFWA and 2TLCq-RPFWG operators. Section 4 introduces Hamacher operations
between two 2TLCq-RPFNs and a series of AOs including the 2TLCq-RPFHWA, 2TLCq-RPFHWG,
2TLCq-RPFHOWA and 2TLCq-RPFHOWG operators, along with their fundamental properties. In
Section 5, we establish a MADM strategy based on the 2TLCq-RPFHWA operator and the 2TLCq-
RPFHWG operator. To demonstrate the applicability of our proposed method, we provide a numerical
instance in Section 5, the influence of parameters on decision results, conducted a comparative study
and discussion. Finally in Section 6, we present conclusions. The abbreviations and notations are
presented in Table 1.

2. Preliminaries

There are a considerable number of auxiliary concepts which are very important to understand the
forthcoming sections. We have included some fundamental concepts for better understanding. Let us
recall them before going to the next section.

Definition 2.1. [16] On a universe H, a q-RPFS ξ (with q ≥ 1) can be defined as:

ξ = {(z, α(z), β(z), γ(z)) : z ∈ H}, (2.1)
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where α, β, γ : H → [0, 1] denotes the MD, AD and NMD, respectively, of the element z in ξ satisfying
the constraint (α(z))q + (β(z))q + (γ(z))q ≤ 1. The degree of refusal membership of a q-RPFS is given
by the formula (1 − (α(z))q + (β(z))q + (γ(z))q)

1
q , ∀z ∈ H.

Table 1. Nomenclature of the research work.
Acronyms and Notations Description
DM Decision-making
MADM Multi-attribute DM
FS Fuzzy set
IFS Intuitionistic FS
PyFS Pythagorean FS
q-ROFS q-Rung orthopair FS
PFS Picture FS
q-RPFS q-Rung PFS
MD Membership degree
NMD Non-membership degree
AD Abstinence degree
AOs Aggregation operators
2TLPyF 2-tuple linguistic PyF
2TL 2-tuple linguistic
LRM Linguistic representation model
CFS Complex FS
CIFS Complex intuitionistic FS
CPyFS Complex Pythagorean FS
CPFS Complex picture FS
Cq-RPFS Complex q-rung picture FS
2TLCq-RPFS 2-tuple linguistic complex q-rung picture fuzzy set
2TLRM 2-tuple linguistic representation model
LTS Linguistic term set
ST Symbolic translation
2TLCq-RPFWA 2TLCq-RPF weighted averaging (WA)
2TLCq-RPFWG 2TLCq-RPF weighted geometric (WG)
2TLCq-RPFHWA 2TLCq-RPF Hamacher WA
2TLCq-RPFHWG 2TLCq-RPF Hamacher WG
2TLCq-RPFHOWA 2TLCq-RPFH ordered WA
2TLCq-RPFHOWG 2TLCq-RPFH ordered WG
S̃ = {s̃k : k = 0, 1, . . . ,Υ} 2-tuple linguistic term set
Lk =

(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) 2TLCq-RPF number

(s̃αk ,Ak) Amplitude term of membership grade of 2TLCq-RPFN
(s̃βk ,Bk) Amplitude term of abstinence grade of 2TLCq-RPFN
(s̃γk ,Ck) Amplitude term of non-membership grade of 2TLCq-RPFN
(s̃ζk ,Dk) Phase term of membership grade of 2TLCq-RPFN
(s̃ηk ,Ek) Phase term of abstinence grade of 2TLCq-RPFN
(s̃θk ,Fk) Phase term of non-membership grade of 2TLCq-RPFN
x Parameter of Hamacher operator
⇐⇒ If and only if
S Score function of 2TLCq-RPFN
A Accuracy function of 2TLCq-RPFN
A Alternative
C Criteria
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Definition 2.2. [73] On a universe H, a Cq-RPFS ξ (with q ≥ 1) can be defined as:

ξ = {(z, α(z)eiζ(z), β(z)eiη(z), γ(z)eiθ(z)) : z ∈ H}, (2.2)

where α, β, γ : H → [0, 1] denotes the amplitude terms of MD, AD and NMD, respectively, of the
element z in ξ satisfying the constraint (α(z))q + (β(z))q + (γ(z))q ≤ 1. ζ, η, θ ∈ [0, 2π] denotes the
phase terms of MD, AD and NMD, respectively, of the element z in ξ, which satisfy the constraint(
ζ(z)
2π

)q

+

(
η(z)
2π

)q

+

(
θ(z)
2π

)q

≤ 1.

Definition 2.3. [25, 26] Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} having odd cardinality where Υ + 1
is the cardinality of S̃ and s̃k depicts a possible linguistic term for a LTS S̃ . Let us take an example of
a LTS S̃ for Υ = 5 as follows:

S̃ = {s̃0 = Verylow, s̃1 = Low, s̃2 = Medium, s̃3 = High, s̃4 = VeryHigh}.

Following are some initial and basic operations on a LTS:

• s̃k > s̃l,⇐⇒ k > l (ordering)
• max(s̃k, s̃l) = s̃k ⇐⇒ k ≥ l (max operator)
• min(s̃k, s̃l) = s̃k ⇐⇒ k ≤ l (min operator)
• Neg(s̃k) = s̃l such that l = Υ − k (Negative operator)

The 2TL model originated by Herrera and Martı́nez [25, 26] is very convenient and effective for
representing the qualitative evaluation information through a 2-tuple (s̃k, µk). Here, s̃k is the ordinary
LT taken from a LTS and µk is the value of ST with µk ∈ [−0.5, 0.5).

Definition 2.4. [25, 26] Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and suppose λ be the numerical
value obtained after applying an aggregation operation on the indices of LTs taken from a LTS S̃ with
λ ∈ [0,Υ]. Suppose two values k and µ, where, k = round(λ), µ = λ− k, k ∈ [1,Υ], and µ ∈ [−0.5, 0.5),
then µ is called ST.

The numerical value λ is converted into a 2T by means of the function Λ, and a 2T is transformed
into a numerical value with the help of a function Λ−1, which are defined in the next definitions.

Definition 2.5. [25, 26] Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and λ ∈ [0,Υ]. Then the function
Λ : [0,Υ]→ S̃ × [−0.5, 0.5) is defined as:

Λ(λ) =

{
s̃k, k = round(λ)
µ = λ − k, µ ∈ [−0.5, 0.5).

Definition 2.6. [25, 26] Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and a 2-tuple (s̃k, µk). Then the
function Λ−1 : S̃ × [−0.5, 0.5)→ [0,Υ] is defined as:

Λ−1(s̃k, µ) = k + µ = λ, λ ∈ [0,Υ].

Definition 2.7. A binary function T∗ : [0, 1] × [0, 1] → [0, 1] is said to be a t-conorm if there is a
t-norm T such that

T∗(m, z) = 1 − T(1 − m, 1 − z)

for all (m, z) ∈ [0, 1]2. Recall that a t-norm is T : [0, 1] × [0, 1] → [0, 1] which is commutative,
associative, monotonic, and for which 1 acts as an identity element.
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Hamacher [45] presented the Hamacher operations, namely, the Hamacher sum and product, which
are respectively defined as follows:

TH(m, z) =
mz

x + (1 − x)(m + z − mz)
, x > 0.

T∗H(m, z) =
m + z − mz − (1 − x)mz

1 − (1 − x)(mz)
, x > 0.

For x = 1, these expressions return the algebraic t-norm and t-conorm.

TH(m, z) = mz.

T∗H(m, z) = m + z − mz.

For x = 2, we get the Einstein t-norm and t-conorm.

TH(m, z) =
mz

1 + (1 − m)(1 − z)
.

T∗H(m, z) =
m + z

1 + mz
.

3. The 2-tuple linguistic complex q-rung picture fuzzy sets

This section is devoted to the novel concept of 2-tuple linguistic complex q-rung picture fuzzy set.
Moreover, we establish the operational laws between two 2TLCq-RPFNs along a brief description of
both the 2TLCq-RPFWA and 2TLCq-RPFWG operators.

Definition 3.1. We define a 2TLCq-RPFS L as

L = {
(
z, ((s̃α(z), A(z))ei2π(s̃ζ (z),D(z)), (s̃β(z), B(z))ei2π(s̃η(z),E(z)), (s̃γ(z),C(z))ei2π(s̃θ(z),F(z)))

)
: z ∈ K}, (3.1)

where (s̃α(z), A(z)),(s̃β(z), B(z)) and (s̃γ(z),C(z)) are the amplitude terms of MD, AD and NMD, re-
spectively. This they meet the following restrictions: s̃α(z), s̃β(z), s̃γ(z) ∈ L, A(z), B(z),C(z) ∈
[−0.5, 0.5), 0 ≤ Λ−1(s̃α(z), A(z)) ≤ Υ, 0 ≤ Λ−1(s̃β(z), B(z)) ≤ Υ, 0 ≤ Λ−1(s̃γ(z),C(z)) ≤ Υ and
0 ≤

(
Λ−1(s̃α(z), A(z))

)q
+

(
Λ−1(s̃β(z), B(z))

)q
+

(
Λ−1(s̃γ(z),C(z))

)q
≤ Υq with q ≥ 1.

(s̃ζ ,D(z)),(s̃η, E(z)) and (s̃θ, F(z)) are the phase terms of MD, AD and NMD, respectively, having
the restrictions s̃ζ(z), s̃η(z), s̃θ(z) ∈ L, D(z), E(z), F(z) ∈ [−0.5, 0.5), 0 ≤ Λ−1(s̃ζ(z),D(z)) ≤ Υ, 0 ≤
Λ−1(s̃η(z), E(z)) ≤ Υ, 0 ≤ Λ−1(s̃θ(z), F(z)) ≤ Υ and 0 ≤

(
Λ−1(s̃ζ(z),D(z))

)q
+

(
Λ−1(s̃η(z), E(z))

)q
+(

Λ−1(s̃θ(z), F(z))
)q
≤ Υq.

Remark 3.1. For simplicity, we call L =
(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)), a 2TLq-RPFN

with 0 ≤ Λ−1(s̃α, A) ≤ Υ, 0 ≤ Λ−1(s̃β, B) ≤ Υ, 0 ≤ Λ−1(s̃γ,C) ≤ Υ, 0 ≤ Λ−1(s̃ζ ,D) ≤ Υ, 0 ≤
Λ−1(s̃η, E) ≤ Υ, 0 ≤ Λ−1(s̃θ, F) ≤ Υ, 0 ≤

(
Λ−1(s̃α, A

)
)q +

(
Λ−1(s̃β, B)

)q
+

(
Λ−1(s̃γ,C)

)q
≤ Υq, and

0 ≤
(
Λ−1(s̃ζ , A)

)q
+

(
Λ−1(s̃η, B)

)q
+

(
Λ−1(s̃θ,C)

)q
≤ Υq.

Definition 3.2. Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and suppose a, b, c are the numerical val-
ues obtained after applying an aggregation operation on the indices of LTs taken from a LTS S̃ with
a, b, c ∈ [0,Υ]. In addition, suppose there are six values α = round(a), β = round(b), γ = round(c),
A = a − α, B = b − β,C = c − γ with A, B,C ∈ [−0.5, 0.5), then A, B,C are the values of the ST for
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amplitude terms. Similarly, suppose d, e, f are the numerical values obtained after applying an aggre-
gation operation on the indices of LTs taken from a LTS S̃ with d, e, f ∈ [0,Υ]. In addition, suppose
there are six values ζ = round(d), η = round(e), θ = round( f ), D = d − ζ, E = e − η, F = f − θ with
D, E, F ∈ [−0.5, 0.5), then D, E, F are the values of the ST for phase terms.

Definition 3.3. Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and a, b, c, d, e, f ∈ [0,Υ]. Then the function
Λ : [0,Υ]→ S̃ × [−0.5, 0.5) is defined as:

Λ(a) =

{
s̃α, α = round(a)
A = a − α, A ∈ [−0.5, 0.5),

Λ(b) =

{
s̃β, β = round(b)
B = b − β, B ∈ [−0.5, 0.5),

Λ(c) =

{
s̃γ, γ = round(c)
C = c − γ, C ∈ [−0.5, 0.5),

Λ(d) =

{
s̃ζ , ζ = round(d)
D = d − ζ, D ∈ [−0.5, 0.5),

Λ(e) =

{
s̃η, η = round(e)
E = e − η, E ∈ [−0.5, 0.5),

Λ( f ) =

{
s̃θ, θ = round( f )
F = f − θ, F ∈ [−0.5, 0.5),

where round(.) indicates the usual round operation.

Definition 3.4. Given a LTS S̃ = {s̃k : k = 0, 1, 2, . . . ,Υ} and a 2TLCq-RPFN

L =
(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)),

then there exists a function Λ−1 : S̃ × [−0.5, 0.5) → [0,Υ], that restores each 2TLCq-RPFN to its
equivalent numerical value a, b, c, d, e, f ∈ [0,Υ], where

Λ−1(s̃α, A) = α + A = a,

Λ−1(s̃β, B) = β + B = b,

Λ−1(s̃γ,C) = γ + C = c,

Λ−1(s̃ζ ,D) = ζ + D = d,

Λ−1(s̃η, E) = η + E = d,

Λ−1(s̃θ, F) = θ + F = f .

Example 3.1. Consider a LTS S̃ = {s̃0, s̃1, s̃2, s̃3, s̃4, s̃5, s̃6} with Υ = 7 and a 2TLCq-RPFN

L =
(
(s̃3, 0)ei2π(s̃4,0), (s̃1, 0)ei2π(s̃2,0), (s̃5, 0)ei2π(s̃4,0)), (3.2)

where α = 3, β = 1, γ = 5, ζ = 4, η = 2, θ = 4, and A = B = C = D = E = F = 0. For q = 3, we see
that 0 ≤ Λ−1(s̃3, 0) ≤ 7, 0 ≤ Λ−1(s̃1, 0) ≤ 7, 0 ≤ Λ−1(s̃5, 0) ≤ 7 and 0 ≤

(
Λ−1(s̃3, 0)

)3
+

(
Λ−1(s̃1, 0)

)3
+(

Λ−1(s̃5, 0)
)3

= 153 < (7)3 = 343. Similarly, 0 ≤ Λ−1(s̃4, 0) ≤ 7, 0 ≤ Λ−1(s̃2, 0) ≤ 7, 0 ≤ Λ−1(s̃4, 0) ≤ 7
and 0 ≤

(
Λ−1(s̃4, 0)

)3
+

(
Λ−1(s̃2, 0)

)3
+

(
Λ−1(s̃4, 0)

)3
= 136 < (7)3 = 343. Clearly, Equation (3.2) is a

2TLCq-RPFN.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11281–11323.



11289

3.1. The basic theory of 2TLCq-RPFSs

The next tools are designed to enable us to compare two 2TLCq-RPFNs:

Definition 3.5. Consider a 2TLCq-RPFN L =
(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)). The

score function for 2TLCq-RPFNs can be defined as follows:

S(L) = Λ

(
1
3

(
2Υq +

(Λ−1(s̃α, A)
Υ

)q
−

(Λ−1(s̃β, B)
Υ

)q
−

(Λ−1(s̃γ,C)
Υ

)q
+

(Λ−1(s̃ζ ,D)
Υ

)q
−

(Λ−1(s̃η, E)
Υ

)q
−

(Λ−1(s̃θ, F)
Υ

)q
)) 1

q

(3.3)

and the accuracy functionA can be defined by the expression:

A(L) = Λ

(
Υ

((Λ−1(s̃α, A)
Υ

)q
+

(Λ−1(s̃β, B)
Υ

)q
+

(Λ−1(s̃γ,C)
Υ

)q
+ (

Λ−1(s̃ζ ,D)
Υ

)q
+

(Λ−1(s̃η, E)
Υ

)q
+

(Λ−1(s̃θ, F)
Υ

)q
))
. (3.4)

Definition 3.6. Consider two 2TLCq-RPFNs L1 =
(
(s̃α1 , A1)ei2π(s̃ζ1 ,D1), (s̃β1 , B1)ei2π(s̃η1 ,E1), (s̃γ1 ,C1)

ei2π(s̃θ1 ,F1)) and L2 =
(
(s̃α2 , A2)ei2π(s̃ζ2 ,D2), (s̃β2 , B2)ei2π(s̃η2 ,E2), (s̃γ2 ,C2)ei2π(s̃θ2 ,F2)).We can compare these two

2TLCq-RPFNs by the following method:

1) If S(L1) > S(L2), then L1 > L2;

2) If S(L1) = S(L2), then

• IfA(L1) > A(L2), then L1 > L2;
• IfA(L1) = A(L2), then L1 ∼ L2.

We next define some operational laws on 2TLCq-RPFNs:

Definition 3.7. Consider three 2TLCq-RPFNs L =
(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)),

L1 =
(
(s̃α1 , A1)ei2π(s̃ζ1 ,D1), (s̃β1 , B1)ei2π(s̃η1 ,E1), (s̃γ1 ,C1)ei2π(s̃θ1 ,F1)) and L2 =

(
(s̃α2 , A2)ei2π(s̃ζ2 ,D2), (s̃β2 , B2)

ei2π(s̃η2 ,E2), (s̃γ2 ,C2)ei2π(s̃θ2 ,F2)) with q ≥ 1 and ρ > 0, then

1) L1
⊕

L2 =



Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃α1 , A1)
Υ

)q)(
1 −

(Λ−1(s̃α2 , A2)
Υ

)q))1
q
)

e
i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃ζ1 ,D1)

Υ

)q)(
1−
(Λ−1(s̃ζ2 ,D2)

Υ

)q))1
q
)
,

Λ

(
Υ
(Λ−1

(
s̃β1 , B1

)
Υ

)(Λ−1
(
s̃β2 , B2

)
Υ

))
e

i2πΛ

(
Υ

(Λ−1
(
s̃η1 , E1

)
Υ

)(Λ−1
(
s̃η2 , E2

)
Υ

))
,

Λ

(
Υ
(Λ−1

(
s̃γ1 ,C1

)
Υ

)(Λ−1
(
s̃γ2 ,C2

)
Υ

))
e

i2πΛ

(
Υ

(Λ−1
(
s̃θ1 , F1

)
Υ

)(Λ−1
(
s̃θ2 , F2

)
Υ

))



.
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2) L1
⊗

L2 =



Λ

(
Υ
(Λ−1

(
s̃α1 , A1

)
Υ

)(Λ−1
(
s̃α2 , A2

)
Υ

))
e

i2πΛ

(
Υ

(Λ−1
(
s̃ζ1 ,D1

)
Υ

)(Λ−1
(
s̃ζ2 ,D2

)
Υ

))
,

Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃β1 , B1)
Υ

)q)(
1 −

(Λ−1(s̃β2 , B2)
Υ

)q))1
q
)

e
i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃η1 , E1)

Υ

)q)(
1−
(Λ−1(s̃η2 , E2)

Υ

)q))1
q
)
,

Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃γ1 ,C1)
Υ

)q)(
1 −

(Λ−1(s̃γ2 ,C2)
Υ

)q))1
q
)

e
i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃θ1 , F1)

Υ

)q)(
1−
(Λ−1(s̃θ2 , F2)

Υ

)q))1
q
)



.

3) ρL =


Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃α, A)
Υ

)q)ρ)1
q
)
e

i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃ζ ,D)

Υ

)q)ρ)1
q
)
,

Λ

(
Υ
(Λ−1(s̃β, B)

Υ

)ρ)
e

i2πΛ

(
Υ

(Λ−1(s̃η, E)
Υ

)ρ)
,Λ

(
Υ
(Λ−1(s̃γ,C)

Υ

)ρ)
e

i2πΛ

(
Υ

(Λ−1(s̃θ, F)
Υ

)ρ)

.

4) Lρ =



Λ

(
Υ
(Λ−1(s̃α, A)

Υ

)ρ)
e

i2πΛ

(
Υ

(Λ−1(s̃ζ ,D)
Υ

)ρ)
,

Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃β, B)
Υ

)q)ρ)1
q
)
e

i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃η, E)

Υ

)q)ρ)1
q
)
,

Λ

(
Υ
(
1 −

(
1 −

(Λ−1(s̃γ,C)
Υ

)q)ρ)1
q
)
e

i2πΛ

(
Υ

(
1−
(

1−
(Λ−1(s̃θ, F)

Υ

)q)ρ)1
q
)



.

3.2. The 2TLCq-RPFWA and 2TLCq-RPFWG operators

This subsection presents two AOs, namely, the 2TLCq-RPFWA and 2TLCq-RPFWG operators, and
establish their fundamental properties.

The first operator is defined as follows:

Definition 3.8. The 2TLCq-RPFWA operator is the mapping Hn → H such that: for each collection
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of 2TLCq-RPFNs Lk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n),

2T LCq − RPFWA(L1, L2, . . . , Ln) =

n⊕
k=1

WkLk, (3.5)

where W = (W1,W2, . . . ,Wn)T is the weight vector of Lk(k = 1, 2, . . . , n) with Wk ∈ [0, 1] and
n∑

k=1
Wk = 1.

Our next result computes the expression of the 2TLCq-RPFWA operator:

Theorem 3.1. Consider a collection of 2TLCq-RPFNs Lk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then

2T LCq − RPFWA(L1, L2, . . . , Ln) =



Λ

(
Υ

(
1 −

n∏
k=1

(
1 −

(
Λ−1(s̃αk , Ak)

Υ

)q)Wk) 1
q
)
e

i2πΛ

(
Υ

(
1−

n∏
k=1

(
1−

(
Λ−1(s̃ζk ,Dk)

Υ

)q)Wk) 1
q )
,

Λ

(
Υ

n∏
k=1

(
Λ−1(s̃βk , Bk)

Υ

)Wk)
e

i2πΛ

(
Υ

n∏
k=1

(
Λ−1(s̃ηk , Ek)

Υ

)Wk)
,

Λ

(
Υ

n∏
k=1

(
Λ−1(s̃γk ,Ck)

Υ

)Wk)
e

i2πΛ

(
Υ

n∏
k=1

(
Λ−1(s̃θk , Fk)

Υ

)Wk)



. (3.6)

The proof of this Theorem is given in Appendix A.

We proceed to explore the behavior of our first operator:

Proposition 3.1. Consider two collections of 2TLCq-RPFNs Lak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Lbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFWA operator has the following
properties:

1) (Idempotency) If Lk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = L for all (k =

1, 2, . . . , n), then
2T LCq − RPFWA(L1, L2, . . . , Ln) = L. (3.7)

2) (Monotonicity) If Lak ≤ Lbk , for all (k = 1, 2, . . . , n), then

2T LCq − RPFWA(La1 , La2 , . . . , Lan) ≤ 2T LCq − RPFWA(Lb1 , Lb2 , . . . , Lbn). (3.8)
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3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Lak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
L+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

L−ak
=

(
min

ak
(s̃αak

, Aak )ei2π(minak (s̃ζak
,Dak ))

,max
ak

(s̃βak
, Bak )ei2π(maxak (s̃ηak

,Eak )),max
ak

(s̃γak
,Cak )ei2π(maxak (s̃θak

,Fak )))
,

then
L− ≤ 2T LCq − RPFWA(L1, L2, . . . , Ln) ≤ L+. (3.9)

The second operator is defined as follows:

Definition 3.9. The 2TLCq-RPFWG operator is the mapping Hn → H such that: for each collection
of 2TLCq-RPFNs Lk =

(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n),

2T LCq − RPFWG(L1, L2, . . . , Ln) =

n⊗
k=1

(Lk)Wk , (3.10)

where W = (W1,W2, . . . ,Wn)T is the weight vector of Lk(k = 1, 2, . . . , n) with Wk ∈ [0, 1] and
n∑

k=1
Wk = 1.

Our next result computes the expression of the 2TLCq-RPFWG operator:

Theorem 3.2. Consider a collection of 2TLCq-RPFNs Lk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then

2T LCq − RPFWG(L1, L2, . . . , Ln) =



Λ

(
Υ

n∏
k=1

(
Λ−1(s̃αk , Ak)

Υ

)Wk)
e

i2πΛ

(
Υ

n∏
k=1

(
Λ−1(s̃ζk ,Dk)

Υ

)Wk)

Λ

(
Υ

(
1 −

n∏
k=1

(
1 −

(
Λ−1(s̃βk , Bk)

Υ

)q)Wk) 1
q
)
e

i2πΛ

(
Υ

(
1−

n∏
k=1

(
1−

(
Λ−1(s̃ηk , Ek)

Υ

)q)Wk) 1
q )

Λ

(
Υ

(
1 −

n∏
k=1

(
1 −

(
Λ−1(s̃γk ,Ck)

Υ

)q)Wk) 1
q
)
e

i2πΛ

(
Υ

(
1−

n∏
k=1

(
1−

(
Λ−1(s̃θk , Fk)

Υ

)q)Wk) 1
q )



. (3.11)

Proof. This proof is similar to the proof of Theorem 3.1.
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To conclude this section, we explore the behavior of our second operator:

Proposition 3.2. Consider two collections of 2TLCq-RPFNs Lak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Lbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFWG operator has the following
properties:

1) (Idempotency) If Lk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = L for all (k =

1, 2, . . . , n), then
2T LCq − RPFWG(L1, L2, . . . , Ln) = L. (3.12)

2) (Monotonicity) If Lak ≤ Lak , for all (k = 1, 2, . . . , n), then

2T LCq − RPFWG(La1 , La2 , . . . , Lan) ≤ 2T LCq − RPFWG(Lb1 , Lb2 , . . . , Lbn). (3.13)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Lak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
L+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

L−ak
=

(
min

ak
(s̃αak

, Aak )ei2π(minak (s̃ζak
,Dak ))

,max
ak

(s̃βak
, Bak )ei2π(maxak (s̃ηak

,Eak )),max
ak

(s̃γak
,Cak )ei2π(maxak (s̃θak

,Fak )))
,

then
L− ≤ 2T LCq − RPFWG(L1, L2, . . . , Ln) ≤ L+. (3.14)

4. Hamacher aggregation operators in the 2TLCq-RPF environment

In this section, we present Hamacher laws between 2TLCq-RPFNs, and also certain AOs, including
the 2TLCq-RPFHWA, 2TLCq-RPFHOWA, 2TLCq-RPFHWG and 2TLCq-RPFHOWG operators with
their properties.

Definition 4.1. Consider three 2TLCq-RPFNs L =
(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)) L1 =(

(s̃α1 , A1)ei2π(s̃ζ1 ,D1), (s̃β1 , B1)ei2π(s̃η1 ,E1), (s̃γ1 ,C1)ei2π(s̃θ1 ,F1)) and L2 =
(
(s̃α2 , A2)ei2π(s̃ζ2 ,D2), (s̃β2 , B2)

ei2π(s̃η2 ,E2), (s̃γ2 ,C2)ei2π(s̃θ2 ,F2)) with q ≥ 1 and x, ρ > 0.
Then the 2TLCq-RPF Hamacher operation between L1 and L2 are:

1) L1
⊕

L2 =



Λ

(
Υ

(
q

√
A

q
1 + A

q
2 − A

q
1A

q
2 − (1 − x)Aq

1A
q
2

1 − (1 − x)Aq
1A

q
2

))
e

i2πΛ

(
Υ

(
q

√√√√√√Xq
1 + X

q
2 − X

q
1X

q
2 − (1 − x)Xq

1X
q
2

1 − (1 − x)Xq
1X

q
2

))
,

Λ

(
Υ

(
B1B2

q
√

x + (1 − x)(Bq
1 +B

q
2 −B

q
1B

q
2)

))
e

i2πΛ

(
Υ

(
Y1Y2

q
√

x + (1 − x)(Yq
1 + Y

q
2 − Y

q
1Y

q
2)

))
,

Λ

(
Υ

(
C1C2

q
√

x + (1 − x)(Cq
1 + C

q
2 − C

q
1C2)q

))
e

i2πΛ

(
Υ

(
Z1Z2

q
√

x + (1 − x)(Zq
1 + Z

q
2 − Z

q
1Z

q
2)

))



.
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2) L1
⊗

L2 =



Λ

(
Υ

(
A1A2

q
√

x + (1 − x)(Aq
1 + A

q
2 − A

q
1A

q
2)

))
e

i2πΛ

(
Υ

(
X1X2

q
√

x + (1 − x)(Xq
1 + X

q
2 − X

q
1X

q
2)

))
,

Λ

(
Υ

(
q

√
B

q
1 +B

q
2 −B

q
1B

q
2 − (1 − x)Bq

1B
q
2

1 − (1 − x)Bq
1B

q
2

))
e

i2πΛ

(
Υ

(
q

√√√√√√Yq
1 + Y

q
2 − Y

q
1Y

q
2 − (1 − x)Yq

1Y
q
2

1 − (1 − x)Yq
1Y

q
2

))
,

Λ

(
Υ

(
q

√
C

q
1 + C

q
2 − C

q
1C

q
2 − (1 − x)Cq

1C
q
2

1 − (1 − x)Cq
1C

q
2

))
e

i2πΛ

(
Υ

(
q

√√√√√√Zq
1 + Z

q
2 − Z

q
1Z

q
2 − (1 − x)Zq

1Z
q
2

1 − (1 − x)Zq
1Z

q
2

))



.

3) ρL =



Λ

(
Υ

(
q

√
(1 + (x − 1)Aq)ρ − (1 − Aq)ρ

(1 + (x − 1)Aq)ρ + (x − 1)(1 − Aq)ρ

))
e

i2πΛ

(
Υ

(
q

√√√ (1 + (x − 1)Xq)ρ − (1 − Xq)ρ

(1 + (x − 1)Xq)ρ + (x − 1)(1 − Xq)ρ

))
,

Λ

(
Υ

( q√x Bρ
q√(1 + (x − 1)(1 −Bq))ρ + (x − 1)(Bq)ρ

))
e

i2πΛ

(
Υ

( q√x Yρ
q√(1 + (x − 1)(1 − Yq))ρ + (x − 1)(Yq)ρ

))
,

Λ

(
Υ

(
q
√ xCρ

q√(1 + (x − 1)(1 − Cq))ρ + (x − 1)(Cq)ρ

))
e

i2πΛ

(
Υ

( q√x Zρ
q√(1 + (x − 1)(1 − Zq))ρ + (x − 1)(Zq)ρ

))


.

4) Lρ =



Λ

(
Υ

( q√x Aρ
q√(1 + (x − 1)(1 − Aq))ρ + (x − 1)(Aq)ρ

))
e

i2πΛ

(
Υ

( q√x Xρ
q√(1 + (x − 1)(1 − Xq))ρ + (x − 1)(Xq)ρ

))
,

Λ

(
Υ

(
q

√
(1 + (x − 1)Bq)ρ − (1 −Bq)ρ

(1 + (x − 1)Bq)ρ + (x − 1)(1 −Bq)ρ

))
e

i2πΛ

(
Υ

(
q

√√√ (1 + (x − 1)Yq)ρ − (1 − Yq)ρ

(1 + (x − 1)Yq)ρ + (x − 1)(1 − Yq)ρ

))

Λ

(
Υ

(
q

√
(1 + (x − 1)Cq)ρ − (1 − Cq)ρ

(1 + (x − 1)Cq)ρ + (x − 1)(1 − Cq)ρ

))
, e

i2πΛ

(
Υ

(
q

√√√ (1 + (x − 1)Zq)ρ − (1 − Zq)ρ

(1 + (x − 1)Zq)ρ + (x − 1)(1 − Zq)ρ

))


.

Here, A1 =
Λ−1(s̃α1 , A1)

Υ
, B1 =

Λ−1(s̃β1 , B1)
Υ

, C1 =
Λ−1(s̃γ1 ,C1)

Υ
, X1 =

Λ−1(s̃ζ1 ,D1)
Υ

, Y1 =
Λ−1(s̃η1 , E1)

Υ

and Z1 =
Λ−1(s̃θ1 , F1)

Υ
. Similar notations are for L and L2.

Remark 4.1. For q = 2, the 2TLCq-RPF Hamacher operations transform into the 2TLCSF Hamacher
operations and for q = 1, the 2TLCq-RPF Hamacher operations transform into the 2TLCPF Hamacher
operations.

4.1. 2TLCq-RPF Hamacher averaging operators

This subsection presents two Hamacher AOs under the 2TLCq-RPF environment, namely, the
2TLCq-RPFHWA and 2TLCq-RPFHOWA operators.

Definition 4.2. The 2TLCq-RPFHWA operator is a mapping Hn → H such that: for each collection
of 2TLCq-RPFNs Mk =

(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n),

2T LCq − RPFHWA(M1,M2, . . . ,Mn) =

n⊕
k=1

WkMk, (4.1)

where W = (W1,W2, . . . ,Wn)T is the weight vector of Mk (k = 1, 2, . . . , n) with Wk ∈ [0, 1] and
n∑

k=1
Wk = 1.
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We now present a compact expression for the definition above:

Theorem 4.1. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then

2T LCq − RPFHWA(M1,M2, . . . ,Mn) =



Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Aq
k )Wk−

n∏
k=1

(1−Aq
k )Wk

n∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

n∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Xq
k )Wk−

n∏
k=1

(1−Xq
k )Wk

n∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

n∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
B
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Bq
k ))Wk +(x−1)

n∏
k=1

(Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Y
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

n∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
C
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Cq
k ))Wk +(x−1)

n∏
k=1

(Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Z
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

n∏
k=1

(Zq
k )Wk

))



. (4.2)

The proof of this Theorem is given in Appendix B.

We illustrate the application of this operator with a numerical example:

Example 4.1. Consider three 2TLCq-RPFNs M1 = {(s̃1, 0)ei2π(s̃3,0), (s̃3, 0)ei2π(s̃2,0), (s̃2, 0)ei2π(s̃4,0)}, M2 =

{(s̃4, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃3,0), (s̃1, 0)ei2π(s̃1,0)} and M3 = {(s̃2, 0)ei2π(s̃3,0), (s̃4, 0)ei2π(s̃5,0), (s̃3, 0)
ei2π(s̃1,0)}. Assume that x = 2, q = 3, Υ = 7 and W = {0.4, 0.3, 0.3}. From Eq (4.2), we have

2T LCq − RPFHWA(M1,M2,M3) =



Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Aq
k )Wk−

3∏
k=1

(1−Aq
k )Wk

3∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

3∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Xq
k )Wk−

3∏
k=1

(1−Xq
k )Wk

3∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

3∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
3∏

k=1
B
Wk
k

q

√
3∏

k=1
(1+(x−1)(1−Bq

k ))Wk +(x−1)
3∏

k=1
(Bq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
Y
Wk
k

q
√

3∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

3∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
3∏

k=1
C
Wk
k

q

√
3∏

k=1
(1+(x−1)(1−Cq

k ))Wk +(x−1)
m∏

k=1
(Cq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
Z
Wk
k

q
√

3∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

3∏
k=1

(Zq
k )Wk

))



.

=
(
(s̃3,−0.1764)ei2π(s̃3,−0.3199), (s̃4,−0.1444)ei2π(s̃3,0.0357), (s̃2,−0.1577)ei2π(s̃2,−0.2281)).
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The next Proposition explores some properties of our 2TLCq-RPFHWA aggregation operator:

Proposition 4.1. Consider two collections of 2TLCq-RPFNs Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Mbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHWA operator has the follow-
ing properties:

1) (Idempotency) If Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = M for all (k =

1, 2, . . . , n), then
2T LCq − RPFHWA(M1,M2, . . . ,Mn) = M. (4.3)

Proof. Suppose Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) is a collection of

2TLCq-RPFNs such that Mk = M for all (k = 1, 2, . . . , n),Wk ∈ [0, 1] and
n∑

k=1
Wk = 1. Moreover,

Ak =
Λ−1(s̃αk , Ak)

Υ
= A, Bk =

Λ−1(s̃βk , Bk)
Υ

= B, Ck =
Λ−1(s̃γk ,Ck)

Υ
= C, Xk =

Λ−1(s̃ζk ,Dk)
Υ

= X,

Yk =
Λ−1(s̃ηk , Ek)

Υ
= Y and Zk =

Λ−1(s̃θk , Fk)
Υ

= Z for all (k = 1, 2, . . . , n). From Eq (4.2), we get

2T LCq − RPFHWA(M1,M2, . . . ,Mn) =



Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Aq)Wk−
n∏

k=1
(1−Aq)Wk

n∏
k=1

(1+(x−1)Aq)Wk +(x−1)
n∏

k=1
(1−Aq)Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Xq)Wk−
n∏

k=1
(1−Xq)Wk

n∏
k=1

(1+(x−1)Xq)Wk +(x−1)
n∏

k=1
(1−Xq)Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
BWk

q
√

n∏
k=1

(1+(x−1)(1−Bq))Wk +(x−1)
n∏

k=1
(Bq)Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Y
Wk

q
√

n∏
k=1

(1+(x−1)(1−Yq))Wk +(x−1)
n∏

k=1
(Yq)Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
CWk

q
√

n∏
k=1

(1+(x−1)(1−Cq))Wk +(x−1)
n∏

k=1
(Cq)Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Z
Wk

q
√

n∏
k=1

(1+(x−1)(1−Zq))Wk +(x−1)
n∏

k=1
(Zq)Wk

))



=



Λ

(
Υ

(
q
√

(1+(x−1)Aq)−(1−Aq)
(1+(x−1)Aq)+(x−1)(1−Aq)

))
e

i2πΛ

(
Υ

(
q
√

(1+(x−1)Xq)−(1−Xq)
(1+(x−1)Xq)+(x−1)(1−Xq)

))
,

Λ

(
Υ

(
q√x B

q√(1+(x−1)(1−Bq))+(x−1)(Bq)

))
e

i2πΛ

(
Υ

(
q√x Y

q√(1+(x−1)(1−Yq))+(x−1)(Yq)

))
,

Λ

(
Υ

(
q√x C

q√(1+(x−1)(1−Cq))+(x−1)(Cq)

))
e

i2πΛ

(
Υ

(
q√x Z

q√(1+(x−1)(1−Zq))+(x−1)(Zq)

))


=

(
Λ(Υ(A))ei2πΛ(Υ(X)),Λ(Υ(B))ei2πΛ(Υ(Y)),Λ(Υ(C))ei2πΛ(Υ(Z))

)
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=


Λ
(
Υ(

Λ−1(s̃α, A)
Υ

)
)
e

i2πΛ

(
Υ(

Λ−1(s̃ζ ,D)
Υ

)
)
,Λ

(
Υ(

Λ−1(s̃β, B)
Υ

)
)
e

i2πΛ

(
Υ(

Λ−1(s̃η, E)
Υ

)
)
,

Λ
(
Υ(

Λ−1(s̃γ,C)
Υ

)
)
e

i2πΛ

(
Υ(

Λ−1(s̃θ, F)
Υ

)
)


=

(
(s̃α, A)ei2π(s̃ζ ,D), (s̃β, B)ei2π(s̃η,E), (s̃γ,C)ei2π(s̃θ,F)

)
= M.

2) (Monotonicity) If Mak ≤ Mbk , for all (k = 1, 2, . . . , n), then

2T LCq − RPFHWA(Ma1 ,Ma2 , . . . ,Man) ≤ 2T LCq − RPFHWA(Mb1 ,Mb2 , . . . ,Mbn). (4.4)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
M+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

M−
ak

=
(

min
ak

(s̃αak
, Aak )ei2π(minak (s̃ζak

,Dak ))
,max

ak
(s̃βak

, Bak )ei2π(maxak (s̃ηak
,Eak )),max

ak
(s̃γak

,Cak )ei2π(maxak (s̃θak
,Fak )))

,

then
M− ≤ 2T LCq − RPFHWA(M1,M2, . . . ,Mn) ≤ M+. (4.5)

An alternative operator that is born from a different principle follows:

Definition 4.3. The 2TLCq-RPFHOWA operator is a mapping Hn → H such that: for each collection
of 2TLCq-RPFNs Mk =

(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n),

2T LCq − RPFHOWA(M1,M2, . . . ,Mn) =

n⊕
k=1

WkMµ(k), (4.6)

where µ(k) is such that Mµ(k−1) ≥ Mµ(k) for all k, W = (W1,W2, . . . ,Wn)T is the weight vector of

Mk(k = 1, 2, . . . , n) withWk ∈ [0, 1] and
n∑

k=1
Wk = 1.

Its compact expression is computed in our next theorem:

Theorem 4.2. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then
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2T LCq − RPFHOWA(M1,M2, . . . ,Mn) =

Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Aq
µ(k))

Wk−
n∏

k=1
(1−Aq

µ(k))
Wk

n∏
k=1

(1+(x−1)Aq
µ(k))

Wk +(x−1)
n∏

k=1
(1−Aq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Xq
µ(k))Wk−

n∏
k=1

(1−Xq
µ(k))Wk

n∏
k=1

(1+(x−1)Xq
µ(k))Wk +(x−1)

n∏
k=1

(1−Xq
µ(k))Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
B
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Bq
µ(k)))

Wk +(x−1)
n∏

k=1
(Bq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Y
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Yq
µ(k)))Wk +(x−1)

n∏
k=1

(Yq
µ(k))Wk

))
,

Λ

(
Υ

( q√x
n∏

k=1
C
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Cq
µ(k)))

Wk +(x−1)
n∏

k=1
(Cq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
Z
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Zq
µ(k)))Wk +(x−1)

n∏
k=1

(Zq
µ(k))Wk

))



. (4.7)

Proof. This proof is similar to the proof of Theorem 4.1.

For illustration, let us apply the formula above in a numerical case:

Example 4.2. Consider three 2TLCq-RPFNs M1 = {(s̃1, 0)ei2π(s̃3,0), (s̃3, 0)ei2π(s̃2,0), (s̃2, 0)ei2π(s̃4,0)}, M2 =

{(s̃4, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃3,0), (s̃1, 0)ei2π(s̃1,0)} and M3 = {(s̃2, 0)ei2π(s̃3,0), (s̃4, 0)ei2π(s̃5,0), (s̃3, 0)
ei2π(s̃1,0)}. Assume that x = 2, q = 3, Υ = 7 and W = {0.4, 0.3, 0.3}. Now, S(M1) = 2.5191, S(M2) =

2.5190, S(M3) = 2.5182. Therefore, S(M1) < S(M2) < S(M3). From Eq (4.7), we have

2T LCq − RPFHOWA(M1,M2,M3) =

Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Aq
µ(k))

Wk−
3∏

k=1
(1−Aq

µ(k))
Wk

3∏
k=1

(1+(x−1)Aq
µ(k))

Wk +(x−1)
3∏

k=1
(1−Aq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Xq
µ(k))Wk−

3∏
k=1

(1−Xq
µ(k))Wk

3∏
k=1

(1+(x−1)Xq
µ(k))Wk +(x−1)

3∏
k=1

(1−Xq
µ(k))Wk

))
,

Λ

(
Υ

( q√x
3∏

k=1
B
Wk
µ(k)

q

√
3∏

k=1
(1+(x−1)(1−Bq

µ(k)))
Wk +(x−1)

3∏
k=1

(Bq
µ(k))

Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
Y
Wk
µ(k)

q
√

3∏
k=1

(1+(x−1)(1−Yq
µ(k)))Wk +(x−1)

3∏
k=1

(Yq
µ(k))Wk

))
,

Λ

(
Υ

( q√x
3∏

k=1
C
Wk
µ(k)

q

√
3∏

k=1
(1+(x−1)(1−Cq

µ(k)))
Wk +(x−1)

3∏
k=1

(Cq
µ(k))

Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
Z
Wk
µ(k)

q
√

3∏
k=1

(1+(x−1)(1−Zq
µ(k)))Wk +(x−1)

3∏
k=1

(Zq
µ(k))Wk

))



.

=
(
(s̃3,−0.1764)ei2π(s̃3,−0.3199), (s̃4,−0.1444)ei2π(s̃3,0.0357), (s̃2,−0.1577)ei2π(s̃2,−0.2281)).

The next Proposition explores some properties of our 2TLCq-RPFHOWA aggregation operator:

Proposition 4.2. Consider two collections of 2TLCq-RPFNs Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Mbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHOWA operator has the fol-
lowing properties:
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1) (Idempotency) If Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = M for all (k =

1, 2, . . . , n), then

2T LCq − RPFHOWA(M1,M2, . . . ,Mn) = M. (4.8)

2) (Monotonicity) If Mak ≤ Mbk , for all (k = 1, 2, . . . , n), then

2T LCq − RPFHOWA(Ma1 ,Ma2 , . . . ,Man) ≤ 2T LCq − RPFHOWA(Mb1 ,Mb2 , . . . ,Mbn). (4.9)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
M+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

M−
ak

=
(

min
ak

(s̃αak
, Aak )ei2π(minak (s̃ζak

,Dak ))
,max

ak
(s̃βak

, Bak )ei2π(maxak (s̃ηak
,Eak )),max

ak
(s̃γak

,Cak )ei2π(maxak (s̃θak
,Fak )))

,

then

M− ≤ 2T LCq − RPFHOWA(M1,M2, . . . ,Mn) ≤ M+. (4.10)

4.2. 2TLCq-RPF Hamacher geometric operators

This subsection presents two Hamacher AOs under the 2TLCq-RPF environment, namely, the
2TLCq-RPFHWG and 2TLCq-RPFHOWG operators.

Definition 4.4. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHWG operator is a mapping Hn → H such
that

2T LCq − RPFHWG(M1,M2, . . . ,Mn) =

n⊗
k=1

MWk
k , (4.11)

where W = (W1,W2, . . . ,Wn)T is the weight vector of Mk(k = 1, 2, . . . , n) with Wk ∈ [0, 1] and
n∑

k=1
Wk = 1.

Its compact expression is computed in our next theorem:

Theorem 4.3. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then

2T LCq − RPFHWG(M1,M2, . . . ,Mn) =
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Λ

(
Υ

( q√x
n∏

k=1
A
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Aq
k ))Wk +(x−1)

n∏
k=1

(Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
X
Wk
k

q
√

n∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

n∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Bq
k )Wk−

n∏
k=1

(1−Bq
k )Wk

n∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

n∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Yq
k )Wk−

n∏
k=1

(1−Yq
k )Wk

n∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

n∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Cq
k )Wk−

n∏
k=1

(1−Cq
k )Wk

n∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

n∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Zq
k )Wk−

n∏
k=1

(1−Zq
k )Wk

n∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

n∏
k=1

(1−Zq
k )Wk

))



. (4.12)

The proof of this Theorem is presented in Appendix C.

A numerical example illustrates the computation of aggregate values by the 2TLCq-RPFHWG op-
erator:

Example 4.3. Consider three 2TLCq-RPFNs M1 = {(s̃1, 0)ei2π(s̃3,0), (s̃3, 0)ei2π(s̃2,0), (s̃2, 0)ei2π(s̃4,0)}, M2 =

{(s̃4, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃3,0), (s̃1, 0)ei2π(s̃1,0)} and M3 = {(s̃2, 0)ei2π(s̃3,0), (s̃4, 0)ei2π(s̃5,0), (s̃3, 0)
ei2π(s̃1,0)}. Assume that x = 2, q = 3, Υ = 7 and W = {0.4, 0.3, 0.3}.

From Eq (4.12), we have

2T LCq − RPFHWG(M1,M2,M3) =

Λ

(
Υ

( q√x
3∏

k=1
A
Wk
k

q

√
3∏

k=1
(1+(x−1)(1−Aq

k ))Wk +(x−1)
3∏

k=1
(Aq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
X
Wk
k

q
√

3∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

3∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Bq
k )Wk−

3∏
k=1

(1−Bq
k )Wk

3∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

3∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Yq
k )Wk−

3∏
k=1

(1−Yq
k )Wk

3∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

3∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Cq
k )Wk−

3∏
k=1

(1−Cq
k )Wk

3∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

3∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Zq
k )Wk−

3∏
k=1

(1−Zq
k )Wk

3∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

3∏
k=1

(1−Zq
k )Wk

))


=

(
(s̃2,−0.1098)ei2π(s̃2,0.1735), (s̃4, 0.1358)ei2π(s̃4,−0.2428), (s̃2, 0.2659)ei2π(s̃3,−0.0056)).

Proposition 4.3. Consider two collections of 2TLCq-RPFNs Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Mbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHWG operator has the follow-
ing properties:

1) (Idempotency) If Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = M for all (k =

1, 2, . . . , n), then
2T LCq − RPFHWG(M1,M2, . . . ,Mn) = M. (4.13)
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2) (Monotonicity) If Mak ≤ Mbk , for all (k = 1, 2, . . . , n), then

2T LCq − RPFHWG(Ma1 ,Ma2 , . . . ,Man) ≤ 2T LCq − RPFHWG(Mb1 ,Mb2 , . . . ,Mbn). (4.14)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
M+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

M−
ak

=
(

min
ak

(s̃αak
, Aak )ei2π(minak (s̃ζak

,Dak ))
,max

ak
(s̃βak

, Bak )ei2π(maxak (s̃ηak
,Eak )),max

ak
(s̃γak

,Cak )ei2π(maxak (s̃θak
,Fak )))

,

then
M− ≤ 2T LCq − RPFHWG(M1,M2, . . . ,Mn) ≤ M+. (4.15)

An alternative operator that is born from a different principle follows:

Definition 4.5. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHOWG operator is a mapping Hn → H such
that

2T LCq − RPFHOWG(M1,M2, . . . ,Mn) =

n⊕
k=1

WkMµ(k), (4.16)

where µ(k) is such that Mµ(k−1) ≥ Mµ(k) for all k, W = (W1,W2, . . . ,Wn)T is the weight vector of

Mk(k = 1, 2, . . . , n) withWk ∈ [0, 1] and
n∑

k=1
Wk = 1.

Let us compute a compact expression for this operator:

Theorem 4.4. Consider a collection of 2TLCq-RPFNs Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek),

(s̃γk ,Ck)ei2π(s̃θk ,Fk)) (k = 1, 2, . . . , n) having weight vectorW = (W1,W2, . . . ,Wn)T withWk ∈ [0, 1]

and
n∑

k=1
Wk = 1. Then

2T LCq − RPFHOWG(M1,M2, . . . ,Mn) =



Λ

(
Υ

( q√x
n∏

k=1
A
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Aq
µ(k)))

Wk +(x−1)
n∏

k=1
(Aq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q√x

n∏
k=1
X
Wk
µ(k)

q
√

n∏
k=1

(1+(x−1)(1−Xq
µ(k)))Wk +(x−1)

n∏
k=1

(Xq
µ(k))Wk

))
,

Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Bq
µ(k))

Wk−
n∏

k=1
(1−Bq

µ(k))
Wk

n∏
k=1

(1+(x−1)Bq
µ(k))

Wk +(x−1)
n∏

k=1
(1−Bq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Yq
µ(k))Wk−

n∏
k=1

(1−Yq
µ(k))Wk

n∏
k=1

(1+(x−1)Yq
µ(k))Wk +(x−1)

n∏
k=1

(1−Yq
µ(k))Wk

))
,

Λ

(
Υ

(
q

√√√ n∏
k=1

(1+(x−1)Cq
µ(k))

Wk−
n∏

k=1
(1−Cq

µ(k))
Wk

n∏
k=1

(1+(x−1)Cq
µ(k))

Wk +(x−1)
n∏

k=1
(1−Cq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√ n∏
k=1

(1+(x−1)Zq
µ(k))Wk−

n∏
k=1

(1−Zq
µ(k))Wk

n∏
k=1

(1+(x−1)Zq
µ(k))Wk +(x−1)

n∏
k=1

(1−Zq
µ(k))Wk

))



. (4.17)
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Proof. This proof is similar to the proof of Theorem 4.1.

Example 4.4. Consider three 2TLCq-RPFNs M1 = {(s̃1, 0)ei2π(s̃3,0), (s̃3, 0)ei2π(s̃2,0), (s̃2, 0)ei2π(s̃4,0)}, M2 =

{(s̃4, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃3,0), (s̃1, 0)ei2π(s̃1,0)} and M3 = {(s̃2, 0)ei2π(s̃3,0), (s̃4, 0)ei2π(s̃5,0), (s̃3, 0)
ei2π(s̃1,0)}. Assume that x = 2, q = 3, Υ = 7 and W = {0.4, 0.3, 0.3}. Now, S(M1) = 2.5191, S(M2) =

2.5190, S(M3) = 2.5182. Therefore, S(M1) < S(M2) < S(M3). From Eq (4.17), we have

2T LCq − RPFHOWG(M1,M2,M3) =

=



Λ

(
Υ

( q√x
3∏

k=1
A
Wk
µ(k)

q

√
3∏

k=1
(1+(x−1)(1−Aq

µ(k)))
Wk +(x−1)

3∏
k=1

(Aq
µ(k))

Wk

))
e

i2πΛ

(
Υ

(
q√x

3∏
k=1
X
Wk
µ(k)

q
√

3∏
k=1

(1+(x−1)(1−Xq
µ(k)))Wk +(x−1)

3∏
k=1

(Xq
µ(k))Wk

))
,

Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Bq
µ(k))

Wk−
3∏

k=1
(1−Bq

µ(k))
Wk

3∏
k=1

(1+(x−1)Bq
µ(k))

Wk +(x−1)
3∏

k=1
(1−Bq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Yq
µ(k))Wk−

3∏
k=1

(1−Yq
µ(k))Wk

3∏
k=1

(1+(x−1)Yq
µ(k))Wk +(x−1)

3∏
k=1

(1−Yq
µ(k))Wk

))
,

Λ

(
Υ

(
q

√√√√ 3∏
k=1

(1+(x−1)Cq
µ(k))

Wk−
3∏

k=1
(1−Cq

µ(k))
Wk

3∏
k=1

(1+(x−1)Cq
µ(k))

Wk +(x−1)
3∏

k=1
(1−Cq

µ(k))
Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ 3∏
k=1

(1+(x−1)Zq
µ(k))Wk−

3∏
k=1

(1−Zq
µ(k))Wk

3∏
k=1

(1+(x−1)Zq
µ(k))Wk +(x−1)

3∏
k=1

(1−Zq
µ(k))Wk

))


=

(
(s̃2,−0.1098)ei2π(s̃2,0.1735), (s̃4, 0.1358)ei2π(s̃4,−0.2428), (s̃2, 0.2659)ei2π(s̃3,−0.0056)).

Proposition 4.4. Consider two collections of 2TLCq-RPFNs Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)

ei2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n) and Mbk =
(
(s̃αbk

, Abk)e
i2π(s̃ζbk

,Dbk )
, (s̃βbk

, Bbk)
ei2π(s̃ηbk

,Ebk )
, (s̃γbk

,Cbk)e
i2π(s̃θbk

,Fbk )) (k = 1, 2, . . . , n). Then the 2TLCq-RPFHOWG operator has the fol-
lowing properties:

1) (Idempotency) If Mk =
(
(s̃αk , Ak)ei2π(s̃ζk ,Dk), (s̃βk , Bk)ei2π(s̃ηk ,Ek), (s̃γk ,Ck)ei2π(s̃θk ,Fk)) = M for all (k =

1, 2, . . . , n), then
2T LCq − RPFHOWG(M1,M2, . . . ,Mn) = M. (4.18)

2) (Monotonicity) If Mak ≤ Mbk , for all (k = 1, 2, . . . , n), then

2T LCq − RPFHOWG(Ma1 ,Ma2 , . . . ,Man) ≤ 2T LCq − RPFHOWG(Mb1 ,Mb2 , . . . ,Mbn). (4.19)

3) (Boundedness) Consider a collection of 2TLCq-RPFNs

Mak =
(
(s̃αak

, Aak)e
i2π(s̃ζak

,Dak ), (s̃βak
, Bak)e

i2π(s̃ηak
,Eak ), (s̃γak

,Cak)e
i2π(s̃θak

,Fak )) (k = 1, 2, . . . , n)

with
M+

ak
=

(
max

ak
(s̃αak

, Aak )ei2π(maxak (s̃ζak
,Dak ))

,min
ak

(s̃βak
, Bak )ei2π(minak (s̃ηak

,Eak )),min
ak

(s̃γak
,Cak )ei2π(minak (s̃θak

,Fak )))
and

M−
ak

=
(

min
ak

(s̃αak
, Aak )ei2π(minak (s̃ζak

,Dak ))
,max

ak
(s̃βak

, Bak )ei2π(maxak (s̃ηak
,Eak )),max

ak
(s̃γak

,Cak )ei2π(maxak (s̃θak
,Fak )))

,

then
M− ≤ 2T LCq − RPFHOWG(M1,M2, . . . ,Mn) ≤ M+. (4.20)
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5. Application

This section is devoted to an MADM algorithm, a flow chart based on the presented operators and
a case study related to the selection of a machine from different available models. Furthermore, we
shall discuss the impact of the parameter x on results of case study and a comparison with the already
existing AOs.

5.1. Mathematical description

Consider a set of m alternatives Ǎ = {Ǎ1, Ǎ2, . . . , Ǎm} with n attributes or criteria
C = {C1,C2, . . . ,Cn}. Assume that W = (W1,W2, . . . ,Wn)T are the weights of attributes hav-

ing the constraintsW j ∈ [0, 1],
n∑

j=1
W j = 1. The numerical steps are presented in Table 2.

Table 2. Algorithm.
Algorithm Steps to solve MADM problem
Step 1. Construct the 2TLCq-RPF judgement matrix R = [Ai j]m×n = ((s̃αi j , Ai j)e

i2π(s̃ζi j ,Di j), (s̃βi j , Bi j)e
i2π(s̃ηi j ,Ei j),

(s̃γi j ,Ci j)e
i2π(s̃θi j ,Fi j)) as below:

R = [Ai j]m×n =


A11 A12 . . . A1n

A21 A22 . . . A2n
...

...
...

...

Am1 Am2 . . . Amn


where, Ai j = ((s̃αi j , Ai j)e

i2π(s̃ζi j ,Di j), (s̃βi j , Bi j)e
i2π(s̃ηi j ,Ei j), (s̃γi j ,Ci j)e

i2π(s̃θi j ,Fi j)) (i = 1, 2, . . . ,m,
j = 1, 2, . . . , n) indicates the 2TLCq-RPF assessment of the alternative Ai

corresponding to the criteria C j.

Step 2. Utilize either the 2TLCq-RPFHWA (Eq (4.1)) or 2TLq-RPFHWG (Eq (4.12)) operator on the matrix in
Step 1 and get an aggregate 2TLCq-RPF matrix r = [Ai j]m×n.

Step 3. Apply the score function given in Eq (3.3) on the values in Step 2.
Step 4. Arrange the alternatives in descending order as per the numerical values calculated in Step 3. The alternative with

the highest numerical value will be regarded the optimal one.

The flowchart of the developed model is displayed in Figure 1.

5.2. Selection of best machine: A case study

We present a case study adapted from [39] which is related to the purchase a new machine from
a set of five different models Ǎ = {Ǎ1, Ǎ2, Ǎ3, Ǎ4, Ǎ5}. These five models are to be evaluated on the
basis of four criteria C = {C1,C2,C3,C4} which are given as follows:

• C1 : Reliability
• C2 : Safety
• C3 : Flexibility
• C4 : Productivity for selecting machine.
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Figure 1. Flowchart of the presented method.

The weight vector of the criteria is W = (0.4, 0.25, 0.15, 0.2)T . Consider q = 3, x = 3 and nine
linguistic terms {s̃1, s̃2, s̃3, s̃4, s̃5, s̃6, s̃7, s̃8, s̃9}. We first solve this example by utilizing the 2TLCq-
RPFHWA operator. The steps of the established approach are presented as follows:

Step 1. The 2TLCq-RPF judgement matrix D of the alternatives Ǎm, m = 1, 2, 3, 4, 5, based on the
criteria C j, j = 1, 2, 3, 4, is presented in Table 3.
Step 2. The aggregated values (for x = 3 and q = 3) of the 2TLCq-RPF matrix D by utilizing 2TLCq-
RPFHWA operator are presented in Table 4.

Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking order
of alternatives which are executed in Table 5. It is easy to see that the score value of Ǎ1 is highest,
therefore its ranking order is 1. Similar interpretations can be given for all the remaining alternatives.
Step 4. From Step 3 the ranking order is given as follows:

Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3.

Clearly, the alternative Ǎ1 is the best one.

Now we utilize the 2TLCq-RPFHWG operator to solve the same example.
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Table 3. Judgement matrix.

C1 C2

Ǎ1
(
(s̃7, 0)ei2π(s̃8,0), (s̃2, 0)ei2π(s̃1,0), (s̃1, 0)ei2π(s̃1,0)) (

(s̃8, 0)ei2π(s̃5,0), (s̃1, 0)ei2π(s̃1,0), (s̃1, 0)ei2π(s̃4,0))
Ǎ2

(
(s̃7, 0)ei2π(s̃6,0), (s̃1, 0)ei2π(s̃1,0), (s̃2, 0)ei2π(s̃3,0)) (

(s̃4, 0)ei2π(s̃8,0), (s̃3, 0)ei2π(s̃1,0), (s̃2, 0)ei2π(s̃1,0))
Ǎ3

(
(s̃2, 0)ei2π(s̃4,0), (s̃2, 0)ei2π(s̃2,0), (s̃6, 0)ei2π(s̃4,0)) (

(s̃6, 0)ei2π(s̃6,0), (s̃1, 0)ei2π(s̃1,0), (s̃3, 0)ei2π(s̃3,0))
Ǎ4

(
(s̃4, 0)ei2π(s̃8,0), (s̃1, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃1,0)) (

(s̃7, 0)ei2π(s̃3,0), (s̃1, 0)ei2π(s̃4,0), (s̃2, 0)ei2π(s̃3,0))
Ǎ5

(
(s̃8, 0)ei2π(s̃6,0), (s̃1, 0)ei2π(s̃2,0), (s̃1, 0)ei2π(s̃2,0)) (

(s̃5, 0)ei2π(s̃5,0), (s̃3, 0)ei2π(s̃2,0), (s̃2, 0)ei2π(s̃1,0))
C3 C4

Ǎ1
(
(s̃6, 0)ei2π(s̃6,0), (s̃1, 0)ei2π(s̃2,0), (s̃3, 0)ei2π(s̃2,0)) (

(s̃7, 0)ei2π(s̃7,0), (s̃1, 0)ei2π(s̃1,0), (s̃2, 0)ei2π(s̃2,0))
Ǎ2

(
(s̃7, 0)ei2π(s̃7,0), (s̃1, 0)ei2π(s̃1,0), (s̃2, 0)ei2π(s̃2,0)) (

(s̃4, 0)ei2π(s̃6,0), (s̃3, 0)ei2π(s̃3,0), (s̃3, 0)ei2π(s̃1,0))
Ǎ3

(
(s̃3, 0)ei2π(s̃4,0), (s̃2, 0)ei2π(s̃1,0), (s̃5, 0)ei2π(s̃5,0)) (

(s̃7, 0)ei2π(s̃7,0), (s̃1, 0)ei2π(s̃1,0), (s̃1, 0)ei2π(s̃1,0))
Ǎ4

(
(s̃6, 0)ei2π(s̃5,0), (s̃2, 0)ei2π(s̃2,0), (s̃1, 0)ei2π(s̃3,0)) (

(s̃5, 0)ei2π(s̃5,0), (s̃2, 0)ei2π(s̃1,0), (s̃3, 0)ei2π(s̃4,0))
Ǎ5

(
(s̃4, 0)ei2π(s̃6,0), (s̃1, 0)ei2π(s̃1,0), (s̃2, 0)ei2π(s̃2,0)) (

(s̃5, 0)ei2π(s̃7,0), (s̃1, 0)ei2π(s̃1,0), (s̃3, 0)ei2π(s̃2,0))
Table 4. Aggregated values using 2TLCq-RPFHWA operator when x = 3 and q = 3.

Aggregated values
Ǎ1

(
(s̃7, 0.20266)ei2π(s̃7,0.06640), (s̃1, 0.32012)ei2π(s̃1,0.10980), (s̃1, 0.35608)ei2π(s̃2,−0.18993))

Ǎ2
(
(s̃6, 0.02974)ei2π(s̃7,−0.16176), (s̃2,−0.35632)ei2π(s̃1,0.24737), (s̃2, 0.17002)ei2π(s̃2,−0.27421))

Ǎ3
(
(s̃5, 0.03376)ei2π(s̃5,0.40340), (s̃1, 0.46485)ei2π(s̃1,0.32012), (s̃4,−0.48574)ei2π(s̃3,−0.05829))

Ǎ4
(
(s̃6,−0.46926)ei2π(s̃6,0.49515), (s̃1, 0.27510)ei2π(s̃2,−0.42394), (s̃3,−0.14765)ei2π(s̃2,0.05755))

Ǎ5
(
(s̃7,−0.38383)ei2π(s̃6,0.03261), (s̃1, 0.31820)ei2π(s̃2,−0.43002), (s̃2,−0.35394)ei2π(s̃2,−0.31744))

Table 5. Scores and ranking of alternatives.

Score values Ranking order
Ǎ1 7.86399 1
Ǎ2 7.86350 2
Ǎ3 7.86275 5
Ǎ4 7.86322 4
Ǎ5 7.86344 3

Step 1. The 2TLCq-RPF decision matrix D of the alternatives Ǎm, m = 1, 2, 3, 4, 5, based on the
criteria C j, j = 1, 2, 3, 4, is presented in Table 3.
Step 2. The aggregate values (for x = 3 and q = 3) of the 2TLCq-RPF matrix D by utilizing 2TLCq-
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RPFHWG operator are presented in Table 6.

Table 6. Aggregated values using 2TLCq-RPFHWG operator when x = 3 and q = 3.

Aggregate values
Ǎ1

(
(s̃7, 0.11351)ei2π(s̃7,−0.23605), (s̃2,−0.44058)ei2π(s̃1,0.26947), (s̃2,−0.15822)ei2π(s̃3,−0.33982))

Ǎ2
(
(s̃6,−0.44217)ei2π(s̃7,−0.33431), (s̃2, 0.32670)ei2π(s̃2,−0.16966), (s̃2, 0.27436)ei2π(s̃2,0.31202))

Ǎ3
(
(s̃4,−0.29756)ei2π(s̃5,0.01849), (s̃2,−0.30824)ei2π(s̃2,−0.44058), (s̃5,−0.20871)ei2π(s̃4,−0.30068))

Ǎ4
(
(s̃5, 0.18014)ei2π(s̃6,−0.45132), (s̃2,−0..49005)ei2π(s̃3,−0.40868), (s̃4,−0.16837)ei2π(s̃3,−0.12747))

Ǎ5
(
(s̃6, 0.02063)ei2π(s̃6,−0.06035), (s̃2,−0.04952)ei2π(s̃2,−0.23028), (s̃2, 0.0757)ei2π(s̃2,−0.15858))

Step 3. The score values are computed by utilizing Eq (3.3) and the results along with the ranking
order of alternatives are displayed in Table 7.
Step 4. From Step 3 the ranking order is given as follows:

Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3.

Clearly, Ǎ1 is the best alternative.

Table 7. Scores and ranking of alternatives.

Score values Ranking order
Ǎ1 7.86380 1
Ǎ2 7.86327 2
Ǎ3 7.86224 5
Ǎ4 7.86274 4
Ǎ5 7.86321 3

Figure 2. Ranking results using 2TLCq-RPFHWA operator and 2TLCq-RPFHWG operator
when x = 3 and q = 3.

Figure 2 graphically displays the decision results of alternatives based on 2TLCq-RPFHWA opera-
tor and 2TLCq-RPFHWG operator (for x = 3 and q = 3). From inspection of Figure 2, we can observe
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that the score value of alternative Ǎ1 is the highest by using both operators, whereas the score value
provided by these operators for alternative Ǎ3 is the lowest. Let us explore the situation when we keep
x = 3 and we vary q ∈ {1, 2, 3, 4}. With these figures, Table 8 presents the score values and ranking
order of the alternatives when we use the 2TLCq-RPFHWA operator, and Table 9 does the same when
we use the 2TLCq-RPFHWG operator. Figures 3 and 4 graphically display the comparison of the al-
ternatives when x = 3 and q ∈ {1, 2, 3, 4} in terms of the scores and rankings provided by the respective
operators.

Table 8. Scores and ranking of alternatives based on 2TLCq-RPFHWA operator when x = 3
and q ∈ {1, 2, 3, 4}.

S(Ǎ1) S(Ǎ2) S(Ǎ3) S(Ǎ4) S(Ǎ5) Ranking
q = 1 6.31686 6.21564 6.00669 6.13728 6.23058 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 2 7.37451 7.36797 7.35540 7.36335 7.36779 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 3 7.86399 7.86350 7.86275 7.86322 7.86344 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 4 8.13254 8.13250 8.13245 8.13249 8.13250 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

Table 9. Scores and ranking of alternatives based on 2TLCq-RPFHWG operator when x = 3
and q ∈ {1, 2, 3, 4}.

S(Ǎ1) S(Ǎ2) S(Ǎ3) S(Ǎ4) S(Ǎ5) Ranking
q = 1 6.28542 6.17795 5.93863 6.06766 6.19537 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 2 7.37204 7.36495 7.34893 7.35723 7.364946 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 3 7.86380 7.86327 7.86224 7.86274 7.86321 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

q = 4 8.13253 8.13248 8.13242 8.13245 8.13248 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

Figure 3. Ranking results based on 2TLCq-RPFHWA operator when x = 3 and q ∈
{1, 2, 3, 4}.
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Figure 4. Ranking results based on 2TLCq-RPFHWG operator when x = 3 and q ∈
{1, 2, 3, 4}.

5.3. Influence of parameter

In this subsection, we discuss the influence of the parameter on the score values and final results.
The parameter x play an important role during the selection of alternatives. The experts can maximize
their decision assessment space through variation of parameter x based on the 2TLCq-RPFHWA and
2TLq-RPFHWG operators. Apart from this, the effects of parameters on the decision results examine
the effectiveness and validity of the developed method. We utilized five different values of the param-
eter x to examine its influence on decision results. The parameter x represents the optimistic attitude
of the decision making expert towards their assessment information and reflects the flexibility during
the aggregation process. The ranking results by utilizing 2TLCq-RPFHWA and 2TLq-RPFHWG op-
erators are listed in Tables 10 and 11, respectively. From inspection of these tables, we observe that
the ranking order of the five alternatives is the same. The graphical representation of the alternatives’
results based on the 2TLCq-RPFHWA and 2TLq-RPFHWG operators (for five different values of the
parameter x, and q = 3) is shown in Figures 5 and 6, respectively. Here it is apparent that the ranking
positions of the alternatives remains the same irrespective of the values of x.

Table 10. Scores and ranking of alternatives based on 2TLCq-RPFHWA operator when q = 3
and x ∈ {1, 2, 3, 4, 5}.

S(Ǎ1) S(Ǎ2) S(Ǎ3) S(Ǎ4) S(Ǎ5) Ranking
x = 1 7.86405 7.86357 7.86283 7.86335 7.86353 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 2 7.86401 7.86353 7.86278 7.86327 7.86348 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 3 7.86399 7.86350 7.86275 7.86322 7.86344 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 4 7.86397 7.86348 7.86272 7.86319 7.86342 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 5 7.86396 7.86347 7.86270 7.86316 7.86340 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11281–11323.



11309

Table 11. Scores and ranking of alternatives based on 2TLCq-RPFHWG operator when
q = 3 and x ∈ {1, 2, 3, 4, 5}.

S(Ǎ1) S(Ǎ2) S(Ǎ3) S(Ǎ4) S(Ǎ5) Ranking
x = 1 7.86374 7.86322 7.86219 7.86266 7.86315 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 2 7.86378 7.86326 7.86222 7.86271 7.86323 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 3 7.86380 7.86327 7.86224 7.86274 7.86321 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 4 7.86381 7.86328 7.86226 7.86276 7.86322 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

x = 5 7.86382 7.86329 7.86227 7.86277 7.86323 Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

Figure 5. Ranking results based on 2TLCq-RPFHWA operator when x ∈ {1, 2, 3, 4, 5} and
q = 3.

Figure 6. Ranking results based on 2TLCq-RPFHWG operator when x ∈ {1, 2, 3, 4, 5} and
q = 3.
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5.4. Comparative study and discussion

Table 12. Scores and ranking of alternatives based on existing aggregation operators.

S(Ǎ1) S(Ǎ2) S(Ǎ3) S(Ǎ4) S(Ǎ5)
2TLSFWA operator [47] 3.79577 3.50537 3.2002 3.37327 3.68208
2TLSFWG operator [47] 3.74089 3.34797 2.76741 3.18579 3.46598
2TLPFWHM operator [55] 7.90447 6.90636 5.52804 6.68829 7.14383
2TLPFWDHM operator [55] -1.32204 -3.09574 -4.87609 -3.74791 -2.6580
2TLPFWHM operator [54] 5.07926 3.46813 2.67858 3.03961 4.46286
2TLPFWDHM operator [54] 1.02415 -0.1023 -2.29473 -1.2036 0.11055
2TLCq-RPFHWA operator (proposed) 7.86399 7.86350 7.86275 7.86322 7.86344
2TLCq-RPFHWG operator (proposed) 7.86380 7.86327 7.86224 7.86274 7.86321

Ranking
2TLSFWA operator [47] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLSFWG operator [47] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLPFWHM operator [55] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLPFWDHM operator [55] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLPFWHM operator [54] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLPFWDHM operator [54] Ǎ1 > Ǎ5 > Ǎ2 > Ǎ4 > Ǎ3

2TLCq-RPFHWA operator (proposed) Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

2TLCq-RPFHWG operator (proposed) Ǎ1 > Ǎ2 > Ǎ5 > Ǎ4 > Ǎ3

This section provides a comparison of the results computed from established AOs with some AOs
available in the literature to demonstrate the strength and flexibility of the proposed AOs. The scores
and final ranking results of alternatives are executed in Table 12. For comparison, the ranking order
of the five machines using those AOs and our proposed AOs are graphically displayed in Figure 7. So
this figure basically shows the ranking positions of the alternatives using different AOs. The details are
summarized as follows:

• We utilize the 2TLSFWA and 2TLSFWG operators [47] by taking the phase term equal to zero.
It can be easily observed that the final results produced by our AOs and the results using [47]
are slightly different, however, the best alternative is the same. The proposed AOs are based on
the Hamacher operator. The existing operators are based on 2TLSFSs, which is a special case of
2TLCq-RPFSs (when q = 2 and the phase term is zero). Therefore, our proposed AOs are more
general and flexible to solve DM problems, and produce consistent results with existing solutions.
• We utilize the 2TLPFWHM and 2TLPFWDHM operators [55] (x = 2) by considering that the

abstinence and phase terms equal zero. These AOs are based on the Hamy and dual Hamy mean
operators. Clearly, the results are consistent with our presented AOs too.
• We utilize the 2TLPFWHM and 2TLPFWDHM operators [54] (ξ = 1, ψ = 2) by considering the

abstinence term and phase terms zero. These AOs are based on the Heronian and dual Heronian
mean operators. The reader can observe that the ranking results are consistent with our presented
AOs too.

If we consider the overall results of five machines, there is a minor difference among the ranking results
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produced by our presented AOs and the results computed from existing AOs. However, the optimal
alternative is the same, which gives support to the authenticity of presented approach.

The 2TL representation model has the prominent feature to choose the best alternative when sev-
eral alternatives have the same LT but a different value of ST. Besides this, the 2TLCq-RPFS model
generalizes many existing models base on fuzzy set theory and its extensions. Therefore, the method
presented here, being based on the 2TLCq-RPF environment, has broadened the space of effective
assessments for the decision makers and is more general and flexible.

The merits and superiorities of the presented methodology can be summarized as follows: 1) The
main advantage of the 2TLCq-RPFS is that it can handle the decision making problems both qualita-
tively and quantitatively. 2) The developed 2TLCq-RPFS is a new generalization in FS theory as it
enables the decision makers to describe their evaluation properly and it has a wide range of applica-
tions. 3) The 2TLCq-RPFS has the advantage of adaptability, for it embeds the 2TLC picture fuzzy
sets when q = 1 and the 2TLC spherical fuzzy sets when q = 2. 4) We utilize the increasingly pop-
ular Hamacher AOs within a more generalized field, i.e, 2TLCq-RPFS. The Hamacher AOs provide
more detailed aggregations than other AOs, due to their utilization of a parameter x which makes them
significant tools in the presented study.

Figure 7. Comparative outcomes using existing and presented operators.

To finish this discussion, we proceed to give some highlights of different optimization models:

• In the article presented by Zhao et al. [35], an online-learning based reproduction technique is
established, which employs a learning algorithm. The authors have designed a reference vector
strategy. The presented strategy employs a learning-based technology to increase its generaliza-
tion ability.
• In a study proposed by Pasha et al. [33], the authors have given a mathematical optimization model

to determine all tactical linear shipping decisions. Moreover, a decomposition based heuristic
algorithm is developed to manage large size problems.
• Dulebenets [36] has presented a novel Adaptive Polypoid Memetic Algorithm for the cross-

docking trucks. The developed algorithm is evaluated against the new metaheuristics. Dulebenets
et al. [32] presented the multiobjective optimization technique for emergency evacuation planning
in geographical locations with vulnerable population groups.
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• In a paper presented by Pasha et al. [34], the authors have proposed a model for the vehicle routing
problem during supply chain management. They established a customized nature-inspired Hybrid
Multi-Objective Evolutionary Algorithm to solve the vehicle routing problem.
• Rabbani et al. [37] established a Mixed-integer Linear Programming model to find the best se-

quence of routes for ambulances to avoid untimely medical services for patients. They divided the
patients into three different groups according to their conditions and utilized the Non-dominated
Sorting Genetic Algorithm II and Multi-Objective Particular Swarm Optimization to a case study
to analyze the model’s performance.

6. Conclusions

The model defined by Cq-RPFS enlarges the range for the MD, NMD and AD, and enables us to
represent these three degrees in polar coordinates. In this way the range of degrees is extended from
the numerical interval [0, 1] to the unit disk in a complex plane. Besides this, the 2TL terms help
the users to better reflect the qualitative attributes. In this article, we have achieved our goal, namely,
the successful formulation of the 2TLCq-RPFS framework with fundamental tools to operate with it.
The model integrates the traits of the aforementioned frameworks for the representation of uncertain
knowledge.

Concerning its relationships with available models, we have noted that the 2TLCq-RPFS can be
transformed into the 2TL complex picture fuzzy set and 2TL complex spherical fuzzy set when q = 1
and q = 2, respectively. Therefore, the proposed approach outperforms other generalized fuzzy models
that represent linguistic information. While the 2TLCq-RPFS accommodates the characteristics of
both Cq-RPFS and 2TLS, it can still manage the information in MADM problems. To that purpose, we
have established a number of Hamacher-inspired AOs under the 2TLCq-RPF environment. The family
of new AOs includes the 2TLCq-RPFWA, 2TLCq-RPFWG, 2TLCq-RPFHWA, 2TLCq-RPFHOWA,
2TLCq-RPFHWG and 2TLCq-RPFHOWG operators. We have investigated their properties and we
have also provided an example of application for each of the proposed AOs. Then we have provided
a step-by-step procedure for decision making, which has been applied to a numerical instance in full
detail. The presented method has the ability to assign different weights to the attributes according to the
decision maker’s choice. Furthermore, we have estimated the robustness of the results by taking five
different values (x = 1, 2, 3, 4, 5) of the parameter x. Finally, we have conducted a comparative analysis
of the presented work with previous operators. The proposed research has some limitations. 2TLCq-
RPFS can deal with the information under certain conditions. It may not produce fruitful results for
a large collection of attributes. In future research, we will study and investigate more AOs based on
2TLCq-RPFSs. We also aim to present different decision-making methods for 2TLCq-RPFSs.
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Appendix A: Proof of Theorem 3.1

Proof. We prove Eq (3.6) using the induction method for the positive integer n. For n = 1, we have
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Thus Eq (3.6) holds for n = 1. Assume that it also holds for n = m,
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For n = m + 1, by the induction hypothesis, we have
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k=1

(
1 −

(
Λ−1(s̃αk , Ak)

Υ

)q)Wk ) 1
q
)
e

i2πΛ

(
Υ

(
1−

m+1∏
k=1

(
1−

(
Λ−1(s̃ζk ,Dk)

Υ

)q)Wk ) 1
q )
,

Λ

(
Υ

m+1∏
k=1

(
Λ−1(s̃βk , Bk)

Υ

)Wk )
e

i2πΛ

(
Υ

m+1∏
k=1

(
Λ−1(s̃ηk , Ek)

Υ

)Wk )
,

Λ

(
Υ

m+1∏
k=1

(
Λ−1(s̃γk ,Ck)

Υ

)Wk )
e

i2πΛ

(
Υ

m+1∏
k=1

(
Λ−1(s̃θk , Fk)

Υ

)Wk )



.

Hence, Equation (3.6) holds for all positive integers n ≥ 1.
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Appendix B: Proof of Theorem 4.1
Proof. We use induction method and Definition 4.1 to prove this theorem. For n = 2, we have

W1M1

⊕
W2M2 =



Λ

(
Υ

(
q

√
(1+(x−1)Aq

1)W1−(1−Aq
1)W1

(1+(x−1)Aq
1)W1 +(x−1)(1−Aq

1)W1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Xq

1)W1 −(1−Xq
1)W1

(1+(x−1)Xq
1)W1 +(x−1)(1−Xq

1)W1

))
,

Λ

(
Υ

(
q√x B

W1
1

q
√

(1+(x−1)(1−Bq
1))W1 +(x−1)(Bq

1)W1

))
e

i2πΛ

(
Υ

(
q√x Y

W1
1

q
√

(1+(x−1)(1−Yq
1))W1 +(x−1)(Yq

1)W1

))
,

Λ

(
Υ

(
q√x C

W1
1

q
√

(1+(x−1)(1−Cq
1))W1 +(x−1)(Cq

1)W1

))
e

i2πΛ

(
Υ

(
q√x Z

W1
1

q
√

(1+(x−1)(1−Zq
1))W1 +(x−1)(Zq

1)W1

))



⊕



Λ

(
Υ

(
q

√
(1+(x−1)Aq

2)W2−(1−Aq
2)W2

(1+(x−1)Aq
2)W2 +(x−1)(1−Aq

2)W2

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Xq

2)W2 −(1−Xq
2)W2

(1+(x−1)Xq
2)W2 +(x−1)(1−Xq

2)W2

))
,

Λ

(
Υ

(
q√x B

W2
2

q
√

(1+(x−1)(1−Bq
2))W2 +(x−1)(Bq

2)W2

))
e

i2πΛ

(
Υ

(
q√x Y

W2
2

q
√

(1+(x−1)(1−Yq
2))W2 +(x−1)(Yq

2)W2

))
,

Λ

(
Υ

(
q√x C

W2
2

q
√

(1+(x−1)(1−Cq
2))W2 +(x−1)(Cq

2)W2

))
e

i2πΛ

(
Υ

(
q√x Z

W2
2

q
√

(1+(x−1)(1−Zq
2))W2 +(x−1)(Zq

2)W2

))



=



Λ

(
Υ

(
q

√√√√ 2∏
k=1

(1+(x−1)Aq
k )Wk−

2∏
k=1

(1−Aq
k )Wk

2∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

2∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ 2∏
k=1

(1+(x−1)Xq
k )Wk −

2∏
k=1

(1−Xq
k )Wk

2∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

2∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
2∏

k=1
B
Wk
k

q

√
2∏

k=1
(1+(x−1)(1−Bq

k ))Wk +(x−1)
2∏

k=1
(Bq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

2∏
k=1
Y
Wk
k

q
√

2∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

2∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
2∏

k=1
C
Wk
k

q

√
2∏

k=1
(1+(x−1)(1−Cq

k ))Wk +(x−1)
2∏

k=1
(Cq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

2∏
k=1
Z
Wk
k

q
√

2∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

2∏
k=1

(Zq
k )Wk

))



.

Equation (4.2) holds for n = 2. Assume that Eq (4.2) holds for n = m.

2T LCq − RPFHWA(M1,M2, . . . ,Mm) =



Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Aq
k )Wk−

m∏
k=1

(1−Aq
k )Wk

m∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

m∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Xq
k )Wk −

m∏
k=1

(1−Xq
k )Wk

m∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

m∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
m∏

k=1
B
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Bq

k ))Wk +(x−1)
m∏

k=1
(Bq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
Y
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

m∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
m∏

k=1
C
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Cq

k ))Wk +(x−1)
m∏

k=1
(Cq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
Z
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

m∏
k=1

(Zq
k )Wk

))



.
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For n = m + 1 by the induction hypothesis, we have

2T LCq−RPFHWA(M1,M2, . . . ,Mm,Mm+1) = 2T LCq−RPFHWA(M1,M2, . . . ,Mm)
⊕
Wm+1Mm+1

=



Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Aq
k )Wk−

m∏
k=1

(1−Aq
k )Wk

m∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

m∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Xq
k )Wk −

m∏
k=1

(1−Xq
k )Wk

m∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

m∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
m∏

k=1
B
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Bq

k ))Wk +(x−1)
m∏

k=1
(Bq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
Y
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

m∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
m∏

k=1
C
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Cq

k ))Wk +(x−1)
m∏

k=1
(Cq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
Z
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

m∏
k=1

(Zq
k )Wk

))



⊕



Λ

(
Υ

(
q

√
(1+(x−1)Aq

m+1)Wm+1−(1−Aq
m+1)Wm+1

(1+(x−1)Aq
m+1)Wm+1 +(x−1)(1−Aq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Xq

m+1)Wm+1 −(1−Xq
m+1)Wm+1

(1+(x−1)Xq
m+1)Wm+1 +(x−1)(1−Xq

m+1)Wm+1

))
,

Λ

(
Υ

(
q√x B

Wm+1
m+1

q
√

(1+(x−1)(1−Bq
m+1))Wm+1 +(x−1)(Bq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q√x Y

Wm+1
m+1

q
√

(1+(x−1)(1−Yq
m+1))Wm+1 +(x−1)(Yq

m+1)Wm+1

))
,

Λ

(
Υ

(
q√x C

Wm+1
m+1

q
√

(1+(x−1)(1−Cq
m+1))Wm+1 +(x−1)(Cq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q√x Z

Wm+1
m+1

q
√

(1+(x−1)(1−Zq
m+1))Wm+1 +(x−1)(Zq

m+1)Wm+1

))



=



Λ

(
Υ

(
q

√√√√ m+1∏
k=1

(1+(x−1)Aq
k )Wk−

m+1∏
k=1

(1−Aq
k )Wk

m+1∏
k=1

(1+(x−1)Aq
k )Wk +(x−1)

m+1∏
k=1

(1−Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ m+1∏
k=1

(1+(x−1)Xq
k )Wk −

m+1∏
k=1

(1−Xq
k )Wk

m+1∏
k=1

(1+(x−1)Xq
k )Wk +(x−1)

m+1∏
k=1

(1−Xq
k )Wk

))
,

Λ

(
Υ

( q√x
m+1∏
k=1
B
Wk
k

q

√
m+1∏
k=1

(1+(x−1)(1−Bq
k ))Wk +(x−1)

m+1∏
k=1

(Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m+1∏
k=1
Y
Wk
k

q
√

m+1∏
k=1

(1+(x−1)(1−Yq
k ))Wk +(x−1)

m+1∏
k=1

(Yq
k )Wk

))
,

Λ

(
Υ

( q√x
m+1∏
k=1
C
Wk
k

q

√
m+1∏
k=1

(1+(x−1)(1−Cq
k ))Wk +(x−1)

m+1∏
k=1

(Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m+1∏
k=1
Z
Wk
k

q
√

m+1∏
k=1

(1+(x−1)(1−Zq
k ))Wk +(x−1)

m+1∏
k=1

(Zq
k )Wk

))



.

Hence, Equation (4.2) holds for all positive integers n ≥ 1.

Appendix C: Proof of Theorem 4.3
Proof. We use induction method and Definition 4.1 to prove this theorem. For n = 2, we have

MW1
1

⊗
MW2

2 =



Λ

(
Υ

(
q√x A

W1
1

q
√

(1+(x−1)(1−Aq
1))W1 +(x−1)(Aq

1)W1

))
e

i2πΛ

(
Υ

(
q√x X

W1
1

q
√

(1+(x−1)(1−Xq
1))W1 +(x−1)(Xq

1)W1

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Bq

1)W1−(1−Bq
1)W1

(1+(x−1)Bq
1)W1 +(x−1)(1−Bq

1)W1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Yq

1)W1 −(1−Yq
1)W1

(1+(x−1)Yq
1)W1 +(x−1)(1−Yq

1)W1

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Cq

1)W1−(1−Cq
1)W1

(1+(x−1)Cq
1)W1 +(x−1)(1−Cq

1)W1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Zq

1)W1 −(1−Zq
1)W1

(1+(x−1)Zq
1)W1 +(x−1)(1−Zq

1)W1

))



⊗
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

Λ

(
Υ

(
q√x A

W2
2

q
√

(1+(x−1)(1−Aq
2))W2 +(x−1)(Aq

2)W2

))
e

i2πΛ

(
Υ

(
q√x X

W2
2

q
√

(1+(x−1)(1−Xq
2))W2 +(x−1)(Xq

2)W2

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Bq

2)W2−(1−Bq
2)W2

(1+(x−1)Bq
2)W2 +(x−1)(1−Bq

2)W2

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Yq

2)W2 −(1−Yq
2)W2

(1+(x−1)Yq
2)W2 +(x−1)(1−Yq

2)W2

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Cq

2)W2−(1−Cq
2)W2

(1+(x−1)Cq
2)W2 +(x−1)(1−Cq

2)W2

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Zq

2)W2 −(1−Zq
2)W2

(1+(x−1)Zq
2)W2 +(x−1)(1−Zq

2)W2

))



=



Λ

(
Υ

( q√x
2∏

k=1
A
Wk
k

q

√
2∏

k=1
(1+(x−1)(1−Aq

k ))Wk +(x−1)
2∏

k=1
(Aq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

2∏
k=1
X
Wk
k

q
√

2∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

2∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ 2∏
k=1

(1+(x−1)Bq
k )Wk−

2∏
k=1

(1−Bq
k )Wk

2∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

2∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ 2∏
k=1

(1+(x−1)Yq
k )Wk −

2∏
k=1

(1−Yq
k )Wk

2∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

2∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ 2∏
k=1

(1+(x−1)Cq
k )Wk−

2∏
k=1

(1−Cq
k )Wk

2∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

2∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ 2∏
k=1

(1+(x−1)Zq
k )Wk −

2∏
k=1

(1−Zq
k )Wk

2∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

2∏
k=1

(1−Zq
k )Wk

))



.

Equation (4.12) holds for n = 2. Assume that Eq (4.12) holds for n = m, i.e.,

2T LCq − RPFHWG(M1,M2, . . . ,Mm) =



Λ

(
Υ

( q√x
m∏

k=1
A
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Aq

k ))Wk +(x−1)
m∏

k=1
(Aq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
X
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

m∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Bq
k )Wk−

m∏
k=1

(1−Bq
k )Wk

m∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

m∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Yq
k )Wk −

m∏
k=1

(1−Yq
k )Wk

m∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

m∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Cq
k )Wk−

m∏
k=1

(1−Cq
k )Wk

m∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

m∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Zq
k )Wk −

m∏
k=1

(1−Zq
k )Wk

m∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

m∏
k=1

(1−Zq
k )Wk

))



.

To prove that the formula holds for n = m + 1, by induction hypothesis we have

2T LCq − RPFHWG(M1,M2, . . . ,Mm,Mm+1) = 2T LCq − RPFHWG(M1,M2, . . . ,Mm)
⊗

MWm+1
m+1

=



Λ

(
Υ

( q√x
m∏

k=1
A
Wk
k

q

√
m∏

k=1
(1+(x−1)(1−Aq

k ))Wk +(x−1)
m∏

k=1
(Aq

k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m∏
k=1
X
Wk
k

q
√

m∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

m∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Bq
k )Wk−

m∏
k=1

(1−Bq
k )Wk

m∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

m∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Yq
k )Wk −

m∏
k=1

(1−Yq
k )Wk

m∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

m∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√ m∏
k=1

(1+(x−1)Cq
k )Wk−

m∏
k=1

(1−Cq
k )Wk

m∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

m∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√ m∏
k=1

(1+(x−1)Zq
k )Wk −

m∏
k=1

(1−Zq
k )Wk

m∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

m∏
k=1

(1−Zq
k )Wk

))



⊗
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Λ

(
Υ

(
q√x A

Wm+1
m+1

q
√

(1+(x−1)(1−Aq
m+1))Wm+1 +(x−1)(Aq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q√x X

Wm+1
m+1

q
√

(1+(x−1)(1−Xq
m+1))Wm+1 +(x−1)(Xq

m+1)Wm+1

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Bq

m+1)Wm+1−(1−Bq
m+1)Wm+1

(1+(x−1)Bq
m+1)Wm+1 +(x−1)(1−Bq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Yq

m+1)Wm+1 −(1−Yq
m+1)Wm+1

(1+(x−1)Yq
m+1)Wm+1 +(x−1)(1−Yq

m+1)Wm+1

))
,

Λ

(
Υ

(
q

√
(1+(x−1)Cq

m+1)Wm+1−(1−Cq
m+1)Wm+1

(1+(x−1)Cq
m+1)Wm+1 +(x−1)(1−Cq

m+1)Wm+1

))
e

i2πΛ

(
Υ

(
q

√√
(1+(x−1)Zq

m+1)Wm+1 −(1−Zq
m+1)Wm+1

(1+(x−1)Zq
m+1)Wm+1 +(x−1)(1−Zq

m+1)Wm+1

))



=



Λ

(
Υ

( q√x
m+1∏
k=1
A
Wk
k

q

√
m+1∏
k=1

(1+(x−1)(1−Aq
k ))Wk +(x−1)

m+1∏
k=1

(Aq
k )Wk

))
e

i2πΛ

(
Υ

(
q√x

m+1∏
k=1
X
Wk
k

q
√

m+1∏
k=1

(1+(x−1)(1−Xq
k ))Wk +(x−1)

m+1∏
k=1

(Xq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ m+1∏
k=1

(1+(x−1)Bq
k )Wk−

m+1∏
k=1

(1−Bq
k )Wk

m+1∏
k=1

(1+(x−1)Bq
k )Wk +(x−1)

m+1∏
k=1

(1−Bq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ m+1∏
k=1

(1+(x−1)Yq
k )Wk −

m+1∏
k=1

(1−Yq
k )Wk

m+1∏
k=1

(1+(x−1)Yq
k )Wk +(x−1)

m+1∏
k=1

(1−Yq
k )Wk

))
,

Λ

(
Υ

(
q

√√√√ m+1∏
k=1

(1+(x−1)Cq
k )Wk−

m+1∏
k=1

(1−Cq
k )Wk

m+1∏
k=1

(1+(x−1)Cq
k )Wk +(x−1)

m+1∏
k=1

(1−Cq
k )Wk

))
e

i2πΛ

(
Υ

(
q

√√√√√√√√√√ m+1∏
k=1

(1+(x−1)Zq
k )Wk −

m+1∏
k=1

(1−Zq
k )Wk

m+1∏
k=1

(1+(x−1)Zq
k )Wk +(x−1)

m+1∏
k=1

(1−Zq
k )Wk

))
,



.

Hence, Equation (4.12) holds for all positive integers n ≥ 1.
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