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Abstract: This paper is concerned with a stochastic population model in a polluted environment.
First, within the framework of Lyapunov method, the existence and uniqueness of a global positive
solution of the model are proposed, and the sufficient conditions are established for existence of an
ergodic stationary distribution of the positive solution. Second, the control strategy is introduced into
the stochastic population model in a polluted environment. By using Pontryagin’s maximum principle,
the first-order necessary conditions are derived for the existence of optimal control. Finally, some
numerical simulations are presented to illustrate the analytical results.
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1. Introduction

Along with fast development of modern industry and agriculture, there is no denying the fact that
environmental pollution has become increasingly serious, including air pollution, water pollution and
heavy metal pollution [1,2]. The existence of various poisons in the environment seriously threatens
the survival of exposed populations, which has prompted many scholars to study the effects of toxins
on the population and assess the risk of the population in a polluted environment. The population
model in a polluted environment was first proposed by Hallam et al. in the 1980s [3,4]. From then
on, more research results on the deterministic population model in a polluted environment have been
presented (see [5-8]). However, in the real world, population dynamics are inevitably affected by
randomness in the environment. Thus, several scholars have introduced random perturbations into the
population model in a polluted environment to study dynamic behavior (see [9—13]). In particular, Liu
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and Wang [14] established a stochastic population in a polluted environment which takes the form

Xm = [Xl(r() - I’]Xz — le)]df + UdeB(f),

ax,

I =kX; — (g + m)Xa, (1.1)
dX;

B Xy 4,

o 3+ U

where X, (7) is the density of the population at time ¢, X,(¢) denotes the concentration of toxicant in
the organism (internal toxicant) at time ¢, and X3(f) stands for the concentration of toxicant in the
environment (external toxicant) at time 7. B(?) is the standard Brownian motion, and o represents
the intensity of the noise. The biological meanings of other parameters are listed in Table 1. For
model (1.1), Liu and Wang obtained the acute threshold between local extinction and stochastic weakly
persistent in the mean for population. However, the model did not consider the effects of randomness
in the environment on the toxicant, nor did it consider the effects of population on external toxicant.

As is well known, toxicants are more or less disturbed by environmental factors, such as tem-
perature, humidity, and seasonal climate change. Due to these random factors, the concentrations of
toxicant in the organism and environment may exhibit a certain extent of random fluctuations in model
parameters, such as the excretion rate and loss rate. Therefore, it is more realistic to consider the effects
of randomness in the environment on the toxicant [15]. On the other hand, the uptake and egestion of
toxicant by organisms from and to the environment can lead to obvious changes in toxicant in the envi-
ronment, which is an important factor in determining the concentration of toxicant in the environment
and needs to be considered [8]. Obviously, if these factors are further taken into account in model
(1.1), we will get a novel stochastic population model in a polluted environment, which is an extension
of model (1.1). For this model, the stationary distribution is an important concept.

Stationary distribution is an important dynamical property of the stochastic population model in a
polluted environment, as it not only means random weak stability, but also provides a better description
of persistence [16]. In addition, it is well known that the proliferation of pollutants will lead to huge
economic costs, mainly including the reduction of crop yields and the expenditures related to pollution
prevention. From an ecological and economic point of view, how to formulate the control strategy
for pollutants is an important and meaningful issue. In this paper, we first show that the model has a
unique ergodic stationary distribution by the Lyapunov method, then the optimal control strategy for
pollutants is formulated, and the necessary conditions are derived for the existence of optimal control
by using the Pontryagin maximum principle. In particular, our study has the following contributions:

e We propose a novel stochastic population model in a polluted environment and establish the
sufficient conditions for the existence of an ergodic stationary distribution of the positive solutions.

e We study the optimal control problem for the toxicant and derive the necessary conditions for
existence of optimal control by Pontryagin’s maximum principle.

The remainder of this paper is organized as follows. In Section 2, the basic model and some
necessary preliminary knowledge are introduced. In Section 3, the existence and uniqueness of a
global positive solution of the model is proposed, and the sufficient conditions for the existence of an
ergodic stationary distribution of the positive solution are established. In Section 4, we formulate the
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optimal control strategy for the toxicant and derive the first-order necessary conditions for the existence
of optimal control. In Section 5, some numerical simulations are given to illustrate our main results.
In Section 6, we summarize the work of this paper.

2. Model formulation and preliminaries

2.1. Model formulation

Similar to [8], we consider the changes in the concentration of external toxicant caused by absorp-
tion and excretion of the population, and then the third equation of system (1.1) becomes

179.¢
d—t3 = —k1X1X3 + g1X1X2 — hX3 + u, (21)

where k; X X; represents the absorption of the toxicant from the environment by the population, and
81X, X, represents the toxicant excreted by the population into the environment.

Following [17], we consider the effects of Brownian motion as a random factor on the net organis-
mal excretion rate of toxicant, and the total loss rate of toxicant from the environment, that is,

g—o g+ 02dBy (1), h — h + 03dBs(1). (2.2)

Substitute (2.1) and (2.2) into system (1.1) to get the following stochastic population system in a
polluted environment:

dXi = [Xi(ro — Xz — fX)]dt + 01 X1d By (1),
dX; = [kX5 — (g + m)X;]dt — 0, X>dB, (1), (2.3)
dX; = [-ki X1 X3 + a9 X1 X; - hX; + uldt — 03 X3dB5(1).

The initial conditions of system (2.3) take the following form:

X1(0) = X?, X5(0) = X3, X3(0) = X3,
X eR,, i=1,23,

where o;(i = 1,2,3) is the intensity of the noises, and B;(r)(i = 1,2,3) denotes independent and
standard Brownian motions. The biological significance of all parameters is shown in Table 1.

—\) Population subsystem

random environment | X | | Logistic

e

\ e ki Toxicant subsystem

random environment k u
X . X3
1

g m h

Figure 1. Schematic diagram of system (2.3).
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Table 1. Description of system parameters.

Parameter Definition

ro the intrinsic growth rate function of the population

T the decreasing of the growth associated with the uptake of the toxicant

f the intensity of intraspecific competition

k the net organismal uptake rate of toxicant from the environment

g the net organismal excretion rate of toxicant

m the depuration rate of toxicant due to metabolic process and other losses

h the total loss rate of toxicant from the environment

ky the loss rate of toxicant due to the absorption of organisms

g1 the increase rate of the toxicant in the environment coming from the
excretion of the total population

u the exogenous total toxicant input into the environment

2.2. Preliminaries

Let (Q, 7, {¥}>0, P) be a complete probability space with a filtration {¥,},5o satisfying the usual
conditions, and B;(f)(i = 1,2,3) are mutually independent standard Brownian motions defined on
(Q, F,{F )0, P). Define R = (x;,x2,+++,x4) € RY : x; > 0,i = 1,2,---,d. Next, we introduce a
lemma that gives a criterion for the existence of an ergodic stationary distribution to system (2.3).

Let Y(¢) be a homogeneous Markov process in E,; (d-dimensional Euclidean space) described by
the following stochastic differential equation:

k
dY(r) = c(Y)dt + ) ,(Y)dB,().
r=1
The diffusion matrix is defined as follows:
k
A) = @5(0), (0 = ) gl
r=1

Lemma 2.1. [18] The Markov process Y(t) has a unique ergodic stationary distribution u(-) if there
exists a bounded domain D C E; with regular boundary I and the following:

(i) There is a positive number M such that ijzl a;j(0)&E > MIEP, x € D, & € RY.

(ii) There exists a nonnegative C*-function V such that LV is negative for any E,\D.

Then ,
1
Px{ lim —f SXY@)dt = (f(X),U)dX} =1
T—+co T 0 E,
for all x € E;, where || - || denotes the Euclidean norm, and f(-) is a function integrable with respect to
measure L.

3. Stationary distribution

Before establishing the sufficient conditions for the existence of an ergodic stationary distribution,
we first prove that there exists a unique positive solution of system (2.3).
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Theorem 3.1. For any initial value (X}, X3, X3) € R, there exists a unique solution (X, (1), X>(1), X3(1))
of system (2.3) on t > 0, and the solution will remain in R3 with probability one, namely,

(X1(0), X2(1), X5(t)) € R® for all t > 0 almost surely (a.s.).

The proof is shown in the Appendix.
In the following, we establish sufficient conditions for the existence of a unique ergodic stationary
distribution. Let

A =

h|{ 6
ro/\(g+m)/\§}—§(o%V<T§V0'§).

Theorem 3.2. If there exists a constant 0 < 6 < 1 such that A > 0 holds, then for any initial date
(XO,Xg,Xg) € Ri, system (2.3) exists a unique stationary distribution u(-), and it has the ergodic
property.
Proof. To prove Theorem 3.2, only conditions (i) and (ii) in Lemma 2.1 need to be verified. Now, we
prove condition (i). The diffusion matrix of system (2.3) is given by
oiX: 0 0
A= 0 U%X% 0
0 0 o3X;

Ve . 2v2 L 2v2 232 Y 1 1 .
Choose M = (x],xz,rgl)relecRi {0'1X1,0'2X2,0'3X3}, where D; = [k,k] X [k,k] X [k,k] and k > 1 is a
sufficiently large integer. By calculation, we have
3 o1X1€1
Zflijfi-fj :( o1 X1 —02 X6, —03X363 ) —02X26>
i,j=1 —03X363
= (1 X)’E] + (02 X0)’E + (03X3)°8
> M€,

for any (X, X2, X3) € Dy, & = (€1,&,&3) € R®. This completes the proof of condition (i) in Lemma 2.1.
Now, we will prove condition (ii). We first define a C>-function V : R — R as follows:

N 1
V(X],XQ,X3) = B(— 1nX1 - X3) - 11'1X2 - II'IX_O, + m(xl + Cl]Xz + b]X:;)eH,

where a; and b, are positive constants, and their values are determined later, 8 > 0 is a sufficiently small
constant such that A > 0, and B > 0 is a sufficiently large number that satisfies —B(ry + u) + By < -2,
where

A BO‘Z 0_2 0_2
B, = sup {——(Xf“ + Xo*! +X§’“)+Br1X2+C+g+m+h+ —ly 243 +BhX3}.
(X1,X2,X3)€R3 4 2 2 2

Furthermore, V is continuous and tends to +oo as (X}, X, X3) approaches the boundary of R? and as
(X1, X2, X3)|l = +oo. Therefore, it must have a minimum point (X?, X, X?) in the interior of R3. Then,
we define a C>-function V : R3 — R, U {0} as

_ 1 _
V(X1, X0, X3) = B(=In X = X3) = InXo = In X3 + —— (X1 + a1 X + b X)™ - VXY, X3, X3)
= Vi(Xy, Xa, X3) + Va(X2) + V3(X3) + Vi(Xy, Xo, X3),
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where Vi(X;, X3, X3) = B(=In X, = X3), V2(X3) = = InX;, Va(X3) = —In X3, Vi(Xi, X3, X3) = (X +
a X, + b1X3)9+1 - V(XO,X(Z),X;))
Choosing a; = nhop= ;—11, applying 1t6’s formula to V,(X;, X, X3), we have

281k’
BO'%
LV, = —Bry + Bri X, + BfX, + — Bk X, X3 — Bg1 X, X, + BhX; — Bu. (3.1
Similarly,
kX3 o3
LV =——+g+m+ —,
X5 2 ’
81X1X> u 0'% G-
LV; = kX, — th- oy 2,
X; X, 2
and
LV4 = (X1 + 611X2 + b1X3)9 [I"oXl - I’1X1X2 - fX]2 + alkX3 — al(g + m)X2 - b1k1X1X3
6
+ b1g1X1X2 — b]hX3 + b]bt] + E(X] + a1 X, + b1X3)9_1 (O'%X% + 0'§an§ + O'gb%Xg)
2
r
< (Xl + (11X2 + b1X3)9 70 + blu - r0X1 - al(g + m)X2 - (blh - alk)X3
0
+ E(X] + a1 X, + b1X3)9_1 (O'%X% + O'%Cl%X% + Ugb%Xg)
0 0 h
< (Xl + 611X2 + b1X3) ? + bll/t —|ro A (g + m) AN E (X1 + Cl1X2 + b1X3) (33)

6
+ E(Xl + a1 Xy + b1X3)6_1 [O'% \Y O'% Vv O'%(Xl + a1 X + b1X3)2]

2
= (70 + b]”) X1 + a1 Xo + b1 X3)" = AX) + a1 X + by X3)™!

A
<C- E(Xl + Cl1X2 + b]X3)0+1
A
<C-3 (Xf+1 + X0 4 Xg’“) :
where
0 oA 0+1
C = max (7 + blu) (X1 + a1 X, + b1X3) - E(Xl + a1 X, + b1X3) .

Therefore, in view of (3.1)—(3.3), we obtain

_ Bo?
LV < —Bry+ Bri X, + BfX] + T] + Bk1X1X3 — Bg1X1X2 + BhX3 — Bu

kX o3 X, X o3
B e m kxR, B TS
X2 2 X3 X3 2

A
+C-3 (X7 + X971+ xg)
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< —B(I’Q + Lt) + (Bf + kl)Xl + Bk1X1X3 - = Bg1X1X2

2

A o2 o o2
—E(Xf” + X3+ XS )+ BrXy + CHgtm+h+ Tl + 72 +73+BhX3.
Define a bounded closed set as follows:

1 1 1
0 = {(XI,XQ,X3) c RilE <X; < —,63 <X, < =€ <X3< —},
€ € €
where 0 < € < 1 is a sufficiently small number and satisfies

min A B(ro+u)—B; -1 [ k u 0+1 A 36043 A o+1 A
€ = - -
4Bk1, Bf+ Bk + ky ’ B, + 1’ B; + 1’ 4(D1 + 1)’ 4(D2 + 1)’ 4(D3 +1) ’

(3.4)

where B; and D; > 0, i = 1,2, 3, are positive constants, which will be given explicitly later. Choose
O ={(X1.X2. X3) R0 < X; <€}, Oy ={(X1.X2.X3) ERI0 < X; < €, X3 2 ¢,

1

®; = {(X1, X2, X3) €RU0O < X3 < ¢}, O, = {(Xl,xz,xg € RIX, > —},
€
3 1 3 1

Qs = (X1, X2, X3) € R{|X> > a3 Qs = (X1, X3, X3) € R||X5 > =

Clearly, ©¢ = R}\O¢ = U% | ©,. Then, we will prove that

LV(X],Xz,X}) < —1, fOI" any (X],Xz,X3) € @i

We are going to prove it in the following six cases.
Case 1: If (X, X5, X3) € O, due to X ;X3 < €X3 < e(l + Xg”), we have

_ kX
LV(X],Xz,X’j) < —B(I’Q + l/t) + (Bf + kl)Xl + Bk1X1X3 - 73 - Xl - Bg1X1X2
2 3

A Bo? o2 o2
—E(Xf“+X§+‘+X§”)+Br1X2+C+g+m+h+T‘+72+73+BhX3

A
< —=B(ro + u) + (Bf + k1)X; + Bkie + {Bkle - Z}Xﬁ“

A Bo? o o3
—Z(X?“+X§“+X§’“)+Br1X2+C+g+m+h+—l+—2+—3+BhX3 (3.5)

2 2 2
< —-B(rg+u)+ (Bf + k)X, + Bkie

A Bo? o2 o2
—Z(Xf” + X5 +X§”)+Br1X2+C+g+m+h+Tl+72+73+BhX3
< —B(r() + I/t) + (Bf + kl)Xl + Bk16 + Bl
< —B(rg +u) + (Bf + Bk, + k1)e + B,

-1,

IA
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where

A
B, = max {_Z (X7 + X571+ xg)

BO’2 2 2
+BrX, +C+g+m+h+—L + 2+ 2 + BhX;
2 2 2
Case 2: If (X1, X3, X3) € O, by Eq (3.4), we have
_ kX3 u
LV(X],Xz,Xg) < —B(}"() + I/l) + (Bf + kl)Xl + Bk1X1X3 — 7 — X_ — Bg1X1X2
2 3
A Bo? o o2
— S (X7 X5+ XP) 4 BriXy + C g4 m+h+ —L + 2+ = + BhX;
2 2 2 2
kX;
< _X— + (Bf + k)X, + Bk X1 X3 (3.6)
2

A Bo? o o2
—E(Xf”+X§’“+X§+1)+Br1X2+C+g+m+h+Tl+72+73+BhX3

ng ke k
<—-——4+B <—-——+B <—-——+B <_1’

where

A
B, = max {—5 (X?+l + X9 + ng“) + (Bf + k)X, + Bk X, X5

BO'% 0'% 0'%
+Br1X2+C+g+m+h+T+7+7+BhX3 .

Case 3: If (X}, X;, X3) € @3, according to Eq (3.4) and X, X3 < €X; < 6(1 + Xf“), we have

_ kX
LV(X],Xz,X:,') < —B(l’o + I/t) + (Bf + kl)Xl + Bk1X1X3 - 73 - Xl - Bg1X1X2
2 3
A 2 2 0.2
—E(X?H + X4+ +X§“)+Br1X2+C+g+m+h+Tl+72+73+BhX3
A
s—%+(3f+k1)xl +Bkle+{Bkle—Z}Xf” (3.7)
A BO.Z 2 0_2
—Z(Xf“ + XJ! +X§“)+Br1X2+C+g+m+h+Tl+72+73+BhX3

u u
<—— +By<——+By< -1,
X3 €

where
__é 0+1 0+1 0+1
B; = 4()(1 + X3+ X3) + (Bf + ki) Xi + Bkye
BO.Z 2 0_2
+Br1X2+C+g+m+h+Tl+72+73+BhX3.
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Case 4: If (X1, X3, X3) € O4, by Eq (3.4), we have

_ kX
LV(X],XQ,X3) < —Br() + (Bf + kl)Xl + Bk1X1X3 - 73 - Xi - Bg1X1X2
2 3
A Bo? o o2
_E(X?H + X5+ XS+ BriX, + CHg+m+h+ 21 + 22 73+BhX3
A A
< ——Xx0 - ZX?“ + (Bf + k)X, + Bk X, X3 (3.8)

2

4
A o o2 o?
—E(Xg”+X§“)+Br1X2+C+g+m+h+T‘+72 73+BhX3

< —%Xf“ +D < —%e—“’“) +D; < -1,
where

A A
Dy == X"+ (Bf + k)Xi + Bk X1 X3 = = (x5 + x¢+)
Bo 2 2 2
+Br1X2+C+g+m+h+T+72 73+th3

Case 5: If (X1, X3, X3) € Os, it follows from Eq (3.4) that

LV(X],XQ,X3) < —Br() + (Bf + kl)Xl + Bk1X1X3 - X_ - Y - Bg1X1X2
2 3

A BO'% 0'% 0'§

—E(Xf“ + X5t +X§“)+Br1X2+C+g+m+h+T+7+7+BhX3
A A A
— X = X (B + k)Xo + BhiX\Xs - o (X7 + x4) (3.9)
Bo? o5 03

+Br1X2+C+g+m+h+T+2 2+BhX3

< —%Xg“ + D, < —%6‘3(9“) + D, < -1,
where

A A
Dy = =7 X5™ + (Bf + k)X) + Bl Xi X3 = = (X7 + x¢7)
Bo} ;o3
+Br1X2+C+g+m+h+T+7 7+BhX3
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Case 6: If (X1, X3, X3) € Og, from Eq (3.4), we can obtain that

_ kX
LV(Xl,XQ,X3) < —BI’Q + (Bf + kl)Xl + Bk1X1X3 - 73 — % — Bg1X1X2
2 3

A o? o} o?
——(Xf” + X0+ +X§”)+Br1X2+C+g+m+h+—1+—2+—3+BhX3

2 2 2 2

A A A
S =X = X+ (B + k)Xo + BiXiXs - o (x7e + x5+) (3.10)
Bo? o} o3

+BrX, +C+g+m+h+ —+ —+ — + BhX;

2 2 2

< —%Xg’” +D; < —%e‘("”) +D; < -1,
where

A A
Ds = =2 X5™ + (B + k)X) + Bl XiXs = — (X[ + X3"!)
Bo? o} o3
+Br1X2+C+g+m+h+T+7+7+BhX3.

Clearly, through the analysis of cases 1 to 6, we have
LV(X[,X2,X3) < —1,f01’ all (XI,X2,X3) S @i

Therefore, condition (ii) in Lemma 2.1 is satisfied. In view of Theorem 3.2, we obtain that system (2.3)
admits a unique ergodic stationary distribution. This completes the proof.

Remark 1. The above analysis shows that the positive solution of system (2.3) has a unique ergodic
stationary distribution. This means that the density of the population and the concentrations of internal
toxicant and external toxicant will tend to a steady state under certain conditions.

4. Optimal control problem

In this section, the optimal control problem for system (2.3) is formulated. Our goal is to reduce the
concentration of internal toxicant and external toxicant, while keeping the cost to apply the control at
the minimum level. We use v(¢) as the control variable to reduce the concentration of external toxicant
(such as carrying out greening and tree planting activities, reducing the use of private cars, prohibiting
littering, discharging factory wastewater after purification, etc.). Thus, the optimal control problem of
system (2.3) is as follows:

dX, = [Xi(ro — Xy — fX)]dt + o1 X1d B\ (1),
dXx, = [ng - (g + m)Xz]dl - O'2X2dBQ(Z), (41)
dX; = [-ki X1 X3 + a9 X1 X, - hX; + u —vXzldt — 03 X3dB;(t).

According to our purpose, we construct the following objective function:
’ 1
J(V) =E {f (T1X2 + T2X3 + ET:;VZ) dt + h(Xz(T), X3(T))} , (42)
0
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where [0, T'] is the entire time interval over which the control strategies are applied, and the constants
7; (i = 1,2, 3) are positive weighted constants to make the terms of the integrand keep balance in the
objective functional J(v).

Remark 2. For the specific cost function, the practical significance is given. The term fOT (11 X+
7,X3) dt gives the sum of the concentrations of internal toxicant and external toxicant over the time
period T. The term fOT (%T3V2) dt gives the total cost of reducing the concentration of external toxicant.
The term h(X,(T), X3(T)) is a function of toxicant at terminal time T. In particular, we assume that the
cost is proportional to the degree of pollution and quadratic to the intensity of control.

The aim of the control problem is to seek an admissible control such that

JO) = min J(v),
W)V&%(W

where the control set U, is considered as
Uy ={v() : [0,T] > U | v() is Lebesgue measurable and 0 < v(-) < 1}.
Next, we give the following theorem to illustrate the existence of the optimal control.

Theorem 4.1. There exist an optimal control v: € U,y and the corresponding optimal state X7, X3, X;
such that
JOW) = min J(v),

v(-)EUuq

subject to the control system (4.1).

Proof. We use the results in [19-21] to complete the proof. Note that both the control variable and
state variables are nonnegative, and the control set U, is closed and convex. Then, the objective
function (4.2) is convex with respect to the control variable v(¢). Furthermore, the optimal control is
bounded. Therefore, the necessary condition for the existence of the optimal control v* is satisfied.
This completes the proof.

By constructing the Hamiltonian function [20] and using Pontryagin’s maximum principle [22], the
first-order necessary conditions for the optimal control problem are given as follows.

Theorem 4.2. Let v* be the optimal control variable, and X|, X5 and X; are corresponding optimal
state variables of the control system (4.1). Then, we have the following optimal control:

P3X3
T3

v* = min{max{0, 1,1}, 4.3)

where p(t) = (p1(1), p2(t), p3(t)) satisfies the following adjoint equation.

dpi(t) = [(=ro + nXa + 2fX1)p1(0) + (ki X3 — g1X1)p3(0) — o1(D)q1(D]dt + g1 (H)d By,
dp>(1) = [nXip1(0) + (g + m)pa2(t) — g1X1p3 + 02(0q2(1) — T11d1 + q2(1)d By,
dp;(1) = [=kp2(t) + (ki Xy + h 4+ v)p3(2) + 03(0)q3(7) — T2]dt + q3d Bs,
pi(T)=0,i=1,2,3.

4.4)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11260-11280.



11271

Proof. We define a Hamiltonian function [20, Section 3.3.1] H : [0, T] X U,; X R x R? as follows:

1
H(t,v,p,q) = 11X, + 1, X5 + 573\/2

+ p1O[Xi(ro — nXa = fXD] + qi(Do1 Xy (4.5)
+ po(D[kX3 = (g + m)Xo] — q2(D) 02 X,
+ p3(O[-ki1 X1 X5 + g1.X1 X, — hX; + u — vX3] — q3(D)03X5.

Applying the general results in [20], v* is obtained by using the optimality condition Werpd — () and

o
thus we have v = ’"—f‘ Then, according to the condition that 0 < v(x) < 1, the optimal control v* is
obtained as follows:

0, if 0,
T3
X X
Vo= P3 3’ if0<p3 3S1,
T3 T3
X
1, i
T3

Hence, the optimal value of the function can be obtained. This completes the proof.
5. Numerical simulations

In this section, some numerical examples are presented to verify the theoretical results obtained
above. The parameter values are chosen as follows:

ro=02,r =05, f=02, k=0.1, g=0.3, m=0.04, k;, =0.004, g; =0.0015,~2=0.3, u=0.2.
The following subsection shows numerical examples of the stationary distribution.

5.1. Numerical simulations of stationary distribution

Based on Milstein’s higher-order method [23], the corresponding discrete equations of system (2.3)
are

1
X1i+1 = Xli + Xli(r() - rIXZi - lel.)At + alwl’ini VAt + EO’%(W%J — DAt
1
sz = Xzi + kX3iA[ —(g+ m)XziAt — O'z?D'zJXzi VAL — 50’%(@%1 — DA¢,

1
X3I.+1 = X3I. - k]X]I.X3’.AZ‘ + gX]I.XQiAl - hX3iAl + ult — 0'313'3,1'X3i \/E - 50’%(’@';! — DAt,

where w;;(j = 1,2,3, i = 1,--- ,n) are independent random variables following the standard normal
distribution N(O, 1).

In Figure 2, we present the time series plot of the system solution and its corresponding histogram.
It shows that there is a unique ergodic stationary distribution for system (2.3), and this is consistent
with the result in Theorem 3.2.
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Figure 2. The left column shows the paths of X;(7), X,(¢) and X3(¢) for system (2.3) with
initial values (X?, X5, X}) = (1,0.1,0.5) under noise intensities oy = 0.1,0, = 0.05,03 =
0.1, respectively. The right column shows the histograms of the corresponding paths.

Next, we show the different dynamic results of stochastic system (2.3) and the corresponding de-
terministic system under the same set of parameters. In Figure 3, we give the effects of different noise
intensities for the stationary distribution of system (2.3) depending on time. The results show that the
stochastic path fluctuates around the deterministic path, with larger fluctuations as the noise intensity
becomes larger.
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Figure 3. The paths X;(f), X,() and X3(¢) of stochastic system (2.3) and its corresponding

deterministic system with initial value (X?, X, X?) = (1,0.1,0.5).

The next subsection shows numerical examples of optimal control.

5.2. Numerical simulations of the optimal control

The discretizations of system (4.1) and adjoint Eq (4.4) are as follows.

1
-1, VAz - E‘T%(wii - DAt,

1
— @ VAt - Eo%(w%,i — DAt

1
- ¢33, VAt - Eag(wg’i — DAt.

Mathematical Biosciences and Engineering

1
X, =Xy, + X,(ro — nXa, — fX1)At + o1, X, VAL + Ea%(wii ~ DAz,
_ _ _ X VA — Lo
sz = le. + kX3iA[ (g + m)le.At 0'213'2’LX2,. At 20-2(732,1‘ 1A,
X3i+1

1
= X3, — ky X, X5,At + gX; Xp At — hX3, At + uAt — vX3 At — o313, X3, VAL — Eag(wgi ~ DAz

Py, = Py — [(=ro + niXo + 2fX1)p1, + (kiXs, — 81X2)p3,., — o] At
P2 = D2y — [rlxlip1i+1 + (g + m)PZM - gIXl,'p3i+1 + G20 — Tl] At

P3, = P3y — [_kp2[+1 + (k]X][. +h+ V)p3i+| + q303 — TZ] At

Volume 19, Issue 11, 11260-11280.
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Then, we give the nonlinear conjugate gradient algorithm [24]. Assume the step size is A > 0, and

T = nA, where n is a positive integer. The time interval [0, 7] can be divided as

th=0<t;<---<t,=T.

Table 2. Algorithm.

Step 1: for k = 0 do:

X} = X1(0); X5 = X»(0); X3 = X3(0)

end for

for k = n do:

Py = p1(0); p; = p2(0); ps = p3(0)

end for

Step 2: for k=0,1,--- ,n— 1 do:

X = X+ ALXE(r — i XE - X9+ o X w VA + Lok @, - DA

X = X5+ ALKXE - (g + m)XE] — o2 Xbwoi VA - 1ok(w3, — DA

XA = X+ A[—ki X{XE — X% + g1 XEXE — v XE] — o3 Xbas VA - Joi(@?, - DA

for j =1,2,3 do:

n—k—1 _ n—k _ .
P =P —Temp;
end for
D+l — x5yt

3

Vil = min{1, max{0, D**'}}
end for

Step 3: fork=1,2,--- ,ndo:
Xi(t) = X)s X5(00) = X5 Xi(n) = X5
Vi(r) =V

end for

where

1
Temp = |(=ro + X5 + 2fXDpi™ + (i X§ - g1 X)piy™ — qiom1 | At + i VAL + SoH@ = DA,

k k

- n— n— 1
Tempy = [nXipi™ + (g + mps™ = @ Xip5™ + qa0s = 11| At + quanay VAt + So5(@, — DAL,

1
Temp; = [—kpg_k + (le{‘ +h+ vk)pg_k + q303 — 7'2] At + g3 VAt + Eag(wék - DAt

Next, we give a numerical example to demonstrate the effectiveness of the control strategy. The
results show that the concentrations of internal and external toxicant decreased obviously after the
control measures were implemented. In particular, the density of the population increased slightly as
the concentration of the toxicant decreased. The corresponding simulation is shown in Figure 4. The
optimal control v(¢) and optimal states X (), X>() and X3(¢) are shown in Figures 5 and 6, respectively.
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Figure 4. The effects of pollutant control.
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Figure 5. The paths of optimal state variables X; (), X5(¢) and X;(7).

Mathematical Biosciences and Engineering

Volume 19, Issue 11, 11260-11280.



11276

0.7

0.6 ]

0.5 ]

v(t)

0.3 ]

0.2 i

0 200 400 600 800 1000
t(days)

Figure 6. The path of optimal control variable v(¢).

6. Conclusions and discussion

In this paper, a stochastic population model in a polluted environment is developed and analyzed.
By constructing a suitable Lyapunov function, the existence and uniqueness of a global positive so-
lution is obtained, and then the sufficient conditions for existence of the unique ergodic stationary
distribution of the positive solution are established. This means that the density of the population and
the concentration of toxicant will tend to a steady state. Furthermore, we study optimal control of
stochastic system (2.3). By using Pontryagin’s maximum principle, the first-order necessary condi-
tions are derived for the existence of optimal control. The results show that our control strategy can
not only reduce the concentration of toxicant, but also have a positive effect on density of population.

Some interesting topics deserve further study. For example, some more realistic models can be
considered, such as considering the effects of spatial heterogeneity, spatial diffusion and the impulse
input of toxicant on system (2.3). In addition, in model (2.3), we only consider white noise, but one
can also introduce colored noise into it and study the existence of an ergodic stationary distribution of
the positive solutions to the considered model. These thoughts are interesting. We leave these to future
work.
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Appendix: The proof of Theorem 3.1.

Proof. According to the theory of stochastic differential equations [25] and the local Lipschitz con-
tinuity of the coefficients of the system (2.3), we know that there exists a unique local solution
(X, (1), X2(1), X5(1)) on ¢ € [0,7,) for any initial value (X, X9, X)) € R3, where 7, is the explosion
time [25]. To complete the proof, we only need to show that 7, = +o0 a.s. To this end, let ky > O be
sufficiently large such that X?, X9 and X} all lie within the interval [é, ko). For each integer k > ko,
define the stopping time

7 = inf{t € [0, 7;] : min{X;(2), X5(2), X3()} < % or max{X;(®), X»(1), X3(t)} > k}.
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Obviously, 7 increases as k — oo. Set 7, = lim 7y, and then 7, < 7 a.s.. In the following, we only

k—+oc0

need to prove 7., = +oo a.s.. Therefore, let us consider a C?-function V: Ri — R, as follows:
VX1, X2, X3) = VX — 1 —In VX; +a(X, — 1 - InX,) + (X3 — 1 — In X3),

where a and b are positive constants, and their values are determined later. The nonnegativity of this

function can be seen from
x—1-Inx>0, forx>0.

Forany 0 <t <7 AT, where k > ko and T > 0 are arbitrary, according to Itd’s formula, we have

1.1 _1 1{1_-3 1
AV(X), Xa, Xs) = X, ? (1 - X, 2) (Xi(ro = 11X = fX0)dt + 01 X1dB1] + 5 (—ZXI g EX?)aﬁxfdr

I ao;
+all - Ia [(kX3 — (g + m)Xa)dt — 02 X,dB,] + 2 dt
2

1 bo?
+ b(] — Y) [(=k; X1 X5 + 91 X1 X; — hX5 + w)dt — 03X3d B3] + 73611'
3
1 o1 r v 1, .3 1 _1 1 1 1
= [—gO’%Xlz + ZO’% + El’oxlz — Efo - 57"1X12X2 — Ero + 51"1X2 + Ele] dt
2

kaX ao
+ |akX3 — (g + m)aX, — 4% +(g+m)a+—2 dt
X, 2
bX,\ X bu  bo?
+ | =k bX, X5 + 916X1 Xy — hbXs + bu + kybX, — & Xl 2 L hb - f” + T3]dt
3 3

1 (o
+ 50y (X% ~ 1)dBy - aca(X; = 1B, = bors(Xs ~ DdBs

ac? bo? 1 , 1 1 1
3{(g+m)a+hb+b”+72+73—§0'%Xf+—cr§+§r0X12

1 3 1 1
——fX12 — —ry+ Ele + klel +

1
> > Erl —(g+m)a

X5 + [ka — hb]X3} dt

1o
+ 501 (X% - 1)dB1 — 405 (X, — 1)dB, — boy(X; — 1)dB;
1o
= LV + 3o (X[ = 1)dB1 - aora(Xs = 1By = bors(Xs = B,
Choose a = r1/2(g + m), b = kr;/2h(g + m), such that %rl — (g +m)a =0,ka — hb = 0. Note that

23 SRR S G Sy 1
W= ——O'1X + -0 + —I’()Xl - Ele — =rp+ Ele +k1bX1

2 2

1 3 1 1 1
<——o? (Xf - 2) — XD+ (§f+ klb)Xl + Ero(xlz + 1).
Then, we have
ao;  bo;

LV:(g+m)a+hb+bu+72+T+W.
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1
Now, if X{ —2 > 0 (i.e., X; > 4), then there exists a positive number G, independent of x and 7 such
that

1,3 (1 1 1
W< -S X + (§f+ klb)Xl +3n (X +1) <G
If 0 < X; < 4, it is clear that there exists a positive number G, independent of x and 7 such that
5 3
W <o +2f+4k1b+§ro < Gy.

In other words, we have already shown that there exists a positive number G independent of x and ¢
such that

2 bO‘%

ao;
LVs(g+m)a+hb+T+T+G.
The remaining proof is similar to [26, Theorem 2.1] and thus not introduced here. This completes the

proof.
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