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Abstract: In this paper, a two-patch SIS model with saturating contact rate and one-directing
population dispersal is proposed. In the model, individuals can only migrate from patch 1 to patch
2. The basic reproduction number R1

0 of patch 1 and the basic reproduction number R2
0 of patch 2 is

identified. The global dynamics are completely determined by the two reproduction numbers. It is
shown that if R1

0 < 1 and R2
0 < 1, the disease-free equilibrium is globally asymptotically stable; if

R1
0 < 1 and R2

0 > 1, there is a boundary equilibrium which is globally asymptotically stable; if R1
0 > 1,

there is a unique endemic equilibrium which is globally asymptotically stable. Finally, numerical
simulations are performed to validate the theoretical results and reveal the influence of saturating
contact rate and migration rate on basic reproduction number and the transmission scale.

Keywords: saturating contact rate; population dispersal; basic reproduction number; global
asymptotic stability

1. Introduction

Population migration is a common phenomenon. With the migration of population, infectious
diseases can easily spread from one area to another, so it is meaningful to consider population
migration when studying the spread of infectious diseases [1–7].

Wang and Mulone [2] established an SIS infectious disease model with standard incidence based on
two patches. It is proved that the basic reproduction number is the threshold of the uniform persistence
and disappearance of the disease. The dispersal rate of the population will make the infectious disease
persist or disappear in all patches. There will be no the phenomena that infectious diseases persists in
one patch but disappears in the other.

Sun et al. [3] put forward an SIS epidemic model with media effect in a two patches setting. Under
the assumption that the migration matrix is irreducible, it is proved that if the basic reproduction
number is greater than 1 then the system persists and solutions converge to an endemic equilibrium
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and that if the basic reproduction number is less than 1 then solutions tend to an equilibrium without
disease.

Gao et al. [5, 6] studied an SIS multi-patch model with variable transmission coefficients. Their
results show that the basic reproduction number R0 is a threshold parameter of the disease dynamics.

All the patch models referenced above assume that the migration matrix is irreducible. The studies
in which the migration matrix is reducible are few. Therefore, based on the case of two patches, we
consider that the individuals can only migrate from one patch to the other. In this case, the migration
matrix is reducible. It can characterize the phenomenon that individuals migrate in one direction
between two regions, such as, from the rural patch to the urban one [8] and from a small community
hospital to a large teaching hospital [4].

It is well known that the incidence rate plays an important role in the modeling of infectious
disease. Considering the saturation phenomenon for numerous infected individuals, Capasso and
Serio [9] first introduce a nonlinear bounded function g(I) to form the interaction term g(I)S in 1978.
It can characterize the behavioral changes of individuals, such as wearing masks or reducing their
social activities and direct contact with others with the increase of infectious individuals. After that,
the saturation incidence rate has attracted much attention and various nonlinear types of incidence rate
are employed. The most commonly used types are Holling type II λS I

1+αI [10–12] and βS I
1+αS [13],

Monod-Haldane type λS I
1+αI2 [14], Beddington-DeAngelis type λS I

1+αS +βI [15–17] and Crowley-Martin
type λS I

(1+αS )(1+βI) [18, 19].
In this paper, we consider infectious disease transmission models with saturation incidence rate.

The rest of this paper is organized as follows: In Section 2, we establish a two-patch SIS model with
saturating contact rate and one-directing population dispersal. We discuss the existence of disease-free
equilibrium, boundary equilibrium and endemic equilibrium and prove the global asymptotic stability
of the equilibriums in Section 3. In Section 4, we perform simulations to illustrate the results and
analyze the effect of the contact rate and population migration on epidemic transmission. Finally, we
discuss in Section 5.

2. Model formulation

In the two patches, the population is divided into two states: susceptible and infective. Thus we can
establish a two-patch SIS model with saturating contact rate and one-directing population dispersal

dS 1(t)
dt

= A1 − d1S 1 − β1S 1
I1

1+α1I1
− mS 1 + γ1I1,

dS 2(t)
dt

= A2 − d2S 2 − β2S 2
I2

1+α2I2
+ mS 1 + γ2I2,

dI1(t)
dt

= β1S 1
I1

1+α1I1
− d1I1 − mI1 − γ1I1,

dI2(t)
dt

= β2S 2
I2

1+α2I2
− d2I2 + mI1 − γ2I2,

(2.1)

where S i is the number of susceptible population in patch i (i = 1, 2), Ii is the number of infective
population in patch i (i = 1, 2), Ai is the recruitment into patch i (i = 1, 2), di is the natural mortality
rate, γi is the recovery rate of an infective individual in patch i (i = 1, 2), m is the migration rate form
patch 1 to patch 2. Since the individuals can migrate from the first patch to the second, patch 1 is the
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source patch and patch 2 is the sink patch. The initial conditions is

S i(0) > 0, Ii(0) ≥ 0, i = 1, 2, I1(0) + I2(0) > 0. (2.2)

Denote the population in patch i by Ni. Then Ni = S i + Ii. From system (2.1), the differential
equations governing the evolution of N1 and N2 are

dN1(t)
dt

= A1 − (d1 + m)N1,

dN2(t)
dt

= A2 − d2N2 + mN1.
(2.3)

Obviously, system (2.3) has a unique equilibrium (N∗1 ,N
∗
2) = ( A1

d1+m ,
A2
d2

+ mA1
d2(d1+m) ) which is globally

asymptotically stable for (2.3). So (2.1) is equivalent the following system

dN1(t)
dt

= A1 − (d1 + −m)N1,

dN2(t)
dt

= A2 − d2N2 + mN1,

dI1(t)
dt

= β1(N1 − I1) I1
1+α1I1

− d1I1 − mI1 − γ1I1,

dI2(t)
dt

= β2(N2 − I2) I2
1+α2I2

− d2I2 + mI1 − γ2I2.

(2.4)

Because lim
t→∞

Ni(t)→ N∗i (i = 1, 2), system (2.4) leads to the following limit system


dI1(t)

dt
= β1(N∗1 − I1) I1

1+α1I1
− d1I1 − mI1 − γ1I1,

dI2(t)
dt

= β2(N∗2 − I2) I2
1+α2I2

− d2I2 + mI1 − γ2I2.
(2.5)

3. Mathematical analysis for system (2.5)

3.1. The invariants and equilibriums

Let Ω = {(I1, I2)|0 ≤ I1 ≤ N∗1 , 0 ≤ I2 ≤ N∗2}. Then Ω is invariant region for system (2.5).
Define the basic reproduction number in the two patches respectively by R1

0 =
β1A1

(d1+γ1+m)2 =
β1

d1+γ1+m N∗1 ,
R2

0 =
β2

(d2+γ2) N
∗
2 . The basic reproduction number R1

0 gives the expected secondary infections in the source
patch produced by a primary infected individual in the source patch when the population is supposed
to be in the disease-free equilibrium. The basic reproduction number R2

0 gives the expected secondary
infections in the sink patch produced by a primary infected individual in the sink patch when the
population is supposed to be in the disease-free equilibrium. Then we have the following theorem.

Theorem 3.1. For the system (2.5), we have
(i) The disease-free equilibrium E0 := (0, 0) always exists;
(ii) The boundary equilibrium E1 := (0, β2N∗2−d2−γ2

(d2+γ2)α2+β2
) exists if R2

0 > 1;
(iii) There is a unique epidemic equilibrium E∗ if R1

0 > 1.
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Proof. (i) can be easily proved.
Let

β1(N∗1 − I1)
I1

1 + α1I1
− d1I1 − mI1 − γ1I1 = 0, (3.1)

β2(N∗2 − I2)
I2

1 + α2I2
− d2I2 + mI1 − γ2I2 = 0. (3.2)

From Eq (3.1), we can have I1 = 0 always satisfies Eq (3.1). When I1 = 0, from Eq (3.2), we have

I2 =
β2N∗2 − d2 − γ2

(d2 + γ2)α2 + β2
.

If R2
0 > 1, then I2 =

β2N∗2−d2−γ2

(d2+γ2)α2+β2
> 0. So The boundary equilibrium E1 := (0, β2N∗2−d2−γ2

(d2+γ2)α2+β2
) exists if

R2
0 > 1. The conclusion (ii) is proved.

If R1
0 > 1, Eq (3.1) has a positive solution I∗1 =

β1N∗1−(d1+m+γ1)
(d1+m+γ1)α1+β1

. Solve Eq (3.2), we have

I2 =
(β2N∗2 − d2 − γ2 + mα2I1) ±

√
(β2N∗2 − d2 − γ2 + mα2I1)2 + 4[(d2 + γ2)α2 + β2]mI1

2[(d2 + γ2)α2 + β2]
. (3.3)

Substituting I∗1 into Eq (3.3), we have

I∗2 =
(β2N∗2 − d2 − γ2 + mα2I∗1) ±

√
(β2N∗2 − d2 − γ2 + mα2I∗1)2 + 4[(d2 + γ2)α2 + β2]mI∗1
2[(d2 + γ2)α2 + β2]

.

Since I∗2 ≥ 0 is meaning only, we take

I∗2 =
(β2N∗2 − d2 − γ2 + mα2I∗1) +

√
(β2N∗2 − d2 − γ2 + mα2I∗1)2 + 4[(d2 + γ2)α2 + β2]mI∗1
2[(d2 + γ2)α2 + β2]

.

So if R1
0 > 1, there is a unique epidemic equilibrium E∗ = (I∗1, I

∗
2), where I∗1 =

β1N∗1−(d1+m+γ1)
(d1+m+γ1)α1+β1

and

I∗2 =
(β2N∗2−d2−γ2+mα2I∗1)+

√
(β2N∗2−d2−γ2+mα2I∗1)2+4[(d2+γ2)α2+β2]mI∗1
2[(d2+γ2)α2+β2] . The conclusion (iii) is proved.

This completes the proof of the theorem.

From the above analysis, we have the following theorem.

Theorem 3.2. For the system (2.5), we have
(i) If R1

0 < 1 and R2
0 < 1, there is the disease-free equilibrium E0 only;

(ii) If R1
0 < 1 and R2

0 > 1, there are the disease-free equilibrium E0 and the boundary equilibrium E1;
(iii) If R1

0 > 1 and R2
0 < 1, there are the disease-free equilibrium E0 and the epidemic equilibrium E∗;

(iv) If R1
0 > 1 and R2

0 > 1, there are the disease-free equilibrium E0, the boundary equilibrium E1 and
the epidemic equilibrium E∗.

Remark 3.1. Define the basic reproduction number R0 of the system (2.5) by the spectral radius of the
next generation matrix [20], we have

R0 = ρ

 β1
d1+γ1+m N∗1 0

−
mβ2N∗2

(d2+γ2)(d1+γ1+m)
β2

(d2+γ2) N
∗
2

 ,
where ρ(A) denotes the spectral radius of a matrix A. So from the above analysis, we know that
R0 = max{R1

0,R
2
0}.
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3.2. The stability of the disease-free equilibrium

The next, we shall discuss the local stability of the disease-free equilibrium firstly. Then we discuss
the global asymptotical stability.

Theorem 3.3. For the system (2.5), we have
(i) If R1

0 < 1 and R2
0 < 1, the disease-free equilibrium E0 is locally asymptotically stable;

(ii) If R1
0 > 1 or R2

0 > 1, the disease-free equilibrium E0 is unstable.

Proof. The linearized system of (2.5) at the equilibrium E0 is
dI1(t)

dt
= (β1N∗1 − d1 − m − γ1)I1,

dI2(t)
dt

= (β2N∗2 − d2 − γ2)I2 + mI1.
(3.4)

The associated characteristic equation of the linearized system of (3.4) at the equilibrium E0 is

F(λ) =

∣∣∣∣∣∣ λ − (β1N∗1 − (d1 + m + γ1)) 0
−m λ − (β2N∗2 − d2 − γ2)

∣∣∣∣∣∣ = 0 (3.5)

It is easy to see that the two eigenvalues of characteristic Eq (3.5) are

λ1 = β1N∗1 − (d1 + m + γ1) = (R1
0 − 1)(d1 + m + γ1)

and
λ2 = β2N∗2 − d2 − γ2 = (R2

0 − 1)(d2 + γ2).

So, when R1
0 < 1 and R2

0 < 1, the disease-free equilibrium E0 is locally asymptotically stable;
However, if R1

0 > 1 or R2
0 > 1, the disease-free equilibrium E0 is unstable.

Remark 3.2. From Theorem 3.3, we know that for the system (2.5), if R0 < 1 the disease-free
equilibrium E0 is locally asymptotically stable; if R0 > 1, the disease-free equilibrium E0 is unstable.

Theorem 3.4. For the system (2.5), if R1
0 < 1 and R2

0 < 1, the disease-free equilibrium E0 is globally
asymptotically stable.

Proof. Since Ii
1+αiIi

≤ Ii for i = 1, 2, from system (2.5), we can obtain that
dI1(t)

dt
≤ (β1N∗1 − d1 − m − γ1)I1,

dI2(t)
dt
≤ (β2N∗2 − d2 − γ2)I2 + mI1.

(3.6)

Define an auxiliary linear system using the right hand side of (3.6) as follows
dI1(t)

dt
= (β1N∗1 − d1 − m − γ1)I1,

dI2(t)
dt

= (β2N∗2 − d2 − γ2)I2 + mI1.
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It can be rewritten as(
I1

I2

)′
=

(
β1N∗1 − d1 − m − γ1 0

m β2N∗2 − d2 − γ2

) (
I1

I2

)
. (3.7)

if R1
0 < 1 and R2

0 < 1, we can solve (3.7) and know that lim
t→∞

I1(t) = 0 and lim
t→∞

I2(t) = 0. By the

comparison principle [21], we can conclude that when R1
0 < 1 and R2

0 < 1, all non-negative solutions
of (2.5) satisfy lim

t→∞
Ii(t) = 0 for i = 1, 2. So the disease-free equilibrium E0 is globally asymptotically

stable.

3.3. The stability of the boundary equilibrium

In this subsection, we will discuss the local stability of the boundary equilibrium firstly. Then
discuss the global asymptotical stability.

Theorem 3.5. For the system (2.5), if R1
0 < 1 and R2

0 > 1, the boundary equilibrium E1 is globally
asymptotically stable.

Proof. The Jacobian matrix at the boundary equilibrium E1 of system (2.5) is

J =


β1N∗1 − d1 − m − γ1 0

m
(d2+γ2)(1−R2

0)−(β2α2+α2
2)

(
(d2+γ2)(R2

0−1)
(d2+γ2)α2+β2

)2

(
1+α2

(d2+γ2)(R2
0−1)

(d2+γ2)α2+β2

)2

 .
The two eigenvalues of the Jacobian matrix are

λ1 = β1N∗1 − (d1 + m + γ1) = (R0
1 − 1)(d1 + m + γ1)

and

λ2 =
(d2 + γ2)(1 − R0

2) − (β2α2 + α2
2)

(
(d2+γ2)(R2−1)
(d2+γ2)α2+β2

)2(
1 + α2

(d2+γ2)(R2−1)
(d2+γ2)α2+β2

)2 .

So, when R1
0 < 1 and R2

0 > 1, λ1 < 0 and λ2 < 0. That is the boundary equilibrium E1 is locally
asymptotically stable.

For every (I1(0), I2(0)) ∈ Ω, assume the solution of the system (2.5) with initial value (I1(0), I2(0))
is (I1(t), I2(t)). Since

dI1(t)
dt

=
(β1 + (d1 + γ1)α1 + mα1)

(
β1N∗1−d1−m−γ1

β1+(d1+γ1)α1+mα1
− I1

)
I1

1 + α1I1
,

if R1
0 < 1,

dI1(t)
dt

< 0, then I1(t) is positive and decreasing and lim
t→∞

I1(t) = 0. So for sufficiently small
positive number ε1, there exists a T, such that I1(T ) = ε1 and I1(t) < ε1 when t > T.
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The following, we prove that for any ε > 0, there exists a T ∗ > T such that
|I2(T ∗) − β2N∗2−d2−γ2

β2+(d2+γ2)α2
| < ε. And because E1 = (0, β2N∗2−d2−γ2

β2+(d2+γ2)α2
) is locally asymptotically stable, we have

E1 is globally asymptotically stable.
Since

dI2(t)
dt

=
(β2 + (d2 + γ2)α2)

(
β2N∗2−d2−γ2

β2+(d2+γ2)α2
− I2

)
I2

1 + α2I2
+ mI1,

if I2(T ) < β2N∗2−d2−γ2

β2+(d2+γ2)α2
, then

dI2(t)
dt

> 0 for t > T. So I2(t) is increasing and there exists T ∗1 such that

|I2(T ∗1) − β2N∗2−d2−γ2

β2+(d2+γ2)α2
| < ε;

if I2(T ) > β2N∗2−d2−γ2

β2+(d2+γ2)α2
, there are two cases:

i) I2(t) is decreasing for t > T . In this case, there exists T ∗2 > T , such that |I2(T ∗2) − β2N∗2−d2−γ2

β2+(d2+γ2)α2
| < ε;

ii) There exists T1 > T , such that dI2(T1)
dt > 0. That is

(β2 + (d2 + γ2)α2)
(
β2N∗2−d2−γ2

β2+(d2+γ2)α2
− I2(T1)

)
I2(T1)

1 + α2I2(T1)
+ mI1(T1) > 0.

Since I1(t) < ε1 for t > T , we have

(β2 + (d2 + γ2)α2)
(
β2N∗2−d2−γ2

β2+(d2+γ2)α2
− I2(T1)

)
I2(T1)

1 + α2I2(T1)
+ mε1 > 0.

Since I2(T ) > β2N∗2−d2−γ2

β2+(d2+γ2)α2
, we have

(β2 + (d2 + γ2)α2)
(
β2N∗2−d2−γ2

β2+(d2+γ2)α2
− I2(T1)

)
α2 +

β2+(d2+γ2)α2
β2N∗2−d2−γ2

+ mε1 > 0.

So

I2(T1) −
β2N∗2 − d2 − γ2

β2 + (d2 + γ2)α2
<
α2 +

β2+(d2+γ2)α2
β2N∗2−d2−γ2

(d2 + γ2)α2 + β2
mε1.

If only ε1 <
(d2+γ2)α2+β2(

α2+
β2+(d2+γ2)α2
β2N∗2−d2−γ2

)
m
ε, then |I2(T ∗2) − β2N∗2−d2−γ2

β2+(d2+γ2)α2
| < ε.

It is completed.

3.4. The stability of the epidemic equilibrium

In this subsection, we will discuss the local stability of the epidemic equilibrium firstly and then
discuss the global asymptotical stability.

Theorem 3.6. For the system (2.5), if R1
0 > 1, the epidemic equilibrium E∗ is locally asymptotically

stable.

Proof. The Jacobian matrix at the epidemic equilibrium E∗ of system (2.5) is

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11217–11231.
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J =

 −β1
I1∗

1+α1I∗1
+

β1(N∗1−I∗1)
(1+α1I∗1)2 − d1 − m − γ1 0

m β2N∗2−2β2I∗2−2β2α2I∗22 −(d2+γ2)(1+α2I∗2)2

(1+α2I∗2)2


=

 (d1 + m + γ1)
1−R1

0−

(
β1α1

d1+m+γ1
+α2

1

)
I∗21

(1+α1I∗1)2 0

m β2N∗2−2β2I∗2−2β2α2I∗
2

2 −(d2+γ2)(1+α2I∗2)2

(1+α2I∗2)2

 .
The two eigenvalues of the Jacobian matrix are

λ1 = (d1 + m + γ1)
1 − R1

0 − ( β1α1
d1+m+γ1

+ α2
1)I∗21

(1 + α1I∗1)2

and

λ2 =
β2N∗2 − 2β2I∗2 − 2β2α2I∗

2

2 − (d2 + γ2)(1 + α2I∗2)2

(1 + α2I∗2)2 .

It is easy to see that if R1
0 > 1, λ1 < 0. The next, we need only prove the second eigenvalue λ2 < 0 if

R1
0 > 1. Since (1 + α2I∗2)2 > 0, we need only prove β2N∗2 − 2β2I∗2 − 2β2α2I∗

2

2 − (d2 + γ2)(1 + α2I∗2)2 < 0.
Let

G(I∗2) = β2N∗2 − 2β2I∗2 − 2β2α2I∗
2

2 − (d2 + γ2)(1 + α2I∗2)2.

Since I∗2 ≥
(β2N∗2−d2−γ2+mα1I∗1)

(d2+γ2)α2+β2
, so

G(I∗2) = β2N∗2 − 2β2I∗2 − 2β2α2I∗
2

2 − (d2 + γ2)(1 + α2I∗2)2

≤ β2N∗2 − (β2 + (d2 + γ2)α2)
(β2N∗2 − d2 − γ2 + mα1I∗1)

(d2 + γ2)α2 + β2
− d2 − γ2

= −mα1I∗1 < 0.

This completes the proof.

Theorem 3.7. For the systeml (2.5), if R1
0 > 1, the epidemic equilibrium E∗ is globally asymptotically

stable.

Proof. Since E∗ is stable when R1
0 > 1, we need only prove E∗ is globally attractive.

Consider the equation
dI1(t)

dt
= I1

(
β1(N∗1 − I1)

1 + α1I1
− d1 − m − γ1

)
.

Let

f1(I1) =
β1(N∗1 − I1)

1 + α1I1
− d1 − m − γ1.

Then f ′1(I1) = β1
−1−N∗1α1

(1+α1I1)2 < 0. So f1(I1) is a monotonic decreasing function for all I1 > 0.
Furthermore, f1(0) > 0, f1(N∗1) < 0 and f1(I∗1) = 0 when R1

0 > 1. That means if I1 ∈ (0, I∗1), f1(I1) > 0

and
dI1(t)

dt
> 0; if I1 ∈ (I∗1,N

∗
1), f1(I1) < 0 and

dI1(t)
dt

< 0. Hence lim
t→∞

I1(t) = I∗1. By Eq (3.3),
lim
t→∞

I2(t) = I∗2. Thus E∗ is globally asymptotically stable.

The results about the existence and stability of equilibria are summarized in Table 1.
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Table 1. Existence and stability of equilibria.

Conditions E0 E1 E∗
R1

0 < 1 and R2
0 < 1 Yes (GAS) No No

R1
0 < 1 and R2

0 > 1 Yes (Unstable) Yes (GAS) No
R1

0 > 1 and R2
0 < 1 Yes (Unstable) No Yes (GAS)

R1
0 > 1 and R2

0 > 1 Yes (Unstable) Yes (Unstable) Yes (GAS)

Remark 3.3. From Theorems 3.5 and 3.7, we know that for the system (2.5), if R0 > 1, the infectious
disease is uniformly persistent. However, the infectious disease is not always uniformly persistent in
every patch. If R0 > 1, but R1

0 < 1, the disease is uniformly persistent in the sink patch, but is extinct in
the source patch. If R1

0 > 1, the disease is always uniformly persistent in every patch. This is a different
conclusion resulted by the reducible migration matrix.

Remark 3.4. From Theorem 3.5, in the case that R1
0 < 1 and R2

0 > 1, the infection does not persist in
the source patch but is able to persist in the sink patch. So, in the early stage of the spread of infectious
disease, the sink patch should assess the reproduction number R2

0 reasonably and take control measures
timely to prevent the epidemic.

4. Simulations

In this section, we carry on numerical simulations to verify the theoretical conclusions, reveal the
influence of the migration rate form patch 1 to patch 2 on the basic reproduction number, the
transmission scale and transmission speed, and discuss the influence of the parameters α1 and α2 that
measure the inhibitory effect on the basic reproduction number, the transmission scale and
transmission speed.

To numerically illustrate the theoretical results, we need to choose some parameter values (see
Table 2).

Table 2. Description and values of parameters.

Parameter Description Value
A1 the recruitment rate of the population in patch 1 0.018 (Figures 1 and 2)

0.03 (Figure 3)
A2 the recruitment rate of the population in patch 2 0.0005 (Figure 1)

0.004 (Figures 2 and 3)
β1 the transmission rate in patch 1 0.00001
β2 the transmission rate in patch 2 0.00005
α1 the parameter that measure the inhibitory effect in patch 1 0.02
α2 the parameter that measure the inhibitory effect in patch 1 0.02
d1 the death rate in patch 1 0.0003
d2 the death rate in patch 2 0.0003
γ1 the death rate in patch 1 0.0001
γ2 the death rate in patch 2 0.0001
m the migration rate form the patch 1 to the patch 2 0.00005
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We verify the theoretical conclusions firstly. Denote the density of the infective individuals in patch
1 by i1(t) =

I1(t)
N∗1

. Denote the density of the infective individuals in patch 2 by i2(t) =
I2(t)
N∗2

. Figure 1
shows the evolution of the density of infective individuals in the two patches when R1

0 = 0.8889 and
R2

0 = 0.7500. As predicted by the analytic calculation, the infectious disease in the two patches will
disappear eventually. Figure 2 shows the evolution of the density of infective individuals in the two
patches when R1

0 = 0.8889 and R2
0 = 1.8750. We can see the infectious disease will be endemic in

patch 2 and the infectious disease in patch 1 will disappear eventually. Figure 3 shows the evolution of
the density of infective individuals in the two patches when R1

0 = 1.4815 and R2
0 = 2.2917. We can see

the infectious disease will be endemic in the two patches. And we can see the infectious disease will
be endemic in the two patches if R1

0 > 1 from the subfigures (c) and (d) of Figure 4.
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Figure 1. When R1
0 = 0.8889 and R2

0 = 0.7500 , the evolution of the density of the infective
individuals in the two patches.
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Figure 2. When R1
0 = 0.8889 and R2

0 = 1.8750 , the evolution of the density of the infective
individuals in the two patches.
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Figure 3. When R1
0 = 1.4815 and R2

0 = 2.2917 , the evolution of the density of the infective
individuals in the two patches.
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Figure 4. Phase portraits for (a) R1
0 < 1 and R2

0 < 1 ; (b) R1
0 < 1 and R2

0 > 1 ; (c) R1
0 > 1 and

R2
0 < 1 ; (d) R1

0 > 1 and R2
0 > 1 .

Second, we reveal the influence of the migration rate m on the transmission in Figure 5. With the
increasing of m, the density of infective individuals in patch 1 i1 is decreasing, however the density of
infective individuals in patch 2 i2 is increasing.

Third, we reveal the parameters α1 and α2 on the transmission scale and transmission speed. We
can see that when α1 is increasing, the density of infective individuals in patch 1 i1 is decreasing from
Figure 6 and When α2 is increasing, the density of infective individuals in patch 2 i1 is decreasing from
Figure 7.
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Figure 5. When m is increasing, (a) the density of infective individuals in patch 1 i1 is
decreasing; (b) the density of infective individuals in patch 2 i2 is increasing.
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Figure 6. When α1 is increasing, the density of infective individuals in patch 1 i1 is
decreasing.
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decreasing.
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5. Discussion and conclusions

Many scholars have studied infectious disease transmission with population migration [1–7],
assuming that the migration matrix is irreducible, and found that the propagation dynamics of
infectious diseases is determined by the basic reproduction number of the system. When the basic
reproduction number is less than 1, the infectious disease eventually becomes extinct; when the basic
reproduction number is larger than 1, the infectious disease is epidemic eventually. Since the
migration matrix is irreducible, all patches are a connected whole. In all patches, infectious diseases
are either extinct or epidemic. That is there is not the phenomenon that infectious diseases are extinct
in some patches but epidemic in the others.

Because the studies about the spread of infectious diseases with reducible migration matrix are
rare, in this paper, we proposed a two-patch SIS model with saturating contact rate and one-directing
population dispersal, discussed the global asymptotic stability of the disease-free equilibrium, the
boundary equilibrium and the endemic equilibrium respectively, and revealed the influence of
saturating contact rate and migration rate on basic reproduction number and the transmission scale.
We have the following main conclusions:

1) If R1
0 > 1 then the system tends to a global endemic equilibrium in which infected individuals

are present in both patches provided initially there were infected individuals in the source patch; If
R1

0 < 1 and R2
0 > 1 then the system converges to an equilibrium with infected individuals only in the

sink patch; If R1
0 < 1 and R2

0 < 1 then the system converges to the disease-free equilibrium.

2) When migration rate is increasing, the density of infective individuals in the source patch is
decreasing; but the density of infective individuals in the sink patch is increasing;

3) With the increasing of the parameter αi (i = 1, 2) in saturating contact rate, the density of infective
individuals in patch i (i = 1, 2) is decreasing.

The similar conclusions can be obtained for the two patch SI model



dS 1(t)
dt

= A1 − d1S 1 − β1S 1
I1

1+α1I1
− mS 1,

dS 2(t)
dt

= A2 − d2S 2 − β2S 2
I2

1+α2I2
+ mS 1,

dI1(t)
dt

= β1S 1
I1

1+α1I1
− d1I1 − mI1,

dI2(t)
dt

= β2S 2
I2

1+α2I2
− d2I2 + mI1.

We can generalize the current model in many aspects to increase realism. For instance, the infection
rate can be given by β(I)S I. We can give the properties on function β(I) such that β(I) is decreasing and
tends to 0 when I tends to infinity. The mortality rates of the susceptible and infected individuals are
the same in the current model. In fact, the disease-induced death rate can not be neglected sometimes.
So the disease-induced death rate can be considered. It is also significant to consider heterogeneous
number of contacts for each individual on complex network. There are many paper on this topic
[22, 23]. One can investigate the multi-patch epidemic model with reducible migration matrix.

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11217–11231.



11230

Acknowledgments

This work is supported by the National Natural Sciences Foundation of China (Nos.12001501,
12071445, 11571324, 61603351), Shanxi Province Science Foundation for Youths (201901D211216),
the Fund for Shanxi ‘1331KIRT’.

Conflict of interest

All authors declare no conflicts of interest in this paper.

References

1. F. Brauer, P. van den Driessche, Models for transmission of disease with immigration of infectives,
Math. Biosci., 171 (2001), 143–154. https://doi.org/10.1016/S0025-5564(01)00057-8

2. W. Wang, G. Mulone, Threshold of disease transmission in a patch environment, J. Math. Anal.
Appl., 285 (2003), 321–335. https://doi.org/10.1016/S0022-247X(03)00428-1

3. C. Sun, W. Yang, J. Arino, K. Khan, Effect of media-induced social distancing
on disease transmission in a two patchsetting, Math. Biosci., 230 (2011), 87–95.
https://doi.org/10.1016/j.mbs.2011.01.005

4. X. Feng, L. Liu, S. Tang, X. Huo, Stability and bifurcation analysis of a two-
patch SIS model on nosocomial infections, Appl. Math. Lett., 102 (2020), 106097.
https://doi.org/10.1016/j.aml.2019.106097

5. D. Gao, S. Ruan, An SIS patch model with variable transmission coefficients, Math. Biosci., 232
(2011), 110–115. https://doi.org/10.1016/j.mbs.2011.05.001

6. D. Gao, C. Cosner, R. S. Cantrell, J. C. Beier, S. Ruan, Modeling the spatial spread of rift valley
fever in egypt, Bull. Math. Biol., 75 (2013), 523–542. https://doi.org/10.1007/s11538-013-9818-5

7. V. Capasso, G. Serio, A generalization of the Kermack-Mckendrick deterministic epidemic model,
Math. Biosci., 42 (1978), 41–61. https://doi.org/10.1016/0025-5564(78)90006-8

8. M. P. Coffee, G. P. Garnett, M. Mlilo, H. A. C. M. Voeten, S. Chandiwana, S. Gregson, Patterns
of movement and risk of HIV infection in rural Zimbabwe, J. Infect. Dis., 191 (2005), 159–167.
https://doi.org/10.1086/425270

9. V. Capasso, G. Serio, A generalization of the kermack-mckendrick deterministic epidemic model,
Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8

10. Z. Jiang, J. Wei, Stability and bifurcation analysis in a delayed SIR model, Chaos, Solitons
Fractals, 25 (2008), 609–619. https://doi.org/10.1016/j.chaos.2006.05.045

11. R. Xu, Z. Ma, Stability of a delayed SIRS epidemic model with a nonlinear incidence rate, Chaos,
Solitons Fractals, 41 (2009), 2319–2325. https://doi.org/10.1016/j.chaos.2008.09.007

12. Z. Zhang, Y. Suo, Qualitative analysis of a SIR epidemic model with saturated treatment rate, J.
Appl. Math. Comput., 34 (2010), 177–194. https://doi.org/10.1007/s12190-009-0315-9

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11217–11231.

http://dx.doi.org/https://doi.org/10.1016/S0025-5564(01)00057-8
http://dx.doi.org/https://doi.org/10.1016/S0022-247X(03)00428-1
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2011.01.005
http://dx.doi.org/https://doi.org/10.1016/j.aml.2019.106097
http://dx.doi.org/https://doi.org/10.1016/j.mbs.2011.05.001
http://dx.doi.org/https://doi.org/10.1007/s11538-013-9818-5
http://dx.doi.org/https://doi.org/10.1016/0025-5564(78)90006-8
http://dx.doi.org/https://doi.org/10.1086/425270
http://dx.doi.org/https://doi.org/10.1016/0025-5564(78)90006-8
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2006.05.045
http://dx.doi.org/https://doi.org/10.1016/j.chaos.2008.09.007
http://dx.doi.org/https://doi.org/10.1007/s12190-009-0315-9


11231

13. S. Liu, Y. Pei, C. Li, L. Chen, Three kinds of TVS in a SIR epidemic model with
saturated,infectious force and vertical transmission, Appl. Math. Model., 33 (2009), 1923–1932.
https://doi.org/10.1016/j.apm.2008.05.001

14. A. K. Nilam, Mathematical analysis of a delayed epidemic model with nonlinear incidence and
treatment rates, J. Eng. Math., 115 (2019), 1–20. https://doi.org/10.1007/s10665-019-09989-3

15. K. G. Nilam, Stability behavior of a nonlinear mathematical epidemic transmission model with
time delay, Nonlinear Dyn., 98 (2019), 1501–1518 . https://doi.org/10.1007/s11071-019-05276-z

16. K. G. Nilam, A mathematical and numerical study of a SIR epidemic model with time
delay, nonlinear incidence and treatment rates, Theory Biosci., 138 (2019), 203–213.
https://doi.org/10.1007/s12064-019-00275-5

17. Z. Liu, Dynamics of positive solutions to SIR and SEIR epidemic models with
saturated incidence rates, Nonlinear Anal.: Real World Appl., 14 (2013), 1286–1289.
https://doi.org/10.1016/j.nonrwa.2012.09.016

18. M. E. Fatini, I. Sekkak, A. Laaribi, A threshold of a delayed stochastic epidemic model
with Crowly-Martin functional response and vaccination, Phys. A, 520 (2019), 151–160.
https://doi.org/10.1016/j.physa.2019.01.014

19. R. K. Upadhyay, A. K. Pal, S. Kumari, P. Roy, Dynamics of an SEIR epidemic model
with nonlinear incidence and treatment rates, Nonlinear Dyn., 96 (2019), 2351–2368.
https://doi.org/10.1007/s11071-019-04926-6

20. P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48.
https://doi.org/10.1016/S0025-5564(02)00108-6

21. H. L. Smith, P. Waltman, The Theory of the Chemostat, Cambridge University Press, 1995.
https://doi.org/10.1017/CBO9780511530043

22. Y. Wang, Z. Wei, J. Cao, Epidemic dynamics of influenza-like diseases spreading in complex
networks, Nonlinear Dyn., 101 (2020), 1801–1820. https://doi.org/10.1007/s11071-020-05867-1

23. R. Pastor-Satorras, C. Castellano, P. Van Mieghem, A. Vespignani, Epidemic processes in complex
networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925

c© 2022 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 19, Issue 11, 11217–11231.

http://dx.doi.org/https://doi.org/10.1016/j.apm.2008.05.001
http://dx.doi.org/https://doi.org/10.1007/s10665-019-09989-3
http://dx.doi.org/https://doi.org/10.1007/s11071-019-05276-z
http://dx.doi.org/https://doi.org/10.1007/s12064-019-00275-5
http://dx.doi.org/https://doi.org/10.1016/j.nonrwa.2012.09.016
http://dx.doi.org/https://doi.org/10.1016/j.physa.2019.01.014
http://dx.doi.org/https://doi.org/10.1007/s11071-019-04926-6
http://dx.doi.org/https://doi.org/10.1016/S0025-5564(02)00108-6
http://dx.doi.org/https://doi.org/10.1017/CBO9780511530043
http://dx.doi.org/https://doi.org/10.1007/s11071-020-05867-1
http://dx.doi.org/https://doi.org/10.1103/RevModPhys.87.925
http://creativecommons.org/licenses/by/4.0

	Introduction
	Model formulation
	Mathematical analysis for system (2.5) 
	The invariants and equilibriums
	The stability of the disease-free equilibrium
	 The stability of the boundary equilibrium 
	The stability of the epidemic equilibrium

	Simulations
	Discussion and conclusions

