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Abstract: In this paper, we study the initial boundary value problem of the pseudo-parabolic equation
with a conformable derivative. We focus on investigating the existence of the global solution and
examining the derivative’s regularity. In addition, we contributed two interesting results. Firstly, we
proved the convergence of the mild solution of the pseudo-parabolic equation to the solution of the
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1. Introduction

Fractional calculus is one of today’s most popular mathematical tools to model real-world problems.
More specifically, it has been applied to model evolutionary systems involving memory effects on
dynamical systems. Partial differential equations (PDEs) with fractional operators are important in
describing phenomena in many fields such as physics, biology and chemistry [1,2]. Based on the
generalizations of fractional derivatives by famous mathematicians such as Euler, Lagrange, Laplace,
Fourier, Abel and Liouville, today’s mathematicians have explored and introduced many more types
of fractional derivatives such as Riemann-Liouville, Caputo, Liouville, Weyl, Riesz and Hifler [3—-6].

PDEs with conformable derivatives attract interested mathematicians using different approaches
because of their wide range of applications, such as electrical circuits [7] and chaotic systems in
dynamics [8]. We recognize that the conformable and classical derivatives have a close relationship.
There is an interesting observation that: If f is a real function and s > 0, then f has a conformable
fractional derivative of order § at s if and only if it is (classically) differentiable at s, and

Pr(s) sl_gaf(s)
asf Js

(1.1)

where 0 < 8 < 1. Another surprising observation is that Eq (1.1) will not hold if f is defined in a
general Banach space. We can better understand why the ODEs with the conformable derivative on R
have been studied so much. In addition, the relevant research in infinite-dimensional spaces, such as
Banach or Hilbert space, is still limited, which motivates us to investigate some types of PDEs with
conformable derivatives in Hilbert or Sobolev spaces.

Besides, in some phenomena, the conformable derivative is better simulated than the classical
derivative. In [9], the authors considered the conformable diffusion equation

CAa 2

0
=D,— 1.2
o 10D = Dazru(x, 1), (1.2)

where 0 < @ <1, x> 0, t > 0, u(x, r) is the concentration, and D,, represents the generalized diffusion
coefficient, which was applied in the description of a subdiffusion process. In particular, the
conformable diffusion equation (1.2) reduces to the normal diffusion equation if @ = 1. A natural and
fundamental question is, “Does the conformable diffusion model predict better than the normal
diffusion model?”. The results in [9] show that the conformable derivative model agrees better with
the experimental data than the normal diffusion equation.

Let Q ¢ RY (N > 1) be a bounded domain with smooth boundary dQ, and T > 0 is a given positive
number. In this paper, we investigate the Sobolev equation with a conformable derivative as follows

Caa Caa

ot + (=APu(x, 1) - m@Au = F(u(x, 1)), xeQ, te(0,7),

u(x, 1) = 0, xedQ,1e(0,T), (1.3)
u(x,0) = up(x) x e

where o, € (0,1], m > 0, the time fractional derivative % is the conformable derivative of order

a, defined in Definition 2.1. The function F represents the external forces or the advection term of a
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diffusion phenomenon, etc., and the function i is the initial condition specified later. The operator
(=AY is the fractional Laplacian operator, which is well-defined in [10] (see page 3). In the sense
of distribution, the study of weak solutions to Problem (1.3) is still limited compared to the classical
problem. Thus, the fundamental knowledge in the distributive sense for Problem (1.3) is still open and
challenging, which is the main reason and motivation for us to study the problem from the perspective
of the semigroup.

Next, we mention some results related to Problem (1.3). There are two interesting observations
regarding Problem (1.3).
o If we take m = 0 in Problem (1.3), then we obtain an initial boundary value problem of the parabolic
equation with a conformable operator as follows

Cha

a(?a u+ (=AY u(x, 1) = F(u(x, 1)), xeQ, 1e(0,7),

u(x, ) = 0, xedQie(0,7) (1.4)
u(x,0) = up(x) x € Q.

The latest results on the well-posedness of solutions to Problem (1.4) are shown in more detail in [11],
and the authors used the Hilbert scales space technique to prove the local existence of the mild solution
to Problem (1.4).

o If @ = 1, the main equation of Problem (1.3) becomes the classical equation

u; + (=ANPu(x, t) — mAu, = F(u(x, 1)). (1.5

Equation (1.5) is familiar to mathematicians about PDEs, called the pseudo-parabolic equation, also
known as the Sobolev equation. The pseudo-parabolic equation describes a series of important
physical processes, such as the permeation of a homogeneous liquid through fractured rock,
population aggregation and one-way propagation of the nonlinear dispersion length wave [12, 13].
Equation (1.5) has been studied extensively; for details, see [12—14] and references given there.
Concerning the study of the existence and blowup of solutions to pseudo-parabolic equations, we
refer the reader to [15-17].

For the convenience of readers, we next list some interesting results related to pseudo-parabolic with
fractional derivative. Luc et al. in [18] considered fractional pseudo-parabolic equation with Caputo
derivative

D¥(u + kAu) + APu = F(t, x, u), in (0,T]xQ,

u(t,x) =0, on (0,7]x0Q, (1.6)
u(0, x) = up(x), in Q,
where 0 < @ < 1, A = —A, D* 1s Caputo fractional derivative operator of order . They studied the

local and global existence of solutions to Problem (1.6) when the nonlinear term F is the global
Lipschitz. Based on the work in [18] , there are many related results in the spirit of a semigroup
representation of the form of the Fourier series. In [12], the authors studied nonlinear time-fractional
pseudo-parabolic equations with Caputo derivative on both bounded and unbounded domains by
different methods and techniques from [18]. In [19], the authors studied the nonlocal in time problem
for a pseudo-parabolic equation with fractional time and space in the linear case. Tuan et al. [20]
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derived the nonlinear pseudo-parabolic equation with a nonlocal type of integral condition. In [21],
the authors considered the time-space pseudo-parabolic equation with the Riemann-Liouville
time-fractional derivative, and they applied the Galerkin method to show the global and local
existence of solutions.

As far as we know, there has not been any work that considers the initial boundary value
problem (1.3) with a conformable derivative. The main results and methods of the present paper are
described in detail as follows

e Firstly, we prove the existence of the global solution to Problem (1.3). The main idea is to use
Banach fixed point theorem with the new weighted norm used in [22]. In order to prove the
regularity and the derivative of the mild solution, we need to apply some complicated techniques
on Hilbert scales for nonlinearity terms.Compared with [11], our method has very different
characteristics. It is important to emphasize that proving the existence of the global solution is
difficult, which is demonstrated in our current paper, but not in the paper [11].

e Secondly, we investigate the convergence of solution to Problem (1.3) when m — 0*, which does
not appear in the works related to fractional pseudo-parabolic equation. This result allows us to
get the relationship between the solution of Sobolev equation and parabolic diffusion equation. To
overcome the difficulty, we need to control the improper integrals and control the parameters. This
pioneering work can open up some new research directions for finding the relationship between
the solutions of the pseudo-parabolic equation and the parabolic equation.

e Finally, we prove the convergence of the solution when the order of derivative 8 — 1°. This
direction of research was motivated by the recent paper [23]. Since the current model has a
nonlinear source function, the processing technique for the proof in this paper seems to be more
complicated than that of [23].

The greatest difficulty in solving this problem is the study of many integrals containing singular terms,
such as 527! or (#* — s%)™. To overcome these difficulties, we need to use ingenious calculations and
techniques to control the convergence of several generalized integrals.

This paper is organized as follows. Section 2 provides some definitions. In Section 3, we give the
definition of the mild solution and some important lemmas for the proof of the main results. Section 4
shows the global existence of the solution to Problem (1.3). In addition, we present the regularity result
for the derivative of the mild solution. Section 5 shows the convergence of the solution to Problem (1.3)
when m — 0*. In Section 6, we investigate the convergence of mild solutions when 8 — 1.

2. Preliminary results

Definition 2.1. Conformable derivative model: Let B be a Banach space, and the function f : [0, c0) —
B. Let g‘%ﬁ be the conformable derivative operator of order B € (0, 1], locally defined by

Prw _ S+ h) - [0

: in B
atﬁ h—0 h n

for each t > 0. (For more details on the above definition, we refer the reader to [24-27].)

In this section, we introduce the notation and the functional setting used in our paper. Recall the
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spectral problem

—Aey(x) = Aye,(x), x€Q,
e, (x) =0, x € 0Q,

admits the eigenvalues 0 < Ay < A, <--- <4, < ... with 4, - o0 asn — oo. The corresponding
eigenfunctions are e, € Hé(Q).

Definition 2.2. (Hilbert scale space). We recall the Hilbert scale space, which is given as follows

o .
;/ln ( fg fen(x)dx)” < }

for any s > 0. It is well-known that H*(Q) is a Hilbert space corresponding to the norm

H'(Q) = {f € L*(Q)

o 1/2
||f||H.V(Q)=(ZA,%S( fg f(x)en(x>dx)2) . feE(Q).
n=1

Definition 2.3. Let X, ,,((0,T1; B) denote the weighted space of all the functions ¢ € C((0,T]; X)
such that

WX, ,o0.71:8) := sup t'e” " |ly(t, )|l < oo,
1€(0,T]

where a,q > 0and 0 < a < 1 (see [22]). If g = 0, we denote X, ,((0,T1; B) by X,((0,T1; B).
3. The mild solution and some lemmas

In order to find a precise formulation for solutions, we consider the mild solution in terms of the
Fourier series

[ee)

u(x,r = Z(u(., 1), e e (x).

n=1
Taking the inner product of Problem (1.3) with e, gives

Coa Caa
5 (u(.,1), e,y + ﬂ'ﬁ(u(., 1),e,) + m/ln%(u(., NH,e,y =(F(,1),e,), te(0,T),

(u(.,0),e,) = (up, e,),

3.1)

where we repeat that
<Al/l(, t)9 €n> = _/ln<u(’ t)9 €n>~
The first equation of (3.1) is a differential equation with a conformable derivative as follows
o 2 1

%(U(., t)7 €n> + 1+ m/ln <I/l(., t)a en) = 1 + m/ln <F(’ t)a €n>.
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In view of the result in Theorem 5, [26] and Theorem 3.3, [28] the solution to Problem (1.3) is

B 104
<u(., 1), en> =exp [— An t_] <u0, e,,>

1+md, a

1 g A -
+ - . F(.,v),e,)dv.
1+m/1njo‘v eXp(1+m/ln a )< ( V)€>V

To simplify the solution formula, we will express the solution in operator equations. Let us set the
following operators

4oe
Sm,a,ﬁ(t)f = Z eXp (_ t_] <fa en>en,

e 1+md, a

and

P,f= > (1+md)" (f.een

neN
for any f € L*(Q) in the form f = 3, {f, €n)e,. Then the inverse operator of S, , 4(?) is defined by

_ B a
(Sm,a,ﬂ(t)) 1 f = Z exp( /l" t_) <f’ €n>€n

e 1+ma, a

The mild solution is given by

u(t) = Syap(ttg + f VPSS mas) | ). (3.2)
0

For a qualitative analysis of the solution to (3.2), we need the bounded result for the operators in Hilbert
scales space.

Lemma 3.1. (a) Let v € H**PX(Q) for any k > 0. Then we get

HSm,a,ﬁ(t)vHHx(Q) < Cko/‘m_kt—“k”v HoH Q) (3.3)

andfor0<v<t<T,
[Smas@(Snas) V.., < Co @ =9 Pl (3.4)

(b) If v € H*(Q), then
Hsm’“’ﬂ(t)v' HY(Q) = ||v||H~‘(Q) 3.5)

and
-1

[Snes@(Smas) v e < Ml (3.6)

forO0<v<t<T.
(c) If v € H*(Q), then we have

HP’"VHHS(Q) = ||v||H~‘(Q)

for any s.
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Proof. For (a), in view of Parseval’s equality, we get that

[Sston] = 3 A ero| 2 b ey (3.7)
BV gy eN P\, o )\ '
Using the inequality e™ < C;y™*, we find that
/lﬁ Pt /lﬁ -k r —ak
-———~_——|<C . — =C Ayt Al PRk 3.8
exp( 1+m/lna/)_ k(1+m/ln) K (m : ) " (5.8)

where we use
(1+ma)t < C1+m'A) < C (m + 47) AL

It follows from (3.7) that

”Smaﬁ(t)vH < Cka )2 (m + A7) Z 2SR en)

neN

= (Ckak)2 (mk + /1[1)2 _2“k|

His+k ﬁk(Q)

By a similar explanation, we also get that forO < v <¢< T,

_ B P
R A (e
neN n

< (Ckak)2 (mk + /11—1)2 (1" = y7) 2% Z 222k €n>2

neN

= (Ckak)z (mk + /1[1)2 = vy 2 Iy

Hwk Bk(Q) >

where we use the fact that

R AU B
ex
P 1+ma, « =k 1 + maA, a*k

= Crat (mk + /11_1) AP (e _yayk

Hence, (a) is proved.
For (b), in view of Parseval’s equality, we get that

which allows us to conclude the proof of (3.5). The proof of (3.6) is similar to (3.5), and we omit it
here. For (c), noting that (1 + m,)”! < 1, we can claim it as follows

Q’
2 2 : 2 2 _ 2
aﬁ(t)vHH‘(Q) 4 Sexp( 1+ m/l a)<v e’ < ) e = v H(Q)?
eN neN

”va‘ IIZ%IY(Q) Z 225 (1 +ma,) (v, €n> < Z A, e,,) = ”V |H3(Q)
neN neN
The proof of Lemma 3.1 is completed. O
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4. Well-posedness of Problem (1.3)
Let G : H'(QQ) — H*(Q) such that G(0) = 0 and

IGW1) = GW)llms@) < Lgllwi — wallar ), (4.1)
for any wy, w, € H(Q) and L, is a postive constant.

Theorem 4.1. (i) Let G : H'(Q) — H*(Q) such that (4.1) holds. Here r, s satisfy that s > r + k — Bk

for 0 < k < 1. Let the initial datum uy € H**PX(Q). Then Problem (1.3) has a unique solution

Unap € LP(0, T;H'(Q)), where

1
1<p<E, ak <b < a - ak.

In addition, we get

4.2)

< 2Ca* (mk + /11_1) eHoT” Tb_“kt_b”uo

‘ 'um,a,ﬁ(t) H'(Q) HHk—ﬁk(Q) s

where Cy depends on k.
(ii) Let us assume that b < ¢ and uy € H**P4-1(Q) N H**PX(Q). Then we have

< ta—ak—l”uOl a—1-b
H(Q)

+ (f + Z_ZQ—b—ka—l)

— U p(s D) w0 (4.3)

ot
Here the hidden constant depends on k,b,a,m, p,B, L, (L, is defined in (4.1)).

Hs+k—Bk+p—-1 Q) HHk—ﬂk(Q) *

I3

Proof. Let us define B : X, ,((0, T]; H'(2)) — X3,.((0, T]; H (), u > 0 by

!
-1
Bw(1) := Spap(t)tg + f VP 0p(1)(Smap(v)  GOW()dv. (4.4)
0
Let the zero function wy(#) = 0. From the fact G(0) = 0, we know that

BWO(t) = Sm,a,ﬁ(t)u0~

In view of (3.4) as in Lemma 3.3, we obtain the following estimate

k(, k , -1\ ,~ak
= <
HBWO(I)H]H["(Q)) HS'""”ﬂ(t)uOHHr(g)) < Cra (m + A5 )t ||u0 HrAk ()"

Hence, multiplying both sides of the above expression by ?e ", we have that

g
e

Bwy(t)

< Cra* (mk + /11_1) tb_“k”uo

Hr (Q)) Hr+k-Bk (Q)

< Gt (m" + /11_1) Tb_“k||u0| 4.5)

H;-Jrk—ﬁk (Q) >

where we use b > ak. This implies that Bwy € X, ,((0, T]; H'(2)). Let any two functions wi, w, €
Xp1,0((0, T]; H (). From (4.4) and (3.3), we obtain that
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HBW] Ok BWZ(I)HH’(Q))

- fof VRS s 0Smas0) (G000 - w0

H"(€2)

(4.6)

V.
Hr+k—ﬂk( Q))

<Cratm™ f L = v Gon ) - Gonom)
0

Since the constraint s > r + k — Sk, we know that Sobolev embedding
HY(Q) — H™PQ).
From some above observations and noting (4.1), we get that

t’e Bw(t) — Bw,(t H
(1) (® @)

<Cua (4 27) P fo e (g =y [conen - G|, , av

t
SCkLgak (mk + /lfl) e " f Y (R le(v) - W2(v)|' dv
0 HI(Q)

dv. 4.7)

t
:CkLgak (mk + /lfl) tb f ye b (@ =y e‘“(ta_"a)vbe_”quwl(v) —wa(v)
0 H(Q)

From the fact that

= sup Ve |lwi(v) - wz(v)”

Xpual O.TEE(Q)  (ayer

Wy —w ,
H H"(Q))

we follows from (4.7) that

sup t”e—ﬂ"’HBwl(t) — Bwy(d)
0<t<T

H"(Q))

t
SE‘ Wi —w p [tbv[(; va—l—b (toz _ Va)—k e—#(z‘?_w)dv]’ (48)

2
X, ((O,TTH Q) 0<s<T

where C = C vL,a*m™. Let us continue to treat the integral term as follows
!
Jiu(t) = tbf vy @ — v")_k e Mgy,
0

In order to control the above integral, we need to change the variable v = ¢£ «. Then we get the
following statement

1 b
Jilt) = ~ 1 f €7 (1 - & e 1 0dg,
a 0
Next, we provide the following lemma which can be found in [22], Lemma 8, page 9.
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Lemma 4.1. Let ay > -1, a > —1 such that a; +a, > -1, p > 0and t € [0,T]. For h > O, the
following limit holds

1
lim ( sup " f vl - v)“ze_p’(l_v)dv) =0.
0

P \rel0,T]

Since0<b<aand0 <k < min(g, 1- g), we easily to verify that the following conditions hold

a— ak >0,
2> -1, —k> -1, (4.9)
2 —k>-1.

By Lemma 4.1 and (4.9), we have
lim sup J;,() =0.

H=+00 <4<

This statement shows that there exists a o such that

— 1
C sup Ji (1) < =. (4.10)
0<<T 2
Combining (4.8) and (4.10), we obtain
1
|Bwi - Bw, < >[wi = ws 4.11)
Xy (O.TLHN(Q) — 2 X4 (0,TTH'(Q)

for any wi,wy, € X,,,((0,T];H(©Q)). This statement tells us that B is the mapping from
X 10((0, TT; H'(Q)) to itself. By applying Banach fixed point theorem, we deduce that B has a fixed
point 05 € Xp4.0((0, T1; H'(€2)). Hence, we can see that

!
-1
a5 (1) = S p(Dthg + fo VP10 p(t)(Snap(v)  Glitnap())dv. (4.12)

Let us show the regularity property of the mild solution u,, , 3. Indeed, using the triangle inequality and
(4.11) and noting that B(v = 0) = S, , s(t)uo, we obtain

= ||Bu
X 1.0 ((O.TLE () H "B 1X o O.T1E Q)

e

+ ”B(V - 0)

1
< E ”um,a,ﬂ

X o ((0,TTH(Q)) X .o (0, TH(€2))

1
= Eﬂum,a,ﬁ + "Sm,a,ﬁ(t)uo

X .0 (OTTHT () Xp 0.0 (OTH ()

which combined with (4.5), we get

< 2Cka/k (mk + /ll_l) Tb_ak”uo

u S
H "HOPLIX, o (O.TTE Q)

Hr+k-Bk (Q) >

which allows us to get that

(4.13)

~ b
Hum"”ﬁ(t)HHr(ﬂ) <Gt ”u0| Hrk=pl(Q)°
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where 51 depends on k, g, b, @, m and
5] =2C (mk + /11_1) ool ph=ak

. . . T .
and we remind that C; depends on k. Note that the improper integral fo t~Pbdt is convergent for

I<p< }1;, we deduce that
Unap € LP(0, T; H'(Q)),

and the following regularity holds

Hr+k—pk Q) ’

u < Cllu
H B\ Lo o.1:mr @) ~“ 0

where C depends on k, uo, b, @, m, p. Our next aim is to claim the derivative of the mild solution u,, , .
Applying the following formula

d( f Ki(t, s)ds) = f 0,K(t, s)ds + K(t, 1)dt,
0 0

we obtain the following equality

0 _ o
Eum,a,ﬁ(w t) =t* lQm,oz,,B(t)MO +1 IG(um,a,,B(xa t))

1! fo VR Qa0 (Snas) | (NG Unap(r)d, (4.14)

where the operator Q,,,5(?) is defined by

Pl oo
Qap(H)y = — . exp( )(v en)en
% 1+mAa,

1+mAa,

for any v € L*(Q). In view of Parseval’s equality, we get that

B \? B
HQ’”M() HH ‘@ o= Nﬂzs(l +/ln/1 ) Xp(_zl +/1:n/lnta)<v’ ">2'

< m_l/lg_l, we get that

2
HQmaﬁ() (Ck a,km—k—l) t-zakz 242222, en>z,
HY(Q)
neN
which implies that
ko —k-1,-ak
[@uaston].. o, = Com™ M (4.15)
for any v € H***#5-1(Q). In a similar technique as above, we also get that
y q g
-1 ko k=1 0 ay-k
Qs (Smas) - W[, o < Cuam™ 1 =) s (4.16)
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for any 0 < v < t. Let us go back to the right hand side of (4.14). By (4.15), we evaluate the first term
on the right hand side of (4.14) as follows

! Q0 (Bt

< Cka,km—k—l l,(t—(yk—l ||Mo|
)

(4.17)

Hs (Q His+k—pk+p-1 (Q) .

Using global Lipschitz of G as in (4.1) and the fact that G(0) = 0, the second term on the right hand
side of (4.14) is estimated as follows

7 Gt 5, 1)

@ = Elta_ng||um"’ﬁ||H"(Q) < CiLgt" " |uo

(4.18)

Hr+k-Bk (Q) >

where we use (4.13). Let us now to treat the third integral term in (4.14). By (4.16), we obtain that

P Q) (Sms) | I UgM)
0

H ()

!
<Cra*m™! f P =) Gl s0) (4.19)
0

His+k—pBk+p—-1 (Q)

Since § < 1 and 0 < k < 1, we can easily verify that s + k — Bk + § — 1 < s, which implies the

Sobolev embedding H*(Q) «— H**-#5-1(Q) is true. From these above observations and using (4.13),
we derive that

ft vl (1@ - v“)_k HG(um,a,ﬂ(V))'

0

Hs+k—Bk+p-1 Q)

<C(s,k, B) fo v (1 — y?)* HG(um,(,ﬁ(v))H dv

H ()

!
<L,C(s.k,B) f P = )| dv
0

H()

!
——— ( fo e O dv). (4.20)

Let us now treat the integral term on the right hand side of (4.20). Controlling it is really not that
simple task. By applying Holder inequality, we find that

! 2 d 1 1 2
(f vl (@ — oy dv) = (f VT YT (1 vy dv)
0 0
! 1
< (f Va—l—Zde) (f Va—l (ta _ Va)—Zk dV)
0 0

ta—2b !
=— ( f vl (@ — ) dv), 4.21)
- 0

<L,C(s.k.B)C [Juo]

where « > 2b. By changing to a new variable z = v, we derive that dz = av*"'dv. Hence, we infer
that

o N 1 N f(1-20)
A=) dy = — " -7 dz = —, 4.22
fo VEL (Y =y dy afo (t* —2)""dz a1-20 4.22)
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where we note that 0 < k < % Combining (4.21) and (4.22), we obtain that the following inequality

" ta—b—ka
f Va—l—b (ta _ v(l)—k dy < . (4.23)
0 Va(l = 2k)(a — 2b)
By (4.23) and following from (4.19) and (4.20), we have
! . -1
o m,a t Sma G m,a d
| [ st (Se) Gttt
!
k. —k—1 a—1 /. a\—k
<Cira"m L v (Y = vY) HG(um,a,,B(v))‘ HsHk-BRe1 (G2
Crd*m™ 1L, C(s, k,B)C, o—bkar
< t bk ||l/t() Hr+k-Bk(Q)* (424)

Va(l - 2k)(a — 2b)

Summarizing the above results (4.14), (4.17), (4.18), (4.24) and using the triangle inequality, we obtain
the following assertion

d 1 1
“Umap(, 1 < i a8 U H + |G Um,ap(X, T H
Hﬁt ’ ’ﬁ( ) Hs(Q) Q. ’ﬁ() 0 HS(Q) (itm, ’ﬁ( ) HS(Q)
! -1
+ t‘HHf VP, Qo s(®) (Sia WG (U, o 5V dv”
O Qs (Smas) - NGt
kaakm_k_lta_“k_1||uo| s @) + Cngta—l—b”uO ———
Crd*m™ L, C(5, k. BIC 5y oy
+ t ¢ “ ||I/l() Hr+k=Bk(Q)
Va(1 =2k)(a - 2b) @
which shows (4.3). The proof is completed. O

5. The convergence of the mild solution when m — 0*

The main purpose of this section is to investigate the convergence of mild solutions to Problem
(1.3) when m — 0*. Our result gives us an interesting connection between the solution of the Sobolev
equation and the parabolic equation.

Theorem 5.1. Let G : H'(Q) — H*(Q) such that G(0) = 0 and (4.1) holds. Here r, s satisfy that

s>r+k—-pkfor0<k< % Let the initial datum u, € H**PX(Q). Let Umap and ”Z,ﬁ be the mild

solutions to Problem (1.3) with m > 0 and m = O respectively. Then we get the following estimate

Hum,a,ﬁ(t) - uz,ﬂ(t)“Hr(g) < [mzwiml + mk]T*(a, Y, Lb,k)E;, (Lgt) ,
where ak <b < 2,y = ) o < ) < k(1 - B) and 1 < & < min (2, ZUE2E),
2

2y-¢ey+el
Remark 5.1. Note thatm™ 2 +m* tends to zero when m — 0*. Hence, we can deduce that Hum,aﬁ(t) -

u t” — 0 when m — 0%,
as) E'(Q)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11232-11259.



11245

Proof. In the case m = 0, thanks for the results on [11], the mild solution to Problem (1.3) is given by
the following operator equation

0 5(0) = S o p(Dutg + fo va—ls*a,ﬁ(z)(s*a,ﬁ(v))_lG(u;ﬂ(v))dv, (5.1)

where we provide two operators that have the following Fourier series representation as follows

—/lﬁ @
S*a,ﬁ(t)f = Z eXP [ nt ) <f’ en>en

neN @

and

_ B a
(S0pm) £ = exp (ﬂ”v ) (f.enpen.

neN @
It’s worth emphasizing that the existence of the solution to Equation (5.1) has been demonstrated
in [11]. Subtracting (5.1) from (4.12), we get the following equality by some simple calculations
um,a,,B(t) - uz,ﬁ(t)
:(Sm,a,ﬂ(t) - S*a,ﬁ(t))uo

T fo t VIS s DS 0p ) (Glttmag)) = Gty 47))dv

-1

+ fo v"—l[Pmsm,(,,ﬁm(sm,a,ﬁ(v)) —PmS*a,ﬁ<z>(S*(,,ﬁ<v))‘l]G(um,a,ﬁ(v))dv

t -1
. f VT By = DS g (OS 0p7)) Glitnap())dY
0
=M, + M, + M3 + M. >y

Next, we estimate the four terms on the right hand of (5.2) in H"(Q) space. We divide this process into
four steps as below.
Step 1. Estimate of M,. In view of the inequality ‘e“‘ — e ‘ < C,max(e™*, e )|c — d|” with y > 0,

4

letc = T

£ and d = 4=, we get the following inequality

-l -1 B Y
AP 1 Pl
<C,C —| |- a7
1+ mAa, a 1+ mAa,

y—I
) 1= (5.3)

<C,Ca A (ma) Py (
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11246

by e > e~ and (3.8).
Here y and [ are two positive constants that are later chosen. For 1 < £ < 2 and any z > 0, we easily
verify that (1 + z)% > 1 + z > z, which implies

2 ey=D =D

1+ '=U+2¢ 2 >z 2 (5.4)

foranyy > 1> 0.
In (5.4), by choosing z = 1 + mA, and after some simple calculation, we have (1 + ma,) " >
e(y-1l) . . . .
(mA,)” 7 , which leads to the following inequality

1 v el-y)
(1 Tl ) < (md,) 7 . (5.5)
md,

Combining (5.3) and (5.5), we find that

B -
xp 1+maA, a XD~ a

ell-y)

<Cla,y, hm™ 3 el p PP (5.6)
Therefore, we have the following estimate
. 2
(S0 =S wpl|,
Ao “\[
:Z/lﬁ’ exp|— —|—exp[-2=]| (uo, ey’
e 1+mAd, a 104

2
- - z : — - 2
S'C(Q’, Y, l)‘ m2y 8y+elt2(xy 2al /lir 2B1+2By+2y+e(l y)<u0,€n> ,
neN

which implies that

2y—¢ey+el

_Qx == ay-al
(S0 =8 apuo], < Csrybm™ =50 ] (5.7)

Next, we explain how to choose the parameters /, €, y. Since 5 < 1, we can choose / such that
1 -
0 <1< min k(1 - B), T’Bk) = k(1 - p),

which implies that 2k(1 — 8) + 28 > [, that is w > 1. Then we can choose ¢ such that

2k(1 - B) + 21,3)
l .

1 <s<min(2,

Let us choose y such that

k=P +1(B-%)
[
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+(B-5)
B+1-5

It is easy to verify that y > = [ and the following equality

]—
r—,Bl+,8y+y+8( 3 Y =r+k—pk.

Then the estimate (5.7) becomes

(L

ey = || (Smas® = 8 p(0) )|

2y—ey+el

<Cla,y,hm™ =2 1

H"(Q))

(5.8)

MO Hr+k-pk (Q) *

Step 2. Estimate of M,. Let y € H'(Q)). For 0 <v <t < T, we can also get

y — ¢

(5.9)

[8°0s0(S 0s0) o, = D 2 ex (Mﬁ )<w, e’ < W gy
neN

where we use that

. A <
X <1.
P 1+mA, «

By (5.9) and Sobolev embedding H*(Q2)) < H"(€2), we find that

‘f(; Va_ls*a,ﬁ(l)(s*a,ﬁ(v))_l(G(um,aﬁ(v)) - G(uzﬁ(v)))dv

!
S a—1 G e _ G * d
fo v ‘ (Um,ap(V)) (ua,ﬁ(V))HHr(Q) %

3
SC(r,s)fvo‘_1
0

By the global Lipschitz property of G as in (4.1) and noting (5.10), it follows that

H()

(Gltnag) = Gl ), v (5.10)

|22

dv. (5.11)

H"(©)

!
-1 *
oy S L€, S)f(; v Hu’""”ﬁ(v) ™ U gV)

Step 3. Estimate of Ms. Let f € H**%(Q). Then using Parseval’ s equality, we have the following
identity

2
-1

H[Pmsm,(t,ﬁ(t)(sm,<r,ﬁ(v))_1 - PmS*(t,ﬁ(t)(S*a,ﬁ(V)) ]f

H" ()

/lﬁ L o —
— n — B
exp( l+ma, « J exp( & @ )

2
(fren)’. (5.12)

By a similar explanation as in (5.6), we find that
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By Pl
exp|— —exp|—
P 1+ma, « P\ ™% a

2y—ey+el &(l-y)

<Cla,y, hm~ 2 (1 =y L PPt (5.13)

By (5.12) and (5.13), we get that

-1

H[Pmsm,a,ﬁm(sm,a,ﬂ(w)‘1 —P,S" 0 (0(S"s) |f

H" (&)
2y—ey+el

<Cla,y,hm™ > @ =v*y'||f| (5.14)

Hr+k—ﬂk (Q) *

In view of (5.14) and s > r + k — Bk, we derive that

‘[Pmsm,a,ﬁa)(sm,@,ﬁ(w)_1 “ PSS ) |G 50)

Hr()
2y—ey+el

<Cla,y,hm™ = (" ="V |G ap()

Hr+k-Bk Q)
2y—ey+el

<Cla.y.Lsym™ = (1" = vV | Glttmas)

(5.15)

HY Q)"

By using global Lipschitz property of G as in (4.1) and noting (4.2), we infer that

|G @tin.a s )]

Hs(Q) = Lg””mﬂﬁ(v) H(Q)
< 2Ci L, (mk + /11_1) eor” Th_“kv_b”uo

< (mk + /11_1) v_b”uo

Hr+k-Bk (Q)

(5.16)

HIr+k—Bk Q) ’

where the hidden constant depends on k, @, L,, uy, b. Combining (5.15) and (5.16), we get the following
estimate

!
Zy—eytel k -1 a—1-b (@ ay\y—!
1M5]| ) s 77 (A7) [ H,+k_ﬁk(g)j; v — vty dy. (5.17)
Since y > [ and noting that b < @, we infer that
t , t ta(y—l)ﬂt—b
f e () LA (R f vy = ———— (5.18)
0 0 a->b
By (5.17) and (5.18), we obtain
a(y-D+a-b
2y—ey+el k -1 t
||M3 H(Q) sm ? (m +4 ) —b ””0 Hr+k-Bk ()" (5.19)

Step 4. Estimate of M4. By Parseval’s equality, we know that

| @~ DS wso(S70s) AL = DAY exp (—Mﬁ " Va) (fre). (520

w@) &\ +ma, a
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Using the inequality e™* < C(g9)z*, we get the following inequality

14

’ ) < C(gg, @), (1% — v 2.

@ —
exp (—2/1'5

By the inequality (1 + z)> > z% for 1 < &, < 2, we find that the following inequality

(1 T :11:/1 )2 < mE

By (5.20)—(5.22), we derive that
| @~ DS us0(S"0s) ][
’ ’ H"()

<Cley s (1 =y 0 e g2

neN

Hence, by using Parseval’s equality, we obtain the following estimate

| @0 = DS (S 0s) A, < Clon '™ @ —vy=f

H"(€))

r Peg+1- 2 (Q))

(5.21)

(5.22)

(5.23)

Next, we need to choose the appropriate parameters &, £;. Let &y = k € (0, %) and g = 2 — 2k, we

can verify that 1 < g; < 2. Hence, it follows from (5.23) that

|, -1 S g (D[S 0 ) M. < ctamt @ -y

H"(€)

By (5.16) and Sobolev embedding H*(Q2)) — HP**(Q), we derive that

| P = DS s0)(S"0) Gl s

H"(€))
SC(k, a)mk (ta - Va)_k HG(um’a”B(V))‘ Hr-Bk+k(Q))
SC(k, a, s)mk (la _ V(l)—k ”G(l/lm,a,ﬁ(v))‘ HA(Q)

Smk (ta — —k (mk + /l[l)v_b”u()

Hr+k-pk (Q) i

which implies that

s

@ S m* (mk + /l]l) ||u0

!
a—1-b (. ay—k
Hr+k—Bk(Q) f 14 (t -V ) dv

e b—ka

-1
)\/a(l 2K (a - 2b)” ’

Smk(m + A

Hr+k ﬁk(Q) ’

where we use (4.23). Combining (5.8), (5.11), (5.19) and (5.24), we obtain that

Hum,a,ﬁ(t) — Uy 5(1) H(Q) s||m, wr@Q) T 72 w@ ”M3”Hr(9) e e
<C(a,y, l)m g al””O Hrk-k(Q)

Hr—ﬁk+k(Q)) .

(5.24)
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evie a(y=D)+a-b
+m T (mk + ,11‘1) tafb“uo BB Q)
1o b—ka
+ mk (mk + A7 1) \/ (1 zk)(a, 2b) || Uo Hr+k=Bk(Q)
+ L,C(r, ) f s = 0 )HH - (5.25)

Here we note that 1 — 2k > 0 and @ — 2b > 0. Since the fact that y > [ and b < min(e, (1 — k)a), it is

obvious to see that
(XY= l T y—al
al o 7o ,

ta(y—l)+a—b T(t()/—l)+a/—b
< )
a-b a—->b
ta—b—ka Ta—b—ka

Va(l - 2k)(a — 2b) : Va(T = 2k)(a - 2b)’

which motivate us to put
Ta(y—l)+a—b T(z—b—ka

a-b " +a(l —2k)(a—2b))'

T (a,v,1,b, k) = max (T‘W_“l,

It follows from (5.25) that

2y—ey+el

s[m 2 +mk]T*(a/,y,l,b,k)

!
+Lgf°‘
0

To continue to go further in the proof, we now need to recall the following Lemma introduced in [29].

Hum,a,ﬁ(t) - u;,ﬁ(t) BQ)

) = )| (5.26)

Hr ()

Lemma 5.1. Let v € L'[0, T). Consider some postive constant A, B, ',y such that B’ +y' > 1 and
!
v(it) <A+ B f t = r¥ ' " (r)dr.
0
Then for0 <t < T, we get

V(1) < AEg, (B(F(,B’))Wt)

Looking Lemma 5.1 and (5.26), we set

2y—ey+el 2y—ey+el
A=m

2 +m 2 + mk]T*(a', ’)’, l, b’ k)’

V(1) = [fim g 0) = 15 50)

H(Q)
B=L,, B’ =1andy = «.Then we deduce that
Hum ap(t) — aﬁ(t)HH " [mM + mk]T*(a/, Y, L,b,k)E| 4 (Lgt) )

The proof of Theorem 5.1 is completed. O
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6. The convergence of the mild solution when 8 — 1~

Theorem 6.1. Let G : H'(QQ) — H*(Q) such that (4.1) holds. Here r, s satisfy that s > r + k — Bk for
0<k< % Let the initial datum uy € H**P*¢(Q) for any & > 0. Then we get the following estimate

e

Humﬂﬁ Uy

<S Dg(e, k)||u
Kok (0,T;H"(Q)) ﬂ( )” 0

Hr+k—Blre(Q) + |Eﬁ(r’ s, k)“|”0

where the hidden constants depends on a,k, T, b. Here

Hr+k-pk (Q) i

2k—Ph+e

kts—r
Dy, ) =[1-27| 7 +(1-p°,  Egnsk=[1-47| 7 +Q-p

for any g > 0.

Proof. Form > 0, let u,,p and u,,, be the mild solutions to Problem (1.3) with0 <8 < T and 8 = 1
respectively. Let us recall the formula of these two solutions

! -1
a5 (1) 1= S p(Dthg + f VP 0 p(1)(Snap(v)  Glitnap())dv. 6.1)
0
and
t p—
Ui () i= Spa1 (Do + f VP a1 (1)(Smas () 1G(u;;;ia(v))dv. (6.2)
0

Subtracting (6.1) from (6.2) on each side, we derive that

um,a,ﬂ(t) - ujy;k,a(t)
:(Sm,a,ﬁ(t)uo - Sm,a,l(t)uO)

-1

+ fo t VRS asO(Smas) = PuSnat O(Smar ) |G, 0y

! -1
+ fo V7 PuS a6 (1) Smap) |Glttnas)) = Gy, (v)|dv

=N; + N, + Ns. (6.3)

Step 1. Estimate of Ni. By Parseval’ s equality, we have that the following equality

2 2
HNIHH"(Q) —H(Sm,a,ﬁ(t)uo - Sm,a,l(t)uO)‘ HA(Q)
oo 2, e\ 5
= /121‘ - z - |~ - - - »En
% " eXp( 1+ ml, eXp( 1+m/1,,a) {ito- €n)
ﬂﬁ t(l & t(},’ 2
= /121‘ - z - |~ - - - »En
Z n ep( 1+mA, a exp( 1+m/l,,a) (o, €n)
Ap>1
B A, e\[
+ /lzr c - 1 - | — - z - +Cn
; " p[ 1+m/1noz] p( 1 +maA, ) (o, €n)
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:N]’l + Nl,z. (64)

Lo
1+mAa, 1+ma, *

exp|— 2 ﬁ>ex— A
P 1 +mA, P 1+mA, )

In view of the above inequality

For the term N, since 4, > 1 and 0 < 8 < 1, we note that Hence, we have the

following inequality

e = 7| < ¢ maxe™, e e -, ¥ >0

with ¢ = exp (— i ﬁ) and d = exp (— 2 ’Q), we derive that

T+mA, @ T+md, @

B A,
eXp(_l n mAnE] B eXp(_l n m/lnE)
Ao, =
1 +m/1n5] 1+ ma,
P AR
1+ ma, ;) 1+ ma,

y/

<C, exp (—

,y/

<C(y, 8’)(

:C(')/, 8,)0’_8,1‘_08/ 1+ m/ln)b"—)" ﬂ;ﬂa' A, — /15 4 (6.5)

Since the fact that 4, > 1, we know that |4, — /1§ [ /IZ/ (1 - /lg_l)y . Using the inequality 1 — e™ <

C(u)y* for any u > 0, we find that

1= =1-exp[-(1 - B)log(4,)] < C(u)(1 - By log!(,) < C(u)(1 - BY' AL,
where we note that 0 < log(y) < y for any y > 1, which implies that

,y/

A= 2 =2 (1= 271 < Cuy)(1 - By A+ (6.6)

Combining (6.5) and (6.6), we derive that

exp|- A ﬁ—ex— AT
P 1+mAd, a P 1+mAd, a

<CGuy )17 (1 ma, ) (1= By7 45 4.

If we make the assumption &’ < 7/, then (1 + mA,)° ™ < 1, which allows us to obtain that

2 2ag’ 2uy’ 2r+2uy’ +2y' 2B’ 2
Nl,l < |C(/~la yla 8/9&,)' t e (1 _ﬁ) H Z /lnH— Hy 2y =2pe <M0, €n>
Ap>1

<ICuy &, a)Pr2 (1= By |lug

2
Hr+y'+v =8¢’ (Q)*
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Let us choose u = 7 and y’ = &' = k for any &£ > 0. Then we get the following estimate

Nii < |C(e,k, )P4 (1 - gy

2
U | Hr+k-Bk+e (Q) : (6 . 7)

Before mention to N, ,, we provide a set N = {n eN:q, < 1}. Let us give the observation that if

N is an empty set, then Ny, = 0. If N is a non-empty set, then A; < 1. For the term N, ,, we note that
A
1+maAa, 1+m/l

since 4, < 1 and 0 < 8 < 1. Hence, we have that
oo A 1
exp|— —|<exp|-
1+mA, a 1 +mAd, a

—d - —d
—e ‘ < C,, max(e “,e Dlc—dl"", y; >0

By using the fact that

g

with ¢ = exp (— i ) and d = exp( ) we derive that

1+m/l a

. B . A, 1
xp|— —|—ex

P 1+mA, a P\~ 1+m/1a
A=A m

1+ mAa,
A=A m

<C(y1)exp (— &l ﬁ)

1+mA, a

A, o\
SC(71,81)( —)

1+mA, a

=C(y1,&) 't (1 + mA,)" 7" A, (6.8)

Since 4; < 4, < 1, it is obvious to see that

T (B-A) = - A < - (6.9)

Combining (6.8) and (6.9), we find that

ool oo e A,
P 1+mA, a P 1+md, a

<Clyi e, @) |1 = 477" 0% (1 + ma,)= 77 4,5, (6.10)

Hence, it follows from (6.10) that

ﬁ 104 104
t At

Nip=» A7 il - i
2=, ep( 1+ md, a/) eXp( 1+ md, )

<l
2 2 ad
B2 _ _
< ‘C()’l,&‘l,a/)' |1 - /l} '6| L2 Z (1 + maA,)* = /lﬁ’ 28‘+2'67'<u0,e,,)2.
n=1

(ug, e,y

2k+£

Let &, = k and vy, — k. Since 0 < 8 < 1, we know that

g <y, 2r-—2e +2By, =2r+ 2k -2k + 2e.
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Hence, in view of Parseval’s equality, we get the following estimate

2

1-p 4k—2Bk+2s ok
~ B —2
Nip < Clk,r,e,a) |1 = 477 12 ut0] | iy

0 (6.11)

Combining (6.4), (6.7) and (6.11), we obtain the following estimate

2

=Ny +Niz

[
H(©Q

4k-2pk+2e
B

<C(k,r,e¢, a)[ |l — /l}_ﬁ| +(1 _ﬁ)Za]t—zak”uo

2
Hr+k—ﬁk+s(g) .

By taking the square root of both sides of the above expression and using the inequality Va + b <
Va + Vb for any a,b > 0, we get

o

< C(k, 1, &, @)Dg(e, k)t |ug

H’(Q) Hr+k—ﬁk+s(Q) . (6 12)

Here we denote
2k—Pk+e

Dy(e, k) =1 -4 7 +(1-pF, &>0,

where we observe that Dg(e, k) — 0, 5 — 1.
Step 2. Estimate of N,. We confirm the following result for any &, > 0 using the method similar to
Step 1,

H[Pmsm,a,ﬁ(r)(sm,a,ﬂ<v>)‘1 RSt ((Smas ) v
H"(Q)

<Clk,r,e0, )| |1 =27 7 + (1 =py*| ™ —vy* |y

Hr+k—[3k+£0 (Q) .

Since s > r + k — Sk, we know that &y = s — r — k + Bk > 0, and using global Lipschitz property of G,
we derive that

<CiEg(r, 5.k) (1" =v*) || Glusr, ()
<K,C\Eg(r, s,k) (1" —v*) ™

[PuScsO(Snap®) = PuSman O(Snai (1) |G M)

Hr()

H ()

ok

”m.a(v)”Hf(g) J

where C, = C (k,r, s,B, @), and we have the following observation

kts—r

Es(r,s. ) =[1-47 7 +(1-p" 50, g1
In view of (4.2), we obtain that the following upper bound

< 621/_[)”140

”:;1*@ ()

H'(Q) Hr+k=pk(Q)?

where 62 = C(k,a,m, uy, T, b). From two latter estimations as above, we infer that
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[
Q)

t
<f V(z—l
0

<C3Eg(r, 5,0)||uo

dv
H"(€)

[PuSasO(Snaes ) = PuSnat O(Smar ) |GGz, )

!
Hr+k—,8k(Q) L Va/_l_b (ta - Va)_k dV, (613)

where C; = Kgafz. Using (4.23), we obtain that the following inequality

t a—b—ka
f yrlb (@ _ oy gy < ! . (6.14)
A Vol =20 = 2b)

Combining (6.13) and (6.14), we obtain that

[

Step 3. Estimate of N3. By a similar argument as in (4.6), we find that

Esta—b—ka
< Eg(r, s, k)”uo
Q@  Aa(l - 2k)(a —2b)

(6.15)

HHk—ﬁk(Q) N

H fo RS O(Ss) [Gltnas ) - Gl )]

H"(€)

!
<Cufm™* f V(1 — )k HG(um,a,ﬁ(V)) — G, ()
0

Hr+k—pk (Q))

Since s > r + k — Bk and using global Lipschitz property of G, we obtain that

[Gtnasr)) — Gl )|

< Hc;(um,(,,ﬁw)) - G(u;iiiaw»ﬂ

Hr+k=Ak(Q)) HE#(€2))

< Kg“um,mﬁ(v) = (V) .

From the two above observations, we confirm the following statement

e

where C; = Ckakm‘ng. Combining (6.3), (6.12), (6.15) and (6.16), we deduce the following estimate

dv, 6.16
H(Q) Y ( )

!
<C VL =y _kl'u v)—u (v
o G fo (1 = V) s ) = 17,9

Hum’”’ﬁ @)= M;k”ﬁj"(t)”Hr(Q)

SHNl

( t(Y—b—k

+k—Bk+e +
HEHRD) T \Jo(T = 2K)(a — 2b)

<Ct*Dy(e, k)||uo

Es(r, 5, 5)||uo)

Hr+k-Bk (Q)
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!
+53f Ve (Y ”um’%ﬁ(") mal )” "
0

H (Q))

(6.17)

where C = C(k, 1, €, @). By the Holder inequality and in combination with (4.22), we get the estimate

of the third term on the right hand side of (6.17) as follows

(ftva‘1 @ —v)™* Humaﬂ(v) (V)
0
S( ‘fot vl - va)_Zk dv)( ‘fol vl

£e(1-2k) . 2
Sm(ﬁ" Humaﬁ(v) Uy, ()

2
dv
H"(€2))

) = 35,0

dv
H"(€))

dv|.
H"(€2))

Combining (6.17), (6.18) and the inequality (a + b + ¢)* < 3a* + 3b* + 3c?, we derive that

Dg(e, k)‘2||u0 ’

2 —_
) 2 ,—2ak
”um,(l,ﬁ(t) - um’a(t)HH’(Q) S3|C‘| t “ Hr+k—ﬁk+s(Q)

— l.2(r—2b—2ak 2 5
R Ive R ye v T 'Eﬁ(“ 5 k)| ol
_ ., a2 ¢
+|C3 ——=—= o m,a
a2 Jy ¥ e =t e @)
Multiplying both sides of (6.19) by %, we get the following estimate
2ak
i TP RRTANG) e W i .
— 2a=2b
+ 3|C3| a’(l _ 2k)(a _ zb)‘Eﬁ(r S, k)‘ ||MO Hr+k=Bk(Q)

_ [ t
+ C 2 a—1
Il a(l—zk)foy ‘

g ¥) = 15 O

H"(€))
which implies that
P i) = 5,0 <ICR DO ]
a(13|_C32|li)T(: _—2b2b) ‘Eﬁ (s, ")‘2”“0 112{”"-5’%9)
~ 27a
C¥|(Cl3|_€k) 120k 20k V) — o )HH -
Looking Lemma 5.1 and (6.20), we set v(r) = £2%|[uyq5(t) - (I)HH e
= 30D b ol 7 3= 5 0 T

(6.18)

(6.19)

(6.20)
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and i
—_ |GPT”
~a(l -2k
By applying Lemma 5.1, we obtain that

B =1, ¥ =a-2ak.

tlak

s = 65,0 < AB vk (BOGY11) = AE a (Br). 62D

H (Q)
In view of Lemma 3.1 as in [30], we obtain the following upper bound

El,a—Za/k (Et) < Caa (622)

where C,, is a positive constant that depends on a. By (6.21) and (6.22), we get

tak

tna (1) = 151, 0 Ca.

H" (Q)
From Deinition 2.3, we find

e

um,a,ﬁ - um,a

2|

<
Kok(0,T:H(Q))

Cq.
The proof is completed. O
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