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Abstract: This paper is concerned with a stochastic population model in a polluted environment.
First, within the framework of Lyapunov method, the existence and uniqueness of a global positive
solution of the model are proposed, and the sufficient conditions are established for existence of an
ergodic stationary distribution of the positive solution. Second, the control strategy is introduced into
the stochastic population model in a polluted environment. By using Pontryagin’s maximum principle,
the first-order necessary conditions are derived for the existence of optimal control. Finally, some
numerical simulations are presented to illustrate the analytical results.
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1. Introduction

Along with fast development of modern industry and agriculture, there is no denying the fact that
environmental pollution has become increasingly serious, including air pollution, water pollution and
heavy metal pollution [1, 2]. The existence of various poisons in the environment seriously threatens
the survival of exposed populations, which has prompted many scholars to study the effects of toxins
on the population and assess the risk of the population in a polluted environment. The population
model in a polluted environment was first proposed by Hallam et al. in the 1980s [3, 4]. From then
on, more research results on the deterministic population model in a polluted environment have been
presented (see [5–8]). However, in the real world, population dynamics are inevitably affected by
randomness in the environment. Thus, several scholars have introduced random perturbations into the
population model in a polluted environment to study dynamic behavior (see [9–13]). In particular, Liu
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and Wang [14] established a stochastic population in a polluted environment which takes the form
dX1 = [X1(r0 − r1X2 − f X1)]dt + σX1dB(t),
dX2

dt
= kX3 − (g + m)X2,

dX3

dt
= −hX3 + u,

(1.1)

where X1(t) is the density of the population at time t, X2(t) denotes the concentration of toxicant in
the organism (internal toxicant) at time t, and X3(t) stands for the concentration of toxicant in the
environment (external toxicant) at time t. B(t) is the standard Brownian motion, and σ represents
the intensity of the noise. The biological meanings of other parameters are listed in Table 1. For
model (1.1), Liu and Wang obtained the acute threshold between local extinction and stochastic weakly
persistent in the mean for population. However, the model did not consider the effects of randomness
in the environment on the toxicant, nor did it consider the effects of population on external toxicant.

As is well known, toxicants are more or less disturbed by environmental factors, such as tem-
perature, humidity, and seasonal climate change. Due to these random factors, the concentrations of
toxicant in the organism and environment may exhibit a certain extent of random fluctuations in model
parameters, such as the excretion rate and loss rate. Therefore, it is more realistic to consider the effects
of randomness in the environment on the toxicant [15]. On the other hand, the uptake and egestion of
toxicant by organisms from and to the environment can lead to obvious changes in toxicant in the envi-
ronment, which is an important factor in determining the concentration of toxicant in the environment
and needs to be considered [8]. Obviously, if these factors are further taken into account in model
(1.1), we will get a novel stochastic population model in a polluted environment, which is an extension
of model (1.1). For this model, the stationary distribution is an important concept.

Stationary distribution is an important dynamical property of the stochastic population model in a
polluted environment, as it not only means random weak stability, but also provides a better description
of persistence [16]. In addition, it is well known that the proliferation of pollutants will lead to huge
economic costs, mainly including the reduction of crop yields and the expenditures related to pollution
prevention. From an ecological and economic point of view, how to formulate the control strategy
for pollutants is an important and meaningful issue. In this paper, we first show that the model has a
unique ergodic stationary distribution by the Lyapunov method, then the optimal control strategy for
pollutants is formulated, and the necessary conditions are derived for the existence of optimal control
by using the Pontryagin maximum principle. In particular, our study has the following contributions:

• We propose a novel stochastic population model in a polluted environment and establish the
sufficient conditions for the existence of an ergodic stationary distribution of the positive solutions.
• We study the optimal control problem for the toxicant and derive the necessary conditions for

existence of optimal control by Pontryagin’s maximum principle.

The remainder of this paper is organized as follows. In Section 2, the basic model and some
necessary preliminary knowledge are introduced. In Section 3, the existence and uniqueness of a
global positive solution of the model is proposed, and the sufficient conditions for the existence of an
ergodic stationary distribution of the positive solution are established. In Section 4, we formulate the
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optimal control strategy for the toxicant and derive the first-order necessary conditions for the existence
of optimal control. In Section 5, some numerical simulations are given to illustrate our main results.
In Section 6, we summarize the work of this paper.

2. Model formulation and preliminaries

2.1. Model formulation

Similar to [8], we consider the changes in the concentration of external toxicant caused by absorp-
tion and excretion of the population, and then the third equation of system (1.1) becomes

dX3

dt
= −k1X1X3 + g1X1X2 − hX3 + u, (2.1)

where k1X1X3 represents the absorption of the toxicant from the environment by the population, and
g1X1X2 represents the toxicant excreted by the population into the environment.

Following [17], we consider the effects of Brownian motion as a random factor on the net organis-
mal excretion rate of toxicant, and the total loss rate of toxicant from the environment, that is,

g→ g + σ2dB2(t), h→ h + σ3dB3(t). (2.2)

Substitute (2.1) and (2.2) into system (1.1) to get the following stochastic population system in a
polluted environment: 

dX1 = [X1(r0 − r1X2 − f X1)]dt + σ1X1dB1(t),
dX2 = [kX3 − (g + m)X2]dt − σ2X2dB2(t),
dX3 = [−k1X1X3 + g1X1X2 − hX3 + u]dt − σ3X3dB3(t).

(2.3)

The initial conditions of system (2.3) take the following form:X1(0) = X0
1 , X2(0) = X0

2 , X3(0) = X0
3 ,

X0
i ∈ R+, i = 1, 2, 3,

where σi(i = 1, 2, 3) is the intensity of the noises, and Bi(t)(i = 1, 2, 3) denotes independent and
standard Brownian motions. The biological significance of all parameters is shown in Table 1.

Figure 1. Schematic diagram of system (2.3).
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Table 1. Description of system parameters.

Parameter Definition
r0 the intrinsic growth rate function of the population
r1 the decreasing of the growth associated with the uptake of the toxicant
f the intensity of intraspecific competition
k the net organismal uptake rate of toxicant from the environment
g the net organismal excretion rate of toxicant
m the depuration rate of toxicant due to metabolic process and other losses
h the total loss rate of toxicant from the environment
k1 the loss rate of toxicant due to the absorption of organisms
g1 the increase rate of the toxicant in the environment coming from the

excretion of the total population
u the exogenous total toxicant input into the environment

2.2. Preliminaries

Let (Ω,F , {Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions, and Bi(t)(i = 1, 2, 3) are mutually independent standard Brownian motions defined on
(Ω,F , {Ft}t≥0, P). Define Rd

+ = (x1, x2, · · · , xd) ∈ Rd : xi > 0, i = 1, 2, · · · , d. Next, we introduce a
lemma that gives a criterion for the existence of an ergodic stationary distribution to system (2.3).

Let Y(t) be a homogeneous Markov process in Ed (d-dimensional Euclidean space) described by
the following stochastic differential equation:

dY(t) = c(Y)dt +

k∑
r=1

gr(Y)dBr(t).

The diffusion matrix is defined as follows:

Ã(x) = (ãi j(x)), ãi j(x) =

k∑
r=1

gi
r(x)g j

r(x).

Lemma 2.1. [18] The Markov process Y(t) has a unique ergodic stationary distribution µ(·) if there
exists a bounded domain D ⊂ Ed with regular boundary Γ and the following:

(i) There is a positive number M such that
∑d

i, j=1 ãi j(x)ξiξ j ≥ M||ξ||2, x ∈ D, ξ ∈ Rd.
(ii) There exists a nonnegative C2-function V such that LV is negative for any Ed\D.

Then

Px

{
lim

T→+∞

1
T

∫ T

0
f (Y(t))dt =

∫
Ed

( f (x)µ)dx
}

= 1

for all x ∈ Ed, where || · || denotes the Euclidean norm, and f (·) is a function integrable with respect to
measure µ.

3. Stationary distribution

Before establishing the sufficient conditions for the existence of an ergodic stationary distribution,
we first prove that there exists a unique positive solution of system (2.3).
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Theorem 3.1. For any initial value (X0
1 , X

0
2 , X

0
3) ∈ R3

+, there exists a unique solution (X1(t), X2(t), X3(t))
of system (2.3) on t ≥ 0, and the solution will remain in R3

+ with probability one, namely,
(X1(t), X2(t), X3(t)) ∈ R3

+ for all t ≥ 0 almost surely (a.s.).

The proof is shown in the Appendix.
In the following, we establish sufficient conditions for the existence of a unique ergodic stationary

distribution. Let

Λ =

[
r0 ∧ (g + m) ∧

h
2

]
−
θ

2

(
σ2

1 ∨ σ
2
2 ∨ σ

2
3

)
.

Theorem 3.2. If there exists a constant 0 < θ < 1 such that Λ > 0 holds, then for any initial date
(X0

1 , X
0
2 , X

0
3) ∈ R3

+, system (2.3) exists a unique stationary distribution µ(·), and it has the ergodic
property.

Proof. To prove Theorem 3.2, only conditions (i) and (ii) in Lemma 2.1 need to be verified. Now, we
prove condition (i). The diffusion matrix of system (2.3) is given by

Ã =


σ2

1X2
1 0 0

0 σ2
2X2

2 0
0 0 σ2

3X2
3

 .
Choose M̃ = min

(X1,X2,X3)∈D̄k⊂R3
+

{
σ2

1X2
1 , σ

2
2X2

2 , σ
2
3X2

3

}
, where D̄k =

[
1
k , k

]
×

[
1
k , k

]
×

[
1
k , k

]
and k > 1 is a

sufficiently large integer. By calculation, we have

3∑
i, j=1

ãi jξiξ j =
(
σ1X1ξ1 −σ2X2ξ2 −σ3X3ξ3

) 
σ1X1ξ1

−σ2X2ξ2

−σ3X3ξ3


= (σ1X1)2ξ2

1 + (σ2X2)2ξ2
2 + (σ3X3)2ξ2

3

≥ M̃||ξ||2,

for any (X1, X2, X3) ∈ D̄k, ξ = (ξ1, ξ2, ξ3) ∈ R3. This completes the proof of condition (i) in Lemma 2.1.
Now, we will prove condition (ii). We first define a C2-function Ṽ : R3

+ → R as follows:

Ṽ(X1, X2, X3) = B(− ln X1 − X3) − ln X2 − ln X3 +
1

θ + 1
(X1 + a1X2 + b1X3)θ+1,

where a1 and b1 are positive constants, and their values are determined later, θ > 0 is a sufficiently small
constant such that Λ > 0, and B > 0 is a sufficiently large number that satisfies −B(r0 + u) + B1 ≤ −2,
where

B1 = sup
(X1,X2,X3)∈R3

+

{
−

Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

}
.

Furthermore, Ṽ is continuous and tends to +∞ as (X1, X2, X3) approaches the boundary of R3
+ and as

||(X1, X2, X3)|| → +∞. Therefore, it must have a minimum point (X0
1 , X

0
2 , X

0
3) in the interior of R3

+. Then,
we define a C2-function V̄ : R3

+ → R+ ∪ {0} as

V̄(X1, X2, X3) = B(− ln X1 − X3) − ln X2 − ln X3 +
1

θ + 1
(X1 + a1X2 + b1X3)θ+1 − Ṽ(X0

1 , X
0
2 , X

0
3)

:= V1(X1, X2, X3) + V2(X2) + V3(X3) + V4(X1, X2, X3),
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where V1(X1, X2, X3) = B(− ln X1 − X3), V2(X2) = − ln X2, V3(X3) = − ln X3, V4(X1, X2, X3) = 1
θ+1 (X1 +

a1X2 + b1X3)θ+1 − Ṽ(X0
1 , X

0
2 , X

0
3).

Choosing a1 = r1h
2g1k , b1 = r1

g1
, applying Itô’s formula to V1(X1, X2, X3), we have

LV1 = −Br0 + Br1X2 + B f X1 +
Bσ2

1

2
+ Bk1X1X3 − Bg1X1X2 + BhX3 − Bu. (3.1)

Similarly,

LV2 = −
kX3

X2
+ g + m +

σ2
2

2
,

LV3 = k1X1 −
g1X1X2

X3
+ h −

u
X3

+
σ2

3

2
,

(3.2)

and

LV4 = (X1 + a1X2 + b1X3)θ
[
r0X1 − r1X1X2 − f X2

1 + a1kX3 − a1(g + m)X2 − b1k1X1X3

+ b1g1X1X2 − b1hX3 + b1u] +
θ

2
(X1 + a1X2 + b1X3)θ−1

(
σ2

1X2
1 + σ2

2a2
1X2

2 + σ2
3b2

1X2
3

)
≤ (X1 + a1X2 + b1X3)θ

[
r2

0

f
+ b1u − r0X1 − a1(g + m)X2 − (b1h − a1k)X3

]
+
θ

2
(X1 + a1X2 + b1X3)θ−1

(
σ2

1X2
1 + σ2

2a2
1X2

2 + σ2
3b2

1X2
3

)
≤ (X1 + a1X2 + b1X3)θ

{
r2

0

f
+ b1u −

[
r0 ∧ (g + m) ∧

h
2

]
(X1 + a1X2 + b1X3)

}
+
θ

2
(X1 + a1X2 + b1X3)θ−1

[
σ2

1 ∨ σ
2
2 ∨ σ

2
3(X1 + a1X2 + b1X3)2

]
=

(
r2

0

f
+ b1u

)
(X1 + a1X2 + b1X3)θ − Λ(X1 + a1X2 + b1X3)θ+1

≤ C −
Λ

2
(X1 + a1X2 + b1X3)θ+1

≤ C −
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
,

(3.3)

where

C = max
{(

r2
0

f
+ b1u

)
(X1 + a1X2 + b1X3)θ −

Λ

2
(X1 + a1X2 + b1X3)θ+1

}
.

Therefore, in view of (3.1)–(3.3), we obtain

LV̄ ≤ −Br0 + Br1X2 + B f X1 +
Bσ2

1

2
+ Bk1X1X3 − Bg1X1X2 + BhX3 − Bu

−
kX3

X2
+ g + m +

σ2
2

2
+ k1X1 −

g1X1X2

X3
+ h −

u
X3

+
σ2

3

2

+ C −
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
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≤ −B(r0 + u) + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3.

Define a bounded closed set as follows:

Θε =

{
(X1, X2, X3) ∈ R3

+|ε ≤ X1 ≤
1
ε
, ε3 ≤ X2 ≤

1
ε3 , ε ≤ X3 ≤

1
ε

}
,

where 0 < ε < 1 is a sufficiently small number and satisfies

ε = min

 Λ

4Bk1
,

B(r0 + u) − B1 − 1
B f + Bk1 + k1

,

√
k

B2 + 1
,

u
B3 + 1

,
θ+1

√
Λ

4(D1 + 1)
,

3θ+3

√
Λ

4(D2 + 1)
,

θ+1

√
Λ

4(D3 + 1)

 ,
(3.4)

where Bi and Di > 0, i = 1, 2, 3, are positive constants, which will be given explicitly later. Choose

Θ1 =
{
(X1, X2, X3) ∈ R3

+|0 < X1 < ε
}
, Θ2 =

{
(X1, X2, X3) ∈ R3

+|0 < X2 < ε
3, X3 ≥ ε

}
,

Θ3 =
{
(X1, X2, X3) ∈ R3

+|0 < X3 < ε
}
, Θ4 =

{
(X1, X2, X3) ∈ R3

+|X1 >
1
ε

}
,

Θ5 =

{
(X1, X2, X3) ∈ R3

+|X2 >
1
ε3

}
, Θ6 =

{
(X1, X2, X3) ∈ R3

+|X3 >
1
ε

}
.

Clearly, Θc
ε = R3

+\Θ
ε = ∪6

i=1Θi. Then, we will prove that

LV̄(X1, X2, X3) ≤ −1, f or any (X1, X2, X3) ∈ Θc
ε .

We are going to prove it in the following six cases.
Case 1: If (X1, X2, X3) ∈ Θ1, due to X1X3 < εX3 ≤ ε

(
1 + Xθ+1

3

)
, we have

LV̄(X1, X2, X3) ≤ −B(r0 + u) + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2
(Xθ+1

1 + Xθ+1
2 + Xθ+1

3 ) + Br1X2 + C + g + m + h +
Bσ2

1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −B(r0 + u) + (B f + k1)X1 + Bk1ε +

{
Bk1ε −

Λ

4

}
Xθ+1

3

−
Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −B(r0 + u) + (B f + k1)X1 + Bk1ε

−
Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −B(r0 + u) + (B f + k1)X1 + Bk1ε + B1

≤ −B(r0 + u) + (B f + Bk1 + k1)ε + B1

≤ −1,

(3.5)
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where

B1 = max
{
−

Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

}
.

Case 2: If (X1, X2, X3) ∈ Θ2, by Eq (3.4), we have

LV̄(X1, X2, X3) ≤ −B(r0 + u) + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
kX3

X2
+ (B f + k1)X1 + Bk1X1X3

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
kX3

X2
+ B2 ≤ −

kε
ε3 + B2 ≤ −

k
ε2 + B2 ≤ −1,

(3.6)

where

B2 = max
{
−

Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ (B f + k1)X1 + Bk1X1X3

+Br1X2 + C + g + m + h +
Bσ2

1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

}
.

Case 3: If (X1, X2, X3) ∈ Θ3, according to Eq (3.4) and X1X3 < εX1 ≤ ε
(
1 + Xθ+1

1

)
, we have

LV̄(X1, X2, X3) ≤ −B(r0 + u) + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
u
X3

+ (B f + k1)X1 + Bk1ε +

{
Bk1ε −

Λ

4

}
Xθ+1

1

−
Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
u
X3

+ B3 ≤ −
u
ε

+ B3 ≤ −1,

(3.7)

where

B3 = −
Λ

4

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ (B f + k1)X1 + Bk1ε

+ Br1X2 + C + g + m + h +
Bσ2

1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3.
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Case 4: If (X1, X2, X3) ∈ Θ4, by Eq (3.4), we have

LV̄(X1, X2, X3) ≤ −Br0 + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

1 −
Λ

4
Xθ+1

1 + (B f + k1)X1 + Bk1X1X3

−
Λ

2

(
Xθ+1

2 + Xθ+1
3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

1 + D1 ≤ −
Λ

4
ε−(θ+1) + D1 ≤ −1,

(3.8)

where

D1 = −
Λ

4
Xθ+1

1 + (B f + k1)X1 + Bk1X1X3 −
Λ

2

(
Xθ+1

2 + Xθ+1
3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3.

Case 5: If (X1, X2, X3) ∈ Θ5, it follows from Eq (3.4) that

LV̄(X1, X2, X3) ≤ −Br0 + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

2 −
Λ

4
Xθ+1

2 + (B f + k1)X1 + Bk1X1X3 −
Λ

2

(
Xθ+1

1 + Xθ+1
3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

2 + D2 ≤ −
Λ

4
ε−3(θ+1) + D2 ≤ −1,

(3.9)

where

D2 = −
Λ

4
Xθ+1

2 + (B f + k1)X1 + Bk1X1X3 −
Λ

2

(
Xθ+1

1 + Xθ+1
3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3.
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Case 6: If (X1, X2, X3) ∈ Θ6, from Eq (3.4), we can obtain that

LV̄(X1, X2, X3) ≤ −Br0 + (B f + k1)X1 + Bk1X1X3 −
kX3

X2
−

u
X3
− Bg1X1X2

−
Λ

2

(
Xθ+1

1 + Xθ+1
2 + Xθ+1

3

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

3 −
Λ

4
Xθ+1

3 + (B f + k1)X1 + Bk1X1X3 −
Λ

2

(
Xθ+1

1 + Xθ+1
2

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3

≤ −
Λ

4
Xθ+1

3 + D3 ≤ −
Λ

4
ε−(θ+1) + D3 ≤ −1,

(3.10)

where

D3 = −
Λ

4
Xθ+1

3 + (B f + k1)X1 + Bk1X1X3 −
Λ

2

(
Xθ+1

1 + Xθ+1
2

)
+ Br1X2 + C + g + m + h +

Bσ2
1

2
+
σ2

2

2
+
σ2

3

2
+ BhX3.

Clearly, through the analysis of cases 1 to 6, we have

LV̄(X1, X2, X3) ≤ −1, f or all (X1, X2, X3) ∈ Θc
ε .

Therefore, condition (ii) in Lemma 2.1 is satisfied. In view of Theorem 3.2, we obtain that system (2.3)
admits a unique ergodic stationary distribution. This completes the proof.

Remark 1. The above analysis shows that the positive solution of system (2.3) has a unique ergodic
stationary distribution. This means that the density of the population and the concentrations of internal
toxicant and external toxicant will tend to a steady state under certain conditions.

4. Optimal control problem

In this section, the optimal control problem for system (2.3) is formulated. Our goal is to reduce the
concentration of internal toxicant and external toxicant, while keeping the cost to apply the control at
the minimum level. We use v(t) as the control variable to reduce the concentration of external toxicant
(such as carrying out greening and tree planting activities, reducing the use of private cars, prohibiting
littering, discharging factory wastewater after purification, etc.). Thus, the optimal control problem of
system (2.3) is as follows:

dX1 = [X1(r0 − r1X2 − f X1)]dt + σ1X1dB1(t),
dX2 = [kX3 − (g + m)X2]dt − σ2X2dB2(t),
dX3 = [−k1X1X3 + g1X1X2 − hX3 + u − vX3]dt − σ3X3dB3(t).

(4.1)

According to our purpose, we construct the following objective function:

J(v) = E

{∫ T

0

(
τ1X2 + τ2X3 +

1
2
τ3v2

)
dt + h(X2(T ), X3(T ))

}
, (4.2)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11260–11280.



11270

where [0,T ] is the entire time interval over which the control strategies are applied, and the constants
τi (i = 1, 2, 3) are positive weighted constants to make the terms of the integrand keep balance in the
objective functional J(v).

Remark 2. For the specific cost function, the practical significance is given. The term
∫ T

0
(τ1X2+

τ2X3) dt gives the sum of the concentrations of internal toxicant and external toxicant over the time
period T . The term

∫ T

0

(
1
2τ3v2

)
dt gives the total cost of reducing the concentration of external toxicant.

The term h(X2(T ), X3(T )) is a function of toxicant at terminal time T . In particular, we assume that the
cost is proportional to the degree of pollution and quadratic to the intensity of control.

The aim of the control problem is to seek an admissible control such that

J(v∗) = min
v(·)∈Uad

J(v),

where the control setUad is considered as

Uad = {v(·) : [0,T ]→ U | v(·) is Lebesgue measurable and 0 ≤ v(·) ≤ 1}.

Next, we give the following theorem to illustrate the existence of the optimal control.

Theorem 4.1. There exist an optimal control v∗ ∈ Uad and the corresponding optimal state X∗1, X∗2, X∗3
such that

J(v∗) = min
v(·)∈Uad

J(v),

subject to the control system (4.1).

Proof. We use the results in [19–21] to complete the proof. Note that both the control variable and
state variables are nonnegative, and the control set Uad is closed and convex. Then, the objective
function (4.2) is convex with respect to the control variable v(t). Furthermore, the optimal control is
bounded. Therefore, the necessary condition for the existence of the optimal control v∗ is satisfied.
This completes the proof.

By constructing the Hamiltonian function [20] and using Pontryagin’s maximum principle [22], the
first-order necessary conditions for the optimal control problem are given as follows.

Theorem 4.2. Let v∗ be the optimal control variable, and X∗1, X∗2 and X∗3 are corresponding optimal
state variables of the control system (4.1). Then, we have the following optimal control:

v∗ = min{max{0,
p3X3

τ3
}, 1}, (4.3)

where p(t) = (p1(t), p2(t), p3(t)) satisfies the following adjoint equation.
dp1(t) = [(−r0 + r1X2 + 2 f X1)p1(t) + (k1X3 − g1X1)p3(t) − σ1(t)q1(t)]dt + q1(t)dB1,

dp2(t) = [r1X1 p1(t) + (g + m)p2(t) − g1X1 p3 + σ2(t)q2(t) − τ1]dt + q2(t)dB2,

dp3(t) = [−kp2(t) + (k1X1 + h + v)p3(t) + σ3(t)q3(t) − τ2]dt + q3dB3,

pi(T ) = 0, i = 1, 2, 3.

(4.4)
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Proof. We define a Hamiltonian function [20, Section 3.3.1] H : [0,T ] ×Uad × R
3
+ × R

3
+ as follows:

H(t, v, p, q) = τ1X2 + τ2X3 +
1
2
τ3v2

+ p1(t)[X1(r0 − r1X2 − f X1)] + q1(t)σ1X1

+ p2(t)[kX3 − (g + m)X2] − q2(t)σ2X2

+ p3(t)[−k1X1X3 + g1X1X2 − hX3 + u − vX3] − q3(t)σ3X3.

(4.5)

Applying the general results in [20], v∗ is obtained by using the optimality condition ∂H(t,v,p,q)
∂v = 0, and

thus we have v =
p3X3
τ3

. Then, according to the condition that 0 ≤ v(x) ≤ 1, the optimal control v∗ is
obtained as follows:

v∗ =



0, i f
p3X3

τ3
< 0,

p3X3

τ3
, i f 0 ≤

p3X3

τ3
≤ 1,

1, i f
p3X3

τ3
> 1.

Hence, the optimal value of the function can be obtained. This completes the proof.

5. Numerical simulations

In this section, some numerical examples are presented to verify the theoretical results obtained
above. The parameter values are chosen as follows:

r0 = 0.2, r1 = 0.5, f = 0.2, k = 0.1, g = 0.3, m = 0.04, k1 = 0.004, g1 = 0.0015, h = 0.3, u = 0.2.

The following subsection shows numerical examples of the stationary distribution.

5.1. Numerical simulations of stationary distribution

Based on Milstein’s higher-order method [23], the corresponding discrete equations of system (2.3)
are 

X1i+1 = X1i + X1i(r0 − r1X2i − f X1i)∆t + σ1$1,iX1i

√
∆t +

1
2
σ2

1($2
1,i − 1)∆t,

X2i+1 = X2i + kX3i∆t − (g + m)X2i∆t − σ2$2,iX2i

√
∆t −

1
2
σ2

2($2
2,i − 1)∆t,

X3i+1 = X3i − k1X1i X3i∆t + gX1i X2i∆t − hX3i∆t + u∆t − σ3$3,iX3i

√
∆t −

1
2
σ2

3($2
3,i − 1)∆t,

where $ j,i( j = 1, 2, 3, i = 1, · · · , n) are independent random variables following the standard normal
distribution N(0, 1).

In Figure 2, we present the time series plot of the system solution and its corresponding histogram.
It shows that there is a unique ergodic stationary distribution for system (2.3), and this is consistent
with the result in Theorem 3.2.
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Figure 2. The left column shows the paths of X1(t), X2(t) and X3(t) for system (2.3) with
initial values (X0

1 , X
0
2 , X

0
3) = (1, 0.1, 0.5) under noise intensities σ1 = 0.1, σ2 = 0.05, σ3 =

0.1, respectively. The right column shows the histograms of the corresponding paths.

Next, we show the different dynamic results of stochastic system (2.3) and the corresponding de-
terministic system under the same set of parameters. In Figure 3, we give the effects of different noise
intensities for the stationary distribution of system (2.3) depending on time. The results show that the
stochastic path fluctuates around the deterministic path, with larger fluctuations as the noise intensity
becomes larger.
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Figure 3. The paths X1(t), X2(t) and X3(t) of stochastic system (2.3) and its corresponding
deterministic system with initial value (X0

1 , X
0
2 , X

0
3) = (1, 0.1, 0.5).

The next subsection shows numerical examples of optimal control.

5.2. Numerical simulations of the optimal control

The discretizations of system (4.1) and adjoint Eq (4.4) are as follows.

X1i+1 = X1i + X1i(r0 − r1X2i − f X1i)∆t + σ1$1,iX1i

√
∆t +

1
2
σ2

1($2
1,i − 1)∆t,

X2i+1 = X2i + kX3i∆t − (g + m)X2i∆t − σ2$2,iX2i

√
∆t −

1
2
σ2

2($2
2,i − 1)∆t,

X3i+1 = X3i − k1X1i X3i∆t + gX1i X2i∆t − hX3i∆t + u∆t − vX3i∆t − σ3$3,iX3i

√
∆t −

1
2
σ2

3($2
3,i − 1)∆t.



p1i = p1i+1 −
[
(−r0 + r1X2i + 2 f X1i)p1i+1 + (k1X3i − g1X2i)p3i+1 − q1σ1

]
∆t

− q1$1,i

√
∆t −

1
2
σ2

1($2
1,i − 1)∆t,

p2i = p2i+1 −
[
r1X1i p1i+1 + (g + m)p2i+1 − g1X1i p3i+1 + q2σ2 − τ1

]
∆t

− q2$2,i

√
∆t −

1
2
σ2

2($2
2,i − 1)∆t,

p3i = p3i+1 −
[
−kp2i+1 + (k1X1i + h + v)p3i+1 + q3σ3 − τ2

]
∆t

− q3$3,i

√
∆t −

1
2
σ2

3($2
3,i − 1)∆t.
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Then, we give the nonlinear conjugate gradient algorithm [24]. Assume the step size is ∆ > 0, and
T = n∆, where n is a positive integer. The time interval [0,T ] can be divided as

t0 = 0 < t1 < · · · < tn = T.

Table 2. Algorithm.

Step 1: for k = 0 do:
Xk

1 = X1(0); Xk
2 = X2(0); Xk

3 = X3(0)
end for
for k = n do:
pk

1 = p1(0); pk
2 = p2(0); pk

3 = p3(0)
end for
Step 2: for k = 0, 1, · · · , n − 1 do:
Xk+1

1 = Xk
1 + ∆[Xk

1(r0 − r1Xk
1 − f Xk

1)] + σ1Xk
1$1,k

√
∆ + 1

2σ
2
1($2

1,k − 1)∆
Xk+1

2 = Xk
2 + ∆[kXk

3 − (g + m)Xk
2] − σ2Xk

2$2,k
√

∆ − 1
2σ

2
2($2

2,k − 1)∆
Xk+1

3 = Xk
3 + ∆[−k1Xk

1Xk
3 − hXk

3 + g1Xk
1Xk

2 − vkXk
3] − σ3Xk

3$3,k
√

∆ − 1
2σ

2
3($2

3,k − 1)∆
for j = 1, 2, 3 do:
pn−k−1

j = pn−k
j − Temp j

end for
Dk+1 =

Xk
3 pn−k

3
τ3

vk+1 = min{1,max{0,Dk+1}}

end for
Step 3: for k = 1, 2, · · · , n do:
X∗1(tk) = Xk

1; X∗2(tk) = Xk
2; X∗3(tk) = Xk

3
v∗(tk) = vk

end for

where

Temp1 =
[
(−r0 + r1Xk

2 + 2 f Xk
1)pn−k

1 + (k1Xk
3 − g1Xk

2)pn−k
3 − q1σ1

]
∆t + q1$1,k

√
∆t +

1
2
σ2

1($2
1,k − 1)∆t,

Temp2 =
[
r1Xk

1 pn−k
1 + (g + m)pn−k

2 − g1Xk
1 pn−k

3 + q2σ2 − τ1

]
∆t + q2$2,k

√
∆t +

1
2
σ2

2($2
2,k − 1)∆t,

Temp3 =
[
−kpn−k

2 + (k1Xk
1 + h + vk)pn−k

3 + q3σ3 − τ2

]
∆t + q3$3,k

√
∆t +

1
2
σ2

3($2
3,k − 1)∆t.

Next, we give a numerical example to demonstrate the effectiveness of the control strategy. The
results show that the concentrations of internal and external toxicant decreased obviously after the
control measures were implemented. In particular, the density of the population increased slightly as
the concentration of the toxicant decreased. The corresponding simulation is shown in Figure 4. The
optimal control v(t) and optimal states X1(t), X2(t) and X3(t) are shown in Figures 5 and 6, respectively.
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Figure 4. The effects of pollutant control.
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Figure 5. The paths of optimal state variables X1(t), X2(t) and X3(t).
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Figure 6. The path of optimal control variable v(t).

6. Conclusions and discussion

In this paper, a stochastic population model in a polluted environment is developed and analyzed.
By constructing a suitable Lyapunov function, the existence and uniqueness of a global positive so-
lution is obtained, and then the sufficient conditions for existence of the unique ergodic stationary
distribution of the positive solution are established. This means that the density of the population and
the concentration of toxicant will tend to a steady state. Furthermore, we study optimal control of
stochastic system (2.3). By using Pontryagin’s maximum principle, the first-order necessary condi-
tions are derived for the existence of optimal control. The results show that our control strategy can
not only reduce the concentration of toxicant, but also have a positive effect on density of population.

Some interesting topics deserve further study. For example, some more realistic models can be
considered, such as considering the effects of spatial heterogeneity, spatial diffusion and the impulse
input of toxicant on system (2.3). In addition, in model (2.3), we only consider white noise, but one
can also introduce colored noise into it and study the existence of an ergodic stationary distribution of
the positive solutions to the considered model. These thoughts are interesting. We leave these to future
work.
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Appendix: The proof of Theorem 3.1.

Proof. According to the theory of stochastic differential equations [25] and the local Lipschitz con-
tinuity of the coefficients of the system (2.3), we know that there exists a unique local solution
(X1(t), X2(t), X3(t)) on t ∈ [0, τe) for any initial value (X0

1 , X
0
2 , X

0
3) ∈ R3

+, where τe is the explosion
time [25]. To complete the proof, we only need to show that τe = +∞ a.s. To this end, let k0 > 0 be
sufficiently large such that X0

1 , X0
2 and X0

3 all lie within the interval [ 1
k0
, k0]. For each integer k ≥ k0,

define the stopping time

τk = inf{t ∈ [0, τk] : min{X1(t), X2(t), X3(t)} ≤
1
k

or max{X1(t), X2(t), X3(t)} ≥ k}.
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Obviously, τk increases as k → ∞. Set τ∞ = lim
k→+∞

τk, and then τ∞ ≤ τk a.s.. In the following, we only

need to prove τ∞ = +∞ a.s.. Therefore, let us consider a C2-function V: R3
+ → R+ as follows:

V(X1, X2, X3) =
√

X1 − 1 − ln
√

X1 + a(X2 − 1 − ln X2) + b(X3 − 1 − ln X3),

where a and b are positive constants, and their values are determined later. The nonnegativity of this
function can be seen from

x − 1 − ln x ≥ 0, f or x > 0.

For any 0 ≤ t ≤ τk ∧ T , where k ≥ k0 and T > 0 are arbitrary, according to Itô’s formula, we have

dV(X1, X2, X3) =
1
2

X−
1
2

1

(
1 − X−

1
2

1

)
[X1(r0 − r1X2 − f X1)dt + σ1X1dB1] +

1
2

(
−

1
4

X−
3
2

1 +
1
2

X−2
1

)
σ2

1X2
1dt

+ a
(
1 −

1
X2

)
[(kX3 − (g + m)X2)dt − σ2X2dB2] +

aσ2
2

2
dt

+ b
(
1 −

1
X3

)
[(−k1X1X3 + g1X1X2 − hX3 + u)dt − σ3X3dB3] +

bσ2
3

2
dt

=

[
−

1
8
σ2

1X
1
2
1 +

1
4
σ2

1 +
1
2

r0X
1
2
1 −

1
2

f X
3
2
1 −

1
2

r1X
1
2
1 X2 −

1
2

r0 +
1
2

r1X2 +
1
2

f X1

]
dt

+

[
akX3 − (g + m)aX2 −

kaX3

X2
+ (g + m)a +

aσ2
2

2

]
dt

+

[
−k1bX1X3 + g1bX1X2 − hbX3 + bu + k1bX1 −

g1bX1X2

X3
+ hb −

bu
X3

+
bσ2

3

2

]
dt

+
1
2
σ1

(
X

1
2
1 − 1

)
dB1 − aσ2(X2 − 1)dB2 − bσ3(X3 − 1)dB3

≤

{
(g + m)a + hb + bu +

aσ2
2

2
+

bσ2
3

2
−

1
8
σ2

1X
1
2
1 +

1
4
σ2

1 +
1
2

r0X
1
2
1

−
1
2

f X
3
2
1 −

1
2

r0 +
1
2

f X1 + k1bX1 +

[
1
2

r1 − (g + m)a
]

X2 + [ka − hb]X3

}
dt

+
1
2
σ1

(
X

1
2
1 − 1

)
dB1 − aσ2(X2 − 1)dB2 − bσ3(X3 − 1)dB3

= LV +
1
2
σ1

(
X

1
2
1 − 1

)
dB1 − aσ2(X2 − 1)dB2 − bσ3(X3 − 1)dB3.

Choose a = r1/2(g + m), b = kr1/2h(g + m), such that 1
2r1 − (g + m)a = 0, ka − hb = 0. Note that

W = −
1
8
σ2

1X
1
2
1 +

1
4
σ2

1 +
1
2

r0X
1
2
1 −

1
2

f X
3
2
1 −

1
2

r0 +
1
2

f X1 + k1bX1

≤ −
1
8
σ2

1

(
X

1
2
1 − 2

)
−

1
2

f X
3
2
1 +

(
1
2

f + k1b
)

X1 +
1
2

r0

(
X

1
2
1 + 1

)
.

Then, we have

LV = (g + m)a + hb + bu +
aσ2

2

2
+

bσ2
3

2
+ W.
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Now, if X
1
2
1 − 2 ≥ 0 (i.e., X1 ≥ 4), then there exists a positive number G1 independent of x and t such

that

W ≤ −
1
2

f X
3
2
1 +

(
1
2

f + k1b
)

X1 +
1
2

r0

(
X

1
2
1 + 1

)
≤ G1.

If 0 < X1 < 4, it is clear that there exists a positive number G2 independent of x and t such that

W ≤ σ2
1 + 2 f + 4k1b +

3
2

r0 ≤ G2.

In other words, we have already shown that there exists a positive number G independent of x and t
such that

LV ≤ (g + m)a + hb +
aσ2

2

2
+

bσ2
3

2
+ G.

The remaining proof is similar to [26, Theorem 2.1] and thus not introduced here. This completes the
proof.
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