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Abstract: A deterministic model is proposed to describe the interaction between an immune system and 
an invading virus whose target cells circulate in the blood. The model is a system of two ordinary first 
order quadratic delay-differential equations with stipulated initial conditions, whose coefficients are 
eventually constant, so that the system becomes autonomous. The long-term behavior of the solution is 
investigated with some success. In particular, we find two simple functions of the parameters of the model, 
whose signs often, but not always, determine whether the virus persists above a nonzero threshold in the 
circulation or heads toward extinction. 
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1. Introduction 

Over the years, many mathematical models describing the interaction between the human immune 
system and invading organisms have been proposed. Although there has been interest in nonspecific 
viruses [1], a great number of these models, probably most, have focused on the dynamics of human HIV 
infection. As expected, COVID-19 models are now multiplying [2,3]. 

Many of the models previously advanced have been systems of first order nonlinear ordinary 
differential equations [4–12]. However, one of the key features of viral dynamics is a lag between target 
cell infection and subsequent lysis with expulsion of virus into the circulation. To depict this, other models 
employing delay-differential equations have been proposed [3,13–16], even with distributed delays [17], 
usually to mimic this lag but, in one case [18], for the time gap before immune activation. In [19], a delay 
effect was achieved by adding the time since infection as a new parameter of infected cells and appending 
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a partial differential equation to the system describing them further. In [2] a distributed delay was handled 
by use of the so-called linear chain trick, which interprets the delay as a sum of exponential distributions 
(equivalently, an Erlang distribution). These methods allowed sidestepping the problem in stability 
analysis of having to consider the infinitely many roots of transcendental polynomials [20,21]. 

The most general of these differential and delay-differential models have not been autonomous, but 
analysis has commonly been done on autonomous simplifications. Often, both the number of parameters 
and dimension of these systems have been substantial, permitting a very granular description of the 
biologic process. Some [10,13,15,19] have added in pharmacological treatment and the response to it. 

The present model is simpler than most. It describes the natural history of viral infection without 
intervention in a host animal. It is a very basic two-dimensional delay-differential system, largely 
generalizable to a model with distributed delays which is messier and not included here. It assumes that 
interactions take place in a single, well-mixed compartment, e.g., the circulation, and as such, is limited 
in application to the human viral infections about which there is currently most concern including, besides 
HIV, hepatitis B and C, as well as COVID-19. The simplicity leads to an easier investigation in some 
ways but, as noted above, delay-differential equations tend to be much less tractable than differential equations. 

The first aim for these kinds of models is to delineate the circumstances, in terms of their parameter 
values, which guarantee extinction versus persistence of both the virus and infected cells. For this model, 
sufficient conditions for both extinction and for persistence above a positive level are found, but neither 
is shown to be necessary. There is an “interval” of parameter states for which either of these outcomes 
might be possible, or even persistence with extinction as a limit point, an unlikely scenario physiologically. 
Nevertheless, the results may point to which parameters and what particular functions of their values are 
important in real life and, secondarily, which ones are the best to aim at tweaking with pharmacological 
treatments, including vaccines, in order to provide the most effective effort. 

From the mathematical perspective, many of the arguments employed here are atypical for the 
analysis of delay-differential systems and might find use for other problems described by similar systems. 
The question of local stability is approached in a standard, but partially ad hoc, fashion. 

Because our system is two-dimensional, we can employ some Bendixson type reasoning to eliminate 
some very special kinds of cycles. In addition, the results on long term behavior of the virus and of the 
infected cell densities separately allow reasonable speculations about trajectories in two-dimensional 
phase space. 

To simplify notation where possible, definite integrals will be written without the dummy variable 
or differential when not potentially confusing. First derivatives with respect to time will be indicated by a 
“prime” superscript. Equations or inequalities can appear consecutively on a line to save space. They 
usually form a logical sequence and are separated by semicolons. When subsequently cited, they are 
indicated by section and numeral enclosed in parentheses, as opposed to propositions, definitions, etc., for 
which parentheses are not used. 

2. The model and bounds on its solution 

We wish to model infection by a virus which attacks a particular circulating host cell line, using 
infected cells to manufacture more virus. To counter the attack, we endow the host with several immune 
mechanisms to clear both virus and the infected cells from the circulation. By choosing a unit of volume, 
we can assume that the density of host cells in the blood volume is 1. We normalize time so that it takes 
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one unit of time for all virions to confront a host cell and also for immune processes to function. We 
assume that the body immediately replaces infected host cells which it has cleared or which have been 
destroyed by the virus, so that the total number of host cells, including both those infected and those not, 
remains constant. (Clearly, this assumption is not reflective of chronic HIV.) At time 𝑡 ൌ 0, an inoculum 
of virus with density 𝜈଴ is introduced into the formerly virus-free blood. 

We denote the rate at which virions penetrate attacked cells by 𝑝, where 0 ൏ 𝑝 ൑ 1. The virus does 
not discriminate with regard to the infection status of the host cells it encounters and, once infected, a 
cell’s status is unchanged by further viral breaches. Since the density of all host cells remains constant at 1, 
virus is lost to successful attack at the rate 𝑝. If an infected cell is not cleared sooner, it is lysed exactly 𝑇 
units of time after infection, releasing 𝑏 virus particles back into the circulation, for positive constants 𝑇 
and 𝑏. We also assume a constant rate, 𝑙 ൒ 0, of leakage of virus from infected host cells into the circulation. 

Since uninfected host cells may have immune function, we assume that the clearance of virus has 
two components, one dependent on the density of uninfected host cells with relative rate 𝜂ሺ𝑡ሻ and another, 
from circulating antibodies and other immune mechanisms, with relative rate 𝜅ሺ𝑡ሻ. For the infected cells, 
we assume a simple clearance independent of host cells at a relative rate 𝜇ሺ𝑡ሻ. These functions, 𝜂, 𝜅, and 
𝜇 defined on (െ𝑇, ∞), are continuous, take values in ሾ0, 1ሻ, and eventually become constant at values ℎ, 
𝑘, and 𝑚 respectively. Although it is not necessary for the analysis, we might think of them as increasing 
to their plateau values as in the activation of immunity. 

We let 𝑉ሺ𝑡ሻ be the density of free circulating virions at time 𝑡 (equivalently, the number of virions per 
host cell) and 𝑊ሺ𝑡ሻ the density of those host cells which have been infected (warped?). We define 𝐸 by 
𝐸ሺ𝑡ሻ ൌ 𝑝𝑉ሺ𝑡ሻሺ1 െ 𝑊ሺ𝑡ሻሻ, the rate at which virus infects previously uninfected host cells. Virions are 
cleared by intact host cells at the rate 𝜂𝑉ሺ1 െ 𝑊ሻ ൌ

ఎ

௣
𝐸, and by host cell independent mechanisms at the 

rate 𝜅𝑉. Their number is increased by viral leakage at the rate 𝑙𝑊 along with the expulsion of virus at 
infected cell lysis. The following pair of first order delay-differential equations along with the initial 
conditions for 𝑉 and 𝑊 on [െ𝑇, 0ሿ describe the model. 

 𝑉ᇱሺ𝑡ሻ ൌ െ ఎሺ௧ሻ

௣
𝐸ሺ𝑡ሻ െ ሺ𝑝 ൅ 𝜅ሺ𝑡ሻሻ𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ ൅ 𝑏𝑒ି ׬ ఓ

೟
೟ష೅ 𝐸ሺ𝑡 െ 𝑇ሻ  (2.1a) 

 𝑊ᇱሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ െ 𝜇ሺ𝑡ሻ𝑊ሺ𝑡ሻ െ 𝑒ି ׬ ఓ
೟

೟ష೅ 𝐸ሺ𝑡 െ 𝑇ሻ    (2.1b) 

 𝑉ሺ𝑡ሻ ≡ 0 on ሺെ𝑇, 0ሻ, 𝑉ሺ0ሻ ൌ 𝜈଴ ൐ 0, and 𝑊ሺ𝑡ሻ ≡ 0 on ሺെ𝑇, 0ሿ   (2.1c) 

Note that although 𝑉 has a jump discontinuity at 0, both 𝑉 and 𝑊 are constant on ሺെ𝑇, 0ሻ. The 
unique solution to the system with these initial conditions will become progressively smoother at the 
values 𝑡 ൌ 𝑛𝑇 for positive integers 𝑛. 

Let Σ be the closed strip in two-dimensional phase space defined by 𝑉ሺ𝑡ሻ ൒ 0 and 0 ൑ 𝑊ሺ𝑡ሻ ൑ 1. 
The following proposition establishes bounds on the region in which the trajectory of ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ lies. 
Proposition 2.1: Let 𝛾 ൌ 𝑙𝑇 ൅ 𝑏𝑒். Then, for all 𝑡 ൐ 0, 

(i) ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ ∈ Σ°, the interior of Σ. 
(ii) 𝑉ሺ𝑡ሻ ൑ 𝑣଴ ൅ 𝛾 ൅ max ሼ𝛾,

ఊ

௣்
ሽ. 

(iii) 𝑊ሺ𝑡ሻ ൑ 1 െ
௘ష೛ೡೄ೅

ଵା௣௩ೄ்
, where 𝑣ௌ ൌ sup 𝑉ሺ𝑡ሻ (which exists by ii). 

Proof: (i) The initial conditions (2.1c) state that 𝑉ሺ0ሻ ൐ 0 and 𝑊ሺ0ሻ ൌ 0. By (2.1b), we also have 
𝑊ᇱሺ0ሻ ൌ 𝐸ሺ0ሻ ൌ 𝑝𝑉ሺ0ሻ ൐ 0. Therefore, by continuity and these inequalities, ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ ∈ Σ° on an 
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interval ሺ0, 𝑢ሻ, for some 𝑢 ൐ 0. Suppose 𝑢 is maximal with this property implying, by continuity and the 
fact that Σ° is open, that ሺ𝑉ሺ𝑢ሻ, 𝑊ሺ𝑢ሻሻ lies on the boundary of Σ. Let 𝜈௨ ൌ max

௧∈ሾ଴,௨ሿ
𝑉ሺ𝑡ሻ. Then, by (2.1b), 

for 𝑡 ∈ ሾ0, 𝑢ሻ, 

𝑊ᇱሺ𝑡ሻ ൑ 𝐸ሺ𝑡ሻ ൑ 𝑝𝜈௨ሺ1 െ 𝑊ሺ𝑡ሻሻ;  
ିௐᇲሺ௧ሻ

ଵିௐሺ௧ሻ
൒ െ𝑝𝜈௨ 

Integrating from 0 to 𝑢, using continuity of 𝑊 for positive 𝑡, and then exponentiating, we get 

logሺ1 െ 𝑊ሺ𝑢ሻሻ ൒ െ𝑝𝜈௨𝑢;      1 െ 𝑊ሺ𝑢ሻ ൒ 𝑒ି௣ఔೠ௨;      𝑊ሺ𝑢ሻ ൑ 1 െ 𝑒ି௣ఔೠ௨ ൏ 1 

Next, for 𝑡 ∈ ሺ0, 𝑢ሻ, by (2.1a), the definition of 𝐸ሺ𝑡ሻ, and what we have just shown, and letting 𝐻 and 𝐾 
be upper bounds for 𝜂 and 𝜅 respectively, 

𝑉ᇱሺ𝑡ሻ ൒ െሺ𝜂ሺ𝑡ሻ ൅ 𝑝 ൅ 𝜅ሺ𝑡ሻሻ𝑉ሺ𝑡ሻ ൒ െሺ𝐻 ൅ 𝑝 ൅ 𝐾ሻ𝑉ሺ𝑡ሻ;          
௏ᇲሺ௧ሻ

௏ሺ௧ሻ
൒ െሺ𝐻 ൅ 𝑝 ൅ 𝐾ሻ 

Integrating from 0 to 𝑢, and then exponentiating as above, we get 

𝑉ሺ𝑢ሻ ൒ 𝑣଴𝑒ିሺுା௣ା௄ሻ௨ ൐ 0 

Finally, we take a derivative and use (2.1b) again, yielding for 𝑡 ൐ 0, 

ሺ𝑒׬ ఓ
೟

బ 𝑊ሺ𝑡ሻሻᇱ ൌ 𝑒׬ ఓ
೟

బ ൫𝑊ᇱሺ𝑡ሻ ൅ 𝜇ሺ𝑡ሻ𝑊ሺ𝑡ሻ൯ ൌ 𝑒׬ ఓ
೟

బ ሺ𝐸ሺ𝑡ሻ െ 𝑒ି ׬ ఓ
೟

೟ష೅ 𝐸ሺ𝑡 െ 𝑇ሻሻ 

ൌ 𝑒׬ ఓ
೟

బ 𝐸ሺ𝑡ሻ െ 𝑒׬ ఓ
೟ష೅

బ 𝐸ሺ𝑡 െ 𝑇ሻ 

If we let 𝑔ሺ𝑡ሻ be the first term on the right-hand side of the last equality (so the second is 𝑔ሺ𝑡 െ 𝑇ሻ), note 
that 𝑔ሺ𝑡ሻ ≡ 0 on ሺെ𝑇, 0ሿ, and integrate from 0 to 𝑡, using simple substitution on the right, we get 

𝑒׬ ఓ
೟

బ 𝑊ሺ𝑡ሻ ൌ ׬ 𝑔ሺ𝑥ሻ𝑑𝑥 െ ׬ 𝑔ሺ𝑥 െ 𝑇ሻ𝑑𝑥 ൌ ׬ 𝑔 െ ׬ 𝑔 ൌ ׬ 𝑔 െ ׬ 𝑔 ൌ ׬ 𝑔
௧

௧ି்
଴

ି்
௧

௧ି்
 

௧ି்
ି்

௧
଴

௧
଴

௧
଴

 

 𝑊ሺ𝑡ሻ ൌ 𝑒ି ׬ ఓ
೟

బ ׬ 𝑒׬ ఓ
ೣ

బ 𝐸ሺ𝑥ሻ𝑑𝑥
௧

௧ି்
ൌ ׬ 𝑒ି ׬ ఓ

೟
ೣ 𝐸ሺ𝑥ሻ𝑑𝑥

௧
௧ି்

   (2.2) 

and, since 𝐸 ൐ 0  on ሺ0, 𝑢ሻ , 𝑊ሺ𝑢ሻ ൐ 0 . Therefore, ሺ𝑉ሺ𝑢ሻ, 𝑊ሺ𝑢ሻሻ ∈ Σ° , a contradiction, so 
ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ ∈ Σ° for all 𝑡 ൐ 0. 

(ii) Next, we construct a special sequence of times, 0 ൌ 𝑡଴ ൏ 𝑡ଵ ൏ ⋯ ൏ 𝑡௡ ൏ ⋯ which increases 
without bound. Assuming we have determined 𝑡௡, if 𝑉ሺ𝑡௡ሻ ൑ 𝑉ሺ𝑡ሻ for 𝑡 ∈ ሾ𝑡௡, 𝑡௡ ൅ 𝑇ሿ, take 𝑡௡ାଵ ൌ 𝑡௡ ൅
𝑇 and, otherwise, let 𝑡௡ାଵ be any value in ሾ𝑡௡, 𝑡௡ ൅ 𝑇ሿ for which 𝑉ሺ𝑡ሻ attains its minimum on that closed 
interval. In either case 𝑡௡ାଵ െ 𝑡௡ ൑ 𝑇 and 𝑡௡ାଶ ൒ 𝑡௡ ൅ 𝑇 so, indeed, 𝑡௡ → ∞. We first wish to show by 
induction that for all 𝑛, 𝑉ሺ𝑡௡ሻ ൏ 𝑣଴ ൅ max ሼ𝛾,

ఊ

௣்
ሽ. Since 𝑉ሺ𝑡଴ሻ ൌ 𝑉ሺ0ሻ ൌ 𝑣଴, this is true for 𝑛 ൌ 0, so 

suppose it true for some 𝑛 ൒ 0. If 𝑡௡ାଵ was determined as a minimum for 𝑉ሺ𝑡ሻ on [𝑡௡,  𝑡௡ ൅  𝑇ሿ, then 
𝑉ሺ𝑡௡ାଵሻ ൏ 𝑉ሺ𝑡௡ሻ, so the statement is true for 𝑛 ൅ 1. Otherwise, 𝑡௡ାଵ ൌ 𝑡௡ ൅ 𝑇 and 𝑡௡ is a minimum for 
𝑉ሺ𝑡ሻ on [𝑡௡, 𝑡௡ ൅ 𝑇ሿ. The following inequalities are consequences of (2.1a) and (2.2) and the facts that 
𝑊ሺ𝑡ሻ ൏ 1 and 𝜇ሺ𝑡ሻ ൏ 1 for all 𝑡. 

𝑉ᇱሺ𝑡ሻ ൑ െ𝑝𝑉ሺ𝑡ሻ ൅ 𝑙 ൅ 𝑏𝐸ሺ𝑡 െ 𝑇ሻ    (2.3) 

1 ൐ 𝑊ሺ𝑡ሻ ൒ 𝑒ି் ׬ 𝐸
௧

௧ି்
;  𝑒் ൐ ׬ 𝐸

௧
௧ି்

ൌ ׬ 𝐸ሺ𝑥 െ 𝑇ሻ𝑑𝑥
௧ା்

௧
   (2.4) 

Integrating (2.3) from 𝑡௡ to 𝑡௡ାଵ and using (2.4), we get 
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𝑉ሺ𝑡௡ ൅ 𝑇ሻ െ 𝑉ሺ𝑡௡ሻ ൑ െ𝑝 න 𝑉
௧೙ା்

௧೙

൅ න 𝑙 ൅
௧೙ା்

௧೙

𝑏 න 𝐸ሺ𝑥 െ 𝑇ሻ𝑑𝑥
௧೙ା்

௧೙

 

൑ െ𝑝 ׬ 𝑉ሺ𝑡௡ሻ௧೙ା்
௧೙

൅ 𝑙𝑇 ൅ 𝑏𝑒். 

𝑉ሺ𝑡௡ାଵሻ ൑ ሺ1 െ 𝑝𝑇ሻ𝑉ሺ𝑡௡ሻ ൅ 𝛾 

If 𝑝𝑇 ൒ 1 , 𝑉ሺ𝑡௡ାଵሻ ൑ 𝛾 , and the statement is true for 𝑛 ൅ 1 . If 𝑝𝑇 ൏ 1 , then, 𝛾 ൏
ఊ

௣்
, and by the 

induction assumption, 

𝑉ሺ𝑡௡ାଵሻ ൑ ሺ1 െ 𝑝𝑇ሻ ൬𝑣଴ ൅
𝛾

𝑝𝑇
൰ ൅ 𝛾 ൌ ሺ1 െ 𝑝𝑇ሻ𝑣଴ ൅ ሺ1 െ 𝑝𝑇ሻ

𝛾
𝑝𝑇

൅ 𝛾 ൏ 𝑣଴ ൅
𝛾

𝑝𝑇
 

and, again, the statement is true. Now any positive 𝑡 ∈ [𝑡௡,  𝑡௡ାଵ] for some 𝑛 ൒ 0. Since 𝑡௡ାଵ െ 𝑡௡ ൑ 𝑇, 
weakening (2.3) above to 𝑉ᇱሺ𝑡ሻ ൑ 𝑙 ൅ 𝑏𝐸ሺ𝑡 െ 𝑇ሻ, integrating from 𝑡௡ to 𝑡, and then using (2.4), we get 

𝑉ሺ𝑡ሻ െ 𝑉ሺ𝑡௡ሻ ൑ 𝑙ሺ𝑡 െ 𝑡௡ሻ ൅ 𝑏 න 𝐸ሺ𝑥 െ 𝑇ሻ𝑑𝑥
௧

௧೙

൏ 𝑙𝑇 ൅ 𝑏𝑒் ൌ 𝛾 

which finishes the proof of ii. 

(iii) First, we claim that for any positive 𝑡, there is an 𝑡଴ ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ such that 𝑊ሺ𝑡଴ሻ ൑
௣௩ೄ்

ଵା௣௩ೄ்
. 

Suppose this were not true. Then, we would have for all 𝑥 ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ, 

𝑊ሺ𝑥ሻ ൐
௣௩ೄ்

ଵା௣௩ೄ்
;  1 െ 𝑊ሺ𝑥ሻ ൏

ଵ

ଵା௣௩ೄ்
 

so, by (2.2) and the fact that 𝑡 ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ, implying that 𝑊ሺ𝑡ሻ ൐ ௣௩ೄ்

ଵା௣௩ೄ்
, 

𝑝𝑣ௌ𝑇
1 ൅ 𝑝𝑣ௌ𝑇

൏ 𝑊ሺ𝑡ሻ ൏ න 𝐸
௧

௧ି்
൑ 𝑝𝑣ௌ න ሺ1 െ 𝑊ሻ ൏

𝑝𝑣ௌ𝑇
1 ൅ 𝑝𝑣ௌ𝑇

௧

௧ି்
 

a contradiction, so there is, indeed, an 𝑡଴ ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ such that 1 െ 𝑊ሺ𝑡଴ሻ ൒
ଵ

ଵା௣௩ೄ்
. Now, integrating the 

inequality 
ିௐᇲሺ௧ሻ

ଵିௐሺ௧ሻ
൒ െ𝑝𝜈ௌ, which follows from (2.1b) as in the proof of part i, this time from 𝑡଴ to 𝑡, and 

exponentiating, we have 

1 െ 𝑊ሺ𝑡ሻ
1 െ 𝑊ሺ𝑡଴ሻ

൒ 𝑒ି௣ఔೄሺ௧ି௧బሻ ൒ 𝑒ି௣ఔೄ் 

1 െ 𝑊ሺ𝑡ሻ ൒ ሺ1 െ 𝑊ሺ𝑡଴ሻሻ𝑒ି௣ఔೄ் ൒
௘ష೛ೡೄ೅

ଵା௣௩ೄ்
;   𝑊ሺ𝑡ሻ ൑ 1 െ

௘ష೛ೡೄ೅

ଵା௣௩ೄ்
 

Proposition 2.1 places 𝑉 and 𝑊 and, because they satisfy Eqs (2.1), their derivatives as well, in the real 
algebra of bounded C1 functions, so they are all Lipschitz. (A function 𝑓 is Lipschitz if there is an 𝑀 ൐ 0 
such that for all 𝑡, 𝑢 in its domain |𝑓ሺ𝑡ሻ െ 𝑓ሺ𝑢ሻ| ൑ 𝑀|𝑡 െ 𝑢|). 

3. Ultimate behavior of the solution 

Let 𝜏  be so large that for 𝑡 ൒ 𝜏 െ 𝑇 , 𝜇ሺ𝑡ሻ ≡ 𝑚 , 𝜂ሺ𝑡ሻ ≡ ℎ , and 𝜅ሺ𝑡ሻ ≡ 𝑘 , making the system 
autonomous with constant coefficients. We also assume that 𝜏 ൐ 2𝑇 to guarantee that 𝑉 and 𝑊 are of 
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class C2 for 𝑡 ൒ 𝜏. It will be convenient to define 𝑎 ൌ 𝑝 ൅ 𝑘 ൐ 0, and 𝑐 ൌ 𝑝𝑏𝑒ି௠் െ ℎ. Also, let 𝐹ሺ𝑡ሻ ൌ

𝑒ି௠்ሺ𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻሻ, 𝑞 ൌ
௣ሺଵି௘ష೘೅ሻ

௠
 for 𝑚 ൐ 0, and 𝑞 ൌ 𝑝𝑇 if 𝑚 ൌ 0. (Interestingly, lim

௠→଴

ଵି௘ష೘೅

௠
ൌ

𝑇, by L’Hôspital’s Rule and, as a function of 𝑚, 𝑞 is decreasing, so 𝑞 ൑ 𝑝𝑇). Let 𝐽ሺ𝑡ሻ ൌ 𝑞𝑉ሺ𝑡ሻሺ1 െ
𝑊ሺ𝑡ሻሻ െ 𝑊ሺ𝑡ሻ. Then, for 𝑡 ൒ 𝜏, the system becomes 

𝑉ᇱሺ𝑡ሻ ൌ െ
ℎ
𝑝

𝐸ሺ𝑡ሻ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ ൅ 𝑏𝑒ି௠்𝐸ሺ𝑡 െ 𝑇ሻ

ൌ 𝑐𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝑒ି௠்ሺ𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻሻ
ൌ 𝑐𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ
ൌ ሺ𝑐 ൅ 𝑙𝑞ሻ𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙ሺ𝑊ሺ𝑡ሻ െ 𝑞𝑉ሺ𝑡ሻሺ1 െ 𝑊ሺ𝑡ሻሻሻ െ 𝑏𝐹ሺ𝑡ሻ 

ൌ 𝑉ሺ𝑡ሻሺ𝑐 ൅ 𝑙𝑞 െ 𝑎 െ ሺ𝑐 ൅ 𝑙𝑞ሻ𝑊ሺ𝑡ሻሻ െ 𝑙𝐽ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ    (3.1a) 

𝑊ᇱሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ െ 𝑚𝑊ሺ𝑡ሻ െ 𝑒ି௠்𝐸ሺ𝑡 െ 𝑇ሻ 

ൌ ሺ1 െ 𝑒ି௠்ሻ𝐸ሺ𝑡ሻ െ 𝑚𝑊ሺ𝑡ሻ ൅ 𝐹ሺ𝑡ሻ 

ൌ 𝑚ሺ𝑞𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑊ሺ𝑡ሻሻ ൅ 𝐹ሺ𝑡ሻ ൌ 𝑚𝐽ሺ𝑡ሻ ൅ 𝐹ሺ𝑡ሻ   (3.1b) 

Although the last form of (3.1b) was derived with the case 𝑚 ൐ 0 in mind, it remains valid for 𝑚 ൌ 0, 
in which case 𝑊ᇱሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻ ൌ 𝐹ሺ𝑡ሻ. The purpose of the term 𝐽 ൌ 𝑞𝑉ሺ1 െ 𝑊ሻ െ 𝑊 in the 
final forms of defining Eqs (3.1) will become apparent shortly. We can also rewrite (2.2) as 

 𝑊ሺ𝑡ሻ ൌ ׬ 𝑒ି௠ሺ௧ି௫ሻ𝐸ሺ𝑥ሻ𝑑𝑥 ൌ 𝑝
௧

௧ି் ׬ 𝑒ି௠ሺ௧ି௫ሻ𝑉ሺ𝑥ሻ௧
௧ି்

ሺ1 െ 𝑊ሺ𝑥ሻሻ𝑑𝑥  (3.2) 

By a fixed point, ሺ𝑣∗, 𝑤∗ሻ, of the system, we mean a constant solution 𝑉ሺ𝑡ሻ ≡ 𝑣∗, 𝑊ሺ𝑡ሻ ≡ 𝑤∗ to 
Eqs (3.1) on ሺെ𝑇, ∞ሻ. We are interested in them because any point in Σ to which ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ might 
converge must be a fixed point. 
Proposition 3.1: Fixed points for the system include ሺ0, 0ሻ and, if and only if 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, ሺ𝑣∗,  𝑤∗ሻ ൌ
ሺ

௖ା௟௤ି௔

௤௔
,

௖ା௟௤ି௔

௖ା௟௤
). 

Proof: By the third form of (3.1a), the last form of (3.1b) for 𝑚 ൐ 0, and (3.2) for 𝑚 ൌ 0, ሺ𝑣, 𝑤ሻ ∈ Σ is a 
fixed point of the autonomous system if and only if 

𝑣ሺ𝑐ሺ1 െ 𝑤ሻ െ 𝑎ሻ ൅ 𝑙𝑤 ൌ 0 

𝑞𝑣ሺ1 െ 𝑤ሻ െ 𝑤 ൌ 0   if 𝑚 ൐ 0 

𝑤 ൌ 𝑝𝑇𝑣ሺ1 െ 𝑤ሻ ൌ 𝑞𝑣ሺ1 െ 𝑤ሻ  if 𝑚 ൌ 0 

But the second and third equations are identical, making 𝑚 moot. Now, ሺ0, 0ሻ is always a fixed point 
and, if either 𝑣 or 𝑤 is zero, the other is as well by the second equation. Suppose there is another (nonzero) 
fixed point ሺ𝑣∗,  𝑤∗ሻ ∈ Σ. Then by the first, respectively second, equation, 

𝑐ሺ1 െ 𝑤∗ሻ ൅ 𝑙
௪∗

௩∗ ൌ 𝑎;  𝑐 െ 𝑎 ൌ
௪∗

௩∗ ሺ𝑐𝑣∗ െ 𝑙ሻ    (3.3a) 

௪∗

௩∗ ൌ 𝑞ሺ1 െ 𝑤∗ሻ       (3.3b) 

Substituting (3.3b) into the first form of (3.3a), we get ሺ𝑐 ൅ 𝑙𝑞ሻሺ1 െ 𝑤∗ሻ ൌ 𝑎 so, since 𝑤∗ ൐ 0, a 
second fixed point exists if and only if 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 and, in that case, 
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 1 െ 𝑤∗ ൌ ௔

௖ା௟௤
;  𝑤∗ ൌ 1 െ ௔

௖ା௟௤
ൌ ௖ା௟௤ି௔

௖ା௟௤
   (3.3c) 

 𝑣∗ ൌ
௪∗

௤ሺଵି௪∗ሻ
ൌ

௖ା௟௤ି௔

௤௔
; 𝑞𝑣∗ ൅ 1 ൌ

௖ା௟௤ି௔

௔
൅

௔

௔
ൌ

௖ା௟௤

௔
ൌ

ଵ

ଵି௪∗  (3.3d) 

From now on, whenever 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, ሺ𝑣∗, 𝑤∗ሻ will denote the nonzero fixed point given by this proposition. 
Lemma 3.2: There are positive constants 𝑑ଵ and 𝑑ଶ such that for all 𝑡 ൒ 𝜏, 

𝑑ଵሺ𝑉ሺ𝑡ሻሻଶ ൑ 𝑊ሺ𝑡ሻ ൑ 𝑑ଶ𝑉ሺ𝑡ሻ 

Proof: By the first form of (3.1a), and the fact that 𝑊 ൑ 1, 𝑉ᇱሺ𝑡ሻ ൒ െሺℎ ൅ 𝑎ሻ𝑉ሺ𝑡ሻ. For 𝑥 ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ, 
integrating from 𝑥 to 𝑡 and exponentiating, we get 

௏ሺ௧ሻ

௏ሺ௫ሻ
൒ 𝑒ିሺ௛ା௔ሻሺ௧ି௫ሻ ൒ 𝑒ିሺ௛ା௔ሻ்;  𝑉ሺ𝑥ሻ ൑ 𝑒ሺ௛ା௔ሻ்𝑉ሺ𝑡ሻ 

Therefore, by (3.2), we have 

𝑊ሺ𝑡ሻ ൑ 𝑝 න 𝑉
௧

௧ି்
൑ 𝑝𝑇𝑒ሺ௛ା௔ሻ்𝑉ሺ𝑡ሻ 

so we can take 𝑑ଶ ൌ 𝑝𝑇𝑒ሺ௛ା௔ሻ். To prove the left-hand inequality, let 𝑑 be the larger of 
௩ೄ

்
 and a Lipschitz 

constant for 𝑉, and observe that for all 𝑡 ൒ 𝜏, the line passing through ሺ𝑡, 𝑉ሺ𝑡ሻሻ with slope 𝑑 must cross 

the 𝑡-axis at some 𝑢 ൒ 𝑡 െ ௏ሺ௧ሻ

௩ೄ
𝑇 and also lie below the plot of the function 𝑉 on ሾ𝑡 െ 𝑇, 𝑡ሿ. Therefore, 

׬ 𝑉
௧

௧ି்
 exceeds the area of the triangle with height 𝑉ሺ𝑡ሻ and base 

௏ሺ௧ሻ

ௗ
, i.e., 

ሺ௏ሺ௧ሻሻమ

ଶௗ
. Again, employing (3.2) 

along with Proposition 2.1iii, we have 

𝑊ሺ𝑡ሻ ൒ 𝑝𝑒ି௠் න 𝑉
௧

௧ି்
ሺ1 െ 𝑊ሻ ൒

𝑝𝑒ିሺ௠ା௣௩ೄሻ்

1 ൅ 𝑝𝑣ௌ𝑇
න 𝑉

௧

௧ି்
൒

𝑝𝑒ିሺ௠ା௣௩ೄሻ்

2𝑑ሺ1 ൅ 𝑝𝑣ௌ𝑇ሻ
ሺ𝑉ሺ𝑡ሻሻଶ 

Definition 3.3: A method we shall use several times in the proofs of this section is the exploitation of a 
different kind of bound on integrable functions defined on [𝜏, ∞ሻ. We shall say such a function, 𝑓, is 

integrally bounded if there is a 𝐶௙ ൐ 0 such that ቚ׬ 𝑓
௧

௨ ቚ ൑ 𝐶௙ for all 𝜏 ൑ 𝑢 ൏ 𝑡 and, in that case, we write 

𝑓 ~ 0, a definition relevant only for this paper. For example, 𝑓ሺ𝑡ሻ ൌ sin 𝑡  ~ 0 and its terminal behavior 

is cyclic, while 𝑓ሺ𝑡ሻ ൌ
ଵ

௧
 even converges to zero, but is not integrally bounded. It is straightforward to 

demonstrate that if 𝑓 ~ 0 and 𝑔 ~ 0, then 𝛼𝑓 ൅ 𝛽𝑔 ~ 0 for any 𝛼, 𝛽 ∈ ℝ. Even further, if 𝑓 ~ 0 and 𝑔 is 

any bounded function, then 𝑔𝑓 ~ 0, and if 𝑔 is bounded away from zero, then 
௙

௚
 ~ 0. The derivative of 

any bounded function is integrally bounded, as we have ׬ 𝑓ᇱ௧
௨

ൌ 𝑓ሺ𝑡ሻ െ 𝑓ሺ𝑢ሻ. We shall also say that 𝑓 ~ 𝑔 

if 𝑓 െ 𝑔 ~ 0, so that if 𝑓 ~ 𝑔 and 𝑔 ~ ℎ, then 𝑓 ~ ℎ. 
Lemma 3.4: If 𝑓: ሾ𝜏, ∞ሻ → ℝ  is bounded, then 𝑓ሺ𝑡ሻ ~ 𝑓ሺ𝑡 െ 𝑇ሻ . In particular, 𝐹ሺ𝑡ሻ ൌ 𝑒ି௠்ሺ𝐸ሺ𝑡ሻ െ
𝐸ሺ𝑡 െ 𝑇ሻ ሻ ~ 0. 
Proof: For any 𝜏 ൑ 𝑢 ൏ 𝑡, we have 

ቤන ൫𝑓ሺ𝑥ሻ െ 𝑓ሺ𝑥 െ 𝑇ሻ൯𝑑𝑥
௧

௨
ቤ ൌ ቤන 𝑓 െ න 𝑓

௧ି்

௨ି௧

௧

௨
ቤ ൌ ቤන 𝑓 െ න 𝑓

௨

௨ି்

௧

௧ି்
ቤ ൑ 2𝑇sup |𝑓| 
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Lemma 3.5: (Barbãlat’s Lemma): Let 𝑡଴ ൒ 𝜏 , 𝑔: ሾ𝑡଴, ∞ሻ → ℝ  be differentiable with uniformly 
continuous derivative. Then, if lim

௧→ஶ
𝑔ሺ𝑡ሻ exists (and is finite), lim

௧→ஶ
𝑔ᇱሺ𝑡ሻ ൌ 0. 

Proof (included for completeness): Suppose 𝑔ᇱሺ𝑡ሻ does not converge to 0 as 𝑡 → ∞, so that there is an 
𝜖 ൐ 0 such that |𝑔ᇱሺ𝑡ሻ| ൒ 𝜖 for arbitrarily large values of 𝑡. Since 𝑔ᇱ is uniformly continuous, there is a 
𝛿 ൐ 0 such that |𝑔ᇱ| ൒

ఢ

ଶ
 on the interval ሾ𝑡, 𝑡 ൅ 𝛿ሿ for all such 𝑡 and, consequently, |𝑔ሺ𝑡ሻ െ 𝑔ሺ𝑡 ൅ 𝛿ሻ| ൒

ఢఋ

ଶ
, which precludes the convergence of 𝑔ሺ𝑡ሻ. 

The next corollary will be applied repeatedly to functions which are both integrally bounded and 
eventually do not change sign. It is the main reason for defining the equivalence ~. 
Corollary 3.6: Let 𝑡଴ ൒ 𝜏  and 𝑔: ሾ𝜏, ∞ሻ → ℝ  be Lipschitz and 𝑔~0 . Then either lim

௧→ஶ
𝑔ሺ𝑡ሻ ൌ 0  or 𝑔 

changes sign for arbitrarily large values of 𝑡. 
Proof: Suppose that 𝑡଴ ൒ 𝜏 is such that 𝑔 takes only nonnegative or nonpositive values on ሾ𝑡଴, ∞ሻ and let 

𝐺: ሾ𝑡଴, ∞ሻ → ℝ be defined by 𝐺ሺ𝑡ሻ ൌ ׬ 𝑔
௧

௧బ
. Then 𝐺  is monotone and, since 𝑔~0, it is bounded, so 𝐺 

converges. But, 𝐺ᇱሺ𝑡ሻ ൌ 𝑔ሺ𝑡ሻ and, since 𝑔 is Lipschitz, it is uniformly continuous. Lemma 3.5 applies. 
Lemma 3.7: Let 𝑓: ሾ𝜏, ∞ሻ → ℝ be continuous and bounded. Then, ׬ 𝑓

௫
௫ି்

 ~ 𝑇𝑓ሺ𝑥ሻ. 

Proof: This lemma states that the difference between 𝑓 and its rolling uniform mean over the prior 𝑇 time 

units is integrally bounded. Let 𝑡 െ 2𝑇 ൐ 𝑢 ൒ 𝜏 and consider ׬ ׬ 𝑓ሺ𝑦ሻ𝑑𝑦𝑑𝑥
௫

௫ି்
௧

௨
. It will be helpful to vis-

ualize the region in the ሺ𝑥, 𝑦ሻ-plane which corresponds to this iterated integral.  It is a parallelogram whose 
bases are the vertical line segments extending up from ሺ𝑢 െ 𝑇, 𝑢ሻ to ሺ𝑢, 𝑢ሻ and (𝑡 െ 𝑇, 𝑡ሻ to (𝑡, 𝑡ሻ and 
whose oblique sides are segments of the lines 𝑦 ൌ 𝑥 and 𝑦 ൌ 𝑥 െ 𝑇. If we lop off triangles on the top right 
and bottom left which have height and base 𝑇, we are left with another parallelogram bounded by the 
same oblique lines but with horizontal bases extending from ሺ𝑢, 𝑢ሻ to ሺ𝑢, 𝑢 ൅ 𝑇ሻ and ሺ𝑡 െ 𝑇, 𝑡 െ 𝑇ሻ to 
ሺ𝑡, 𝑡 െ 𝑇ሻ. The integral of 𝑓ሺ𝑦ሻ over those two small removed triangles is clearly bounded regardless of 
𝑢 and 𝑡 and the integral of 𝑓ሺ𝑦ሻ over the smaller parallelogram as an iterated integral is 

න න 𝑓ሺ𝑦ሻ
௬ା்

௬
𝑑𝑥𝑑𝑦

௧ି்

௨ା்
ൌ න 𝑇𝑓

௧ି்

௨ା்
ൌ න 𝑇𝑓

௧

௨
െ න 𝑇𝑓

௨

௨ା்
െ න 𝑇𝑓

௧

௧ି்
 

but the last two terms on the right are also bounded irrespective of 𝑢 and 𝑡. 
Remark 3.8: The last form of (3.1b) along with Definition 3.3 and Lemma 3.4 immediately yield for 𝑚 ൐ 0 

(i) 𝐽 ~ 0      

But, if 𝑚 ൌ 0 , by (3.2) and Lemma 3.7, 𝑊 ൌ 𝑝 ׬ 𝑉
௧

௧ି்
ሺ1 െ 𝑊ሻ ~ 𝑝𝑇𝑉ሺ1 െ 𝑊ሻ ൌ 𝑞𝑉ሺ1 െ 𝑊ሻ , so i 

remains valid. Applying it and Lemma 3.4 to the last form of (3.1a), we get 
(ii) 𝑉ሺ𝑐 ൅ 𝑙𝑞 െ 𝑎 െ ሺ𝑐 ൅ 𝑙𝑞ሻ𝑊ሻ ~ 0 

Definition 3.9: When 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, define, for all 𝑡 ൒ 𝜏, 𝐴ሺ𝑡ሻ ൌ 𝑉ሺ𝑡ሻሺ𝑤∗ െ 𝑊ሺ𝑡ሻሻ, 𝐵ሺ𝑡ሻ ൌ 𝑊ሺ𝑡ሻሺ𝑣∗ െ

𝑉ሺ𝑡ሻሻ, and 𝐷ሺ𝑡ሻ ൌ
௪∗

௩∗ 𝑉ሺ𝑡ሻ െ 𝑊ሺ𝑡ሻ. Notice that 𝐴 െ 𝐵 ൌ 𝑣∗𝐷. 

Lemma 3.10: If 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, then  
(i) 𝐴~0 and 𝐵~0 

(ii) 𝑉ᇱሺ𝑡ሻ ൌ
ଵ

௩∗ ሺሺ𝑐𝑣∗ െ 𝑙ሻ𝐴 ൅ 𝑙𝐵ሻ െ 𝑏𝐹ሺ𝑡ሻ 

Proof: (i) Remark 3.8ii and the second form of (3.3c) tell us that 𝐴~0. By Remark 3.8i and (3.3b), we have 

0 ~ 𝐽 ൌ 𝑞𝑉ሺ𝑤∗ െ 𝑊 ൅ 1 െ 𝑤∗ሻ െ 𝑊 ൌ 𝑞𝐴 ൅ 𝑞ሺ1 െ 𝑤∗ሻ𝑉 െ 𝑊 ൌ 𝑞𝐴 ൅ 𝐷 
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so 𝐷~0. But 𝐵 ൌ 𝐴 െ 𝑣∗𝐷, so 𝐵~0. 
(ii) We have, by the second form of (3.1a), and the first form of (3.3a), 

𝑉ᇱሺ𝑡ሻ ൌ 𝑐𝑉ሺ𝑡ሻሺ𝑤∗ െ 𝑊ሺ𝑡ሻ ൅ 1 െ 𝑤∗ሻ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ
ൌ 𝑐𝐴ሺ𝑡ሻ ൅ ሺ𝑐ሺ1 െ 𝑤∗ሻ െ 𝑎ሻ𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ

ൌ 𝑐𝐴ሺ𝑡ሻ െ 𝑙
𝑤∗

𝑣∗ 𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ

ൌ 𝑐𝐴ሺ𝑡ሻ ൅ 𝑙ሺ𝑊ሺ𝑡ሻ െ
𝑤∗

𝑣∗ 𝑉ሺ𝑡ሻሻ െ 𝑏𝐹ሺ𝑡ሻ ൌ 𝑐𝐴ሺ𝑡ሻ െ 𝑙𝐷ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ 

But, we also have 

ሺ𝑐𝑣∗ െ 𝑙ሻ𝐴 ൅ 𝑙𝐵 ൌ 𝑐𝑣∗𝐴 െ 𝑙ሺ𝐴 െ 𝐵ሻ ൌ 𝑐𝑣∗𝐴 െ 𝑙𝑣∗𝐷 

completing the proof. 
We are now in a position to exhibit a criterion for the persistence versus eventual extinction of 

the virus. 
Theorem 3.11: (i) If 𝑐 ൅ 𝑙𝑞 ൑ 𝑎, then ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ → ሺ0,0ሻ as 𝑡 → ∞. 

(ii) If 𝑐 ൅ 𝑙𝑞 ൐ 𝑎  and 𝑐 ൒ 𝑎  (either 𝑐 ൐ 𝑎  or 𝑐 ൌ 𝑎  and 𝑙 ൐ 0ሻ, then 𝑉ሺ𝑡ሻ and 𝑊ሺ𝑡ሻ are bounded 
above zero. 
Proof: (i) Suppose that 0 ൏ 𝑐 ൅ 𝑙𝑞 ൑ 𝑎. By the right-hand side of Lemma 3.2, it is adequate to show that 

𝑉ሺ𝑡ሻ → 0. By Remark 3.8ii, 𝑉ሺ
௖ା௟௤ି௔

௖ା௟௤
െ 𝑊ሻ ~ 0. If 𝑐 ൅ 𝑙𝑞 ൏ 𝑎, then 

௖ା௟௤ି௔

௖ା௟௤
െ 𝑊 is bounded below zero 

which, by Definition 3.3, implies that 𝑉~0 and, by Corollary 3.6, 𝑉ሺ𝑡ሻ → 0. If 𝑐 ൅ 𝑙𝑞 ൌ 𝑎, then 𝑉𝑊~0 
and, this time, 𝑉ሺ𝑡ሻ𝑊ሺ𝑡ሻ → 0. But by the left-hand side of Lemma 3.2, 𝑉ሺ𝑡ሻ𝑊ሺ𝑡ሻ ൒ 𝑑ଵሺ𝑉ሺ𝑡ሻሻଷ , so 
𝑉ሺ𝑡ሻ → 0. 

(ii) As with part i, it is adequate to show that 𝑊 is bounded above zero, so suppose it is not, and that 
there is an unbounded strictly increasing sequence of times, {𝑡௡ሽ, 𝑛 ൒ 1, with 𝑊ሺ𝑡௡ሻ → 0. Therefore, we 
can find a 𝑡଴ ൒ 𝜏 such that 𝑊ሺ𝑡଴ሻ ൑ minሼ𝑤∗, 𝑑ଵሺ𝑣∗ሻଶሽ and, by replacing {𝑡௡ሽ with a terminal subsequence if 
necessary, assume that 𝑡௡ ൐ 𝑡଴ and 𝑊ሺ𝑡௡ሻ ൏ 𝑒ି௠்𝑊ሺ𝑡଴ሻ for all 𝑛 ൒ 1. Now define a second sequence 
{𝑢௡ሽ, 𝑛 ൒ 1, by letting 𝑢௡ be the largest number less than 𝑡௡ such that 𝑊ሺ𝑢௡ሻ ൌ 𝑊ሺ𝑡଴ሻ. (It certainly may 
be the case that {𝑢௡ሽ is not strictly increasing and it could even have a maximal element.) Using (3.2), we 
derive the string of inequalities 

න 𝐸 ൑ 𝑒௠் න 𝑒ି௠ሺ௧೙ି௨ሻ𝐸ሺ𝑢ሻ𝑑𝑢 ൌ 𝑒௠்𝑊ሺ𝑡௡ሻ ൑ 𝑊ሺ𝑡଴ሻ ൌ 𝑊ሺ𝑢௡ሻ
௧೙

௧೙ି்

௧೙

௧೙ି்
 

ൌ න 𝑒ି௠ሺ௨೙ି௨ሻ𝐸ሺ𝑢ሻ𝑑𝑢
௨೙

௨೙ି்
൑ න 𝐸

௨೙

௨೙ି்
 

by which, looking back at the proof of Lemma 3.4, we can see that ׬ 𝐹 ൑ 0
௧೙

௨೙
. Now, by the definition of 

𝑢௡, on the interval [𝑢௡, 𝑡௡], 𝑊 ൑ 𝑤∗ and, by Lemma 3.3, 𝑑ଵ𝑉ଶ ൑ 𝑊 ൑ 𝑑ଵሺ𝑣∗ሻଶ, so 𝑉 ൑ 𝑣∗. Recall that 
Lemma 3.10ii states 

𝑉ᇱሺ𝑡ሻ ൌ ሺ𝑐 െ
𝑙

𝑣∗ሻ𝑉ሺ𝑡ሻሺ𝑤∗ െ 𝑊ሺ𝑡ሻሻ ൅
𝑙

𝑣∗ 𝑊ሺ𝑡ሻሺ𝑣∗ െ 𝑉ሺ𝑡ሻሻሻ െ 𝑏𝐹ሺ𝑡ሻ 

Integrating this equation from 𝑢௡ to 𝑡௡ gives us 
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𝑉ሺ𝑡௡ሻ െ 𝑉ሺ𝑢௡ሻ ൌ ሺ𝑐 െ
𝑙

𝑣∗ሻ න 𝑉ሺ𝑤∗ െ 𝑊ሻ
௧೙

௨೙

൅
𝑙

𝑣∗ න 𝑊ሺ𝑣∗ െ 𝑉ሻ
௧೙

௨೙

െ 𝑏 න 𝐹
௧೙

௨೙

 

Note that by our assumption that 𝑐 ൒ 𝑎 and the second form of (3.3a), 𝑐𝑣∗ െ 𝑙 ൒ 0. By our definition 
of {𝑢௡ሽ then, the right-hand side is nonnegative, so 𝑉ሺ𝑢௡ሻ ൑ 𝑉ሺ𝑡௡ሻ. But by Lemma 3.2, 𝑉ሺ𝑡௡ሻ → 0, so, 

𝑉ሺ𝑢௡ሻ → 0 and, by the same lemma, 
ௐሺ௧బሻ

ௗమ
ൌ ௐሺ௨೙ሻ

ௗమ
൑ 𝑉ሺ𝑢௡ሻ, a contradiction. 

This theorem nails down the gross behavior of 𝑉 and 𝑊 except in the case that 𝑐 ൏ 𝑎 ൏ 𝑐 ൅ 𝑙𝑞, 
which doesn’t happen if 𝑙 ൌ 0, i.e., there is no pre-lysis leakage. As per the definitions at the beginning 
of this section, 𝑐 െ 𝑎 ൌ 𝑝ሺ𝑏𝑒ି௠் െ 1ሻ െ ሺℎ ൅ 𝑘ሻ, which looks like net production minus destruction of 
virus, but discounting the contribution of leakage. Curiously, our proof of the theorem relies on its 
nonnegativity, not just the positivity of 𝑐 ൅ 𝑙𝑞 െ 𝑎. 
Corollary 3.12: Suppose 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 and 𝑐 ൒ 𝑎. Then 

(i) 𝑤∗ െ 𝑊 ~ 0 and 𝑣∗ െ 𝑉 ~ 0. 
(ii) If 𝑣∗ െ 𝑉, respectively 𝑤∗ െ 𝑊, does not change sign at arbitrarily large values of 𝑡, then 𝑉ሺ𝑡ሻ →

𝑣∗, respectively 𝑊ሺ𝑡ሻ → 𝑤∗. 
Proof: (i) We already know, by Lemma 3.10i, that 𝑉ሺ𝑤∗ െ 𝑊ሻ ~ 0 and 𝑊ሺ𝑣∗ െ 𝑉ሻ ~ 0, but by the 
theorem, 𝑉 and 𝑊 are bounded above zero, and the result follows from Definition 3.3. 

(ii) This follows from part i and Corollary 3.6. 
Part ii of the corollary says that if a trajectory does not converge, then 𝑉ሺ𝑡ሻ passes back and forth 

through 𝑣∗ or 𝑊ሺ𝑡ሻ through 𝑤∗ forever. This means that a trajectory can only converge, converge in one 
coordinate and oscillate in the other, or oscillate in both, the last of which by no means proves, but does 
suggest, that the trajectory circles ሺ𝑣∗, 𝑤∗ሻ. Corollary 3.15 will narrow these options a bit. 

Next, we will investigate further the long-term convergence-type behavior of 𝑉 and 𝑊. We shall be 
looking at their behavior on (long) intervals of the form 𝐼 ൌ ሾ𝑢଴, 𝑡଴ሿ where 𝜏 ൑ 𝑢଴. We’ll be manipulating 
rational functions of 𝑉ሺ𝑡ሻ, 𝑉ሺ𝑡 െ 𝑇ሻ, 𝑊ሺ𝑡ሻ, 𝑊ሺ𝑡 െ 𝑇ሻ with denominators bounded away from zero, all of 
which are bounded Lipschitz functions with bounded Lipschitz derivatives. 
Lemma 3.13: Let 𝜖 ൐ 0 be given and suppose that for some 𝐶 ൌ 𝐶ሺ𝜖ሻ ൐ 0, 𝑓: 𝐼 ൌ ሾ𝑢0, 𝑡0ሿ  → ℝ satisfies 
|𝑓ሺ𝑡଴ሻ| ൏ 𝜖 and 𝑓ᇱሺ𝑡ሻ ൌ െ𝐶ሺ𝑓ሺ𝑡ሻ െ 𝜀ሺ𝑡ሻሻ on 𝐼, where |𝜀ሺ𝑡ሻ| ൏ 𝜖. Then |𝑓ሺ𝑡ሻ| ൏ 𝜖 on 𝐼. 
Proof: Suppose, to the contrary, that 𝑓ሺ𝑡ሻ ൌ 𝜖 for some 𝑡 ∈ 𝐼, where 𝑡 is as small as possible. Then 𝑡 ് 𝑢଴ 
and, since 𝑓 ൏ 𝜖 on the interval [𝑢଴, 𝑡), it must be the case that 𝑓ᇱሺ𝑡ሻ ൒ 0. However, this is contradicted by 

𝑓ᇱሺ𝑡ሻ ൌ െ𝐶൫𝑓ሺ𝑡ሻ െ 𝜀ሺ𝑡ሻ൯ ൌ െ𝐶ሺ𝜖 െ 𝜀ሺ𝑡ሻሻ ൏ 0 

Similarly, 𝑓ሺ𝑡ሻ ൐ െ𝜖 for 𝑡 ∈ 𝐼. 
Theorem 3.14: If 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, 𝑐 ൒ 𝑎, and there are arbitrarily long intervals on which 𝑤∗ െ 𝑊 doesn’t 
change sign, then there are arbitrarily long intervals on which ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ is arbitrarily close to ሺ𝑣∗, 𝑤∗ሻ. 
Proof: First, we claim that there are arbitrarily long intervals on which 𝑊ሺ𝑡ሻ is arbitrarily close to 𝑤∗ and 
𝑊′ሺ𝑡ሻ is arbitrarily close to zero as well. Assume that there are arbitrarily long intervals on which 𝑊 ൒
𝑤∗. The proof is similar for 𝑊 ൑ 𝑤∗ and one or the other must be true for infinitely many such intervals. 
Let 𝜖 ൐ 0 be given, let 𝑀 be a Lipschitz constant for 𝑊, and let Λ be the length of an interval on which 
we wish to establish that 𝑊 െ 𝑤∗ ൏ 𝜖. Generality is not lost if we assume that Λ ൒ ఢ

ெ
, so consider such 

an interval, 𝐼. Reasoning as in the proof of Lemma 3.2, for any 𝑡 ∈ 𝐼, if 𝑊ሺ𝑡ሻ െ 𝑤∗ ൌ 𝜖, then the right 
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triangle with height 𝜖 and base either [𝑡, 𝑡 ൅
ఢ

ெ
] or [𝑡 െ

ఢ

ெ
, 𝑡], whose area is 

ఢమ

ଶெ
 lies beneath the plot of 

𝑊ሺ𝑡ሻ െ 𝑤∗. Now, by Corollary 3.12i, there is a 𝐶 ൐ 0 such that ቚ׬ ሺ𝑊 െ 𝑤∗௧
௨

ሻቚ ൑ 𝐶 for all 𝜏 ൑ 𝑢 ൏ 𝑡. Let 

the integer 𝑛 be so large that 
௡ఢమ

ଶெ
൐ 𝐶 and let 𝜏 ൑ 𝑢଴ ൏ 𝑡଴ such that 𝑊ሺ𝑡ሻ െ 𝑤∗ ൒ 0 on [𝑢଴, 𝑡଴] and 𝑡଴ െ

𝑢଴ ൌ 𝑛Λ. Suppose that 𝑊ሺ𝑡ሻ െ 𝑤∗ took the value 𝜖 on all of the subintervals [𝑢଴ ൅ 𝑗Λ, 𝑢଴ ൅ ሺ𝑗 ൅ 1ሻΛ], 
𝑗 ൌ 0, … , 𝑛 െ 1. Then we would have the contradiction 

𝑛𝜖ଶ

2𝑀
൑ ෍ න ሺ𝑊 െ 𝑤∗ሻ ൌ න ሺ𝑊 െ 𝑤∗

௧బ

௨బ

ሻ ൑ 𝐶
௨బାሺ௝ାଵሻஃ

௨బା௝ஃ

௡ିଵ

௝ୀ଴
 

so, it must be the case that 𝑊ሺ𝑡ሻ െ 𝑤∗ ൏ 𝜖 on at least one of these subintervals of length Λ. 
Now, let 𝜖 ൐ 0 be given and 𝑀 be a Lipschitz constant for 𝑊′. By what has been done above, we can 

find an interval 𝐼 of length at least 
ఢ

ெ
 and arbitrarily large on which |𝑤∗ െ 𝑊| ൏ minሼ𝜖, ఢమ

଼ெ
ሽ, immediately 

implying that |𝑊ሺ𝑡ሻ െ 𝑊ሺ𝑢ሻ| ൏
ఢమ

ସெ
 for any 𝑡, 𝑢 ∈ 𝐼. Suppose first that 𝑊′ሺ𝑡ሻ ൒ 𝜖 for some 𝑡 ∈ 𝐼, Then 

at least one of 𝑡 േ
ఢ

ଶெ
∈ 𝐼, say 𝑡 ൅

ఢ

ଶெ
∈ 𝐼. By the definition of 𝑀, 𝑊′ ൒

ఢ

ଶ
 on [𝑡, 𝑡 ൅

ఢ

ଶெ
ሿ, so 𝑊ሺ𝑡 ൅

ఢ

ଶெ
ሻ െ

𝑊ሺ𝑡ሻ ൒ ఢమ

ସெ
, a contradiction. Of course, the reasoning is analogous for 𝑊ᇱሺ𝑡ሻ ൑ െ𝜖 and/or 𝑡 െ ఢ

ଶெ
∈ 𝐼. 

The proof of this claim is reminiscent of that of Lemma 3.5 (Barbãlat’s Lemma). Now, we attend to the 
rest of the theorem. 

First, we consider the case 𝑚 ൐ 0 and let 𝜖 ൐ 0 and Λ ൐ 0 be given. Let the integer 𝑛 be so large 
that 𝑒ି௡௠்𝑣∗ ൏ 𝜖. The first form of (3.1b) can be written 

𝑉ሺ𝑡ሻ െ 𝑒ି௠்𝑉ሺ𝑡 െ 𝑇ሻ
1 െ 𝑊ሺ𝑡 െ 𝑇ሻ

1 െ 𝑊ሺ𝑡ሻ
ൌ

𝑊ᇱሺ𝑡ሻ ൅ 𝑚𝑊ሺ𝑡ሻ

𝑝൫1 െ 𝑊ሺ𝑡ሻ൯
 

Now, by the first form of (3.3d) and the definition of 𝑞, 
௠௪∗

௣ሺଵି௪∗ሻ
ൌ ሺ1 െ 𝑒ି௠்ሻ𝑣∗ and 

1 െ 𝑊ሺ𝑡 െ 𝑇ሻ
1 െ 𝑊ሺ𝑡ሻ

െ 1 ൌ
1 െ 𝑊ሺ𝑡 െ 𝑇ሻ െ 1 ൅ 𝑊ሺ𝑡ሻ

1 െ 𝑊ሺ𝑡ሻ
ൌ

𝑊ሺ𝑡ሻ െ 𝑊ሺ𝑡 െ 𝑇ሻ
1 െ 𝑊ሺ𝑡ሻ

ൌ
ሺ𝑊ሺ𝑡ሻ െ 𝑤∗ሻ ൅ ሺ𝑤∗ െ 𝑊ሺ𝑡 െ 𝑇ሻሻ

1 െ 𝑊ሺ𝑡ሻ
 

𝑊ᇱሺ𝑡ሻ ൅ 𝑚𝑊ሺ𝑡ሻ

𝑝൫1 െ 𝑊ሺ𝑡ሻ൯
െ

𝑚𝑤∗

𝑝ሺ1 െ 𝑤∗ሻ
ൌ

ሺ1 െ 𝑤∗ሻሺ𝑊ᇱሺ𝑡ሻ ൅ 𝑚𝑊ሺ𝑡ሻሻ െ ሺ1 െ 𝑊ሺ𝑡ሻሻ𝑚𝑤∗

𝑝൫1 െ 𝑊ሺ𝑡ሻ൯ሺ1 െ 𝑤∗ሻ

ൌ
ሺ1 െ 𝑤∗ሻ𝑊ᇱሺ𝑡ሻ ൅ 𝑚ሺ𝑊ሺ𝑡ሻ െ 𝑤∗ሻ

𝑝൫1 െ 𝑊ሺ𝑡ሻ൯ሺ1 െ 𝑤∗ሻ
 

Therefore, looking at the last terms of the two equations above, we see that there is a 𝐶 ൐ 0 which does 
not depend on 𝜖 such that if 𝐼 is an interval on which |𝑤∗ െ 𝑊ሺ𝑡ሻ| ൏ 𝜖, |𝑊ᇱሺ𝑡ሻ| ൏ 𝜖, and 𝑡 െ 𝑇, 𝑡 ∈ 𝐼, then 

𝑉ሺ𝑡ሻ െ 𝑒ି௠்𝑉ሺ𝑡 െ 𝑇ሻ ൌ ሺ1 െ 𝑒ି௠்ሻ𝑣∗ ൅ 𝜀ሺ𝑡ሻ 

where |𝜀ሺ𝑡ሻ| ൏ 𝐶𝜖. By what we have done above, there is, in fact, such an interval, 𝐼, of length Λ ൅ 𝑛𝑇. Let 𝑡 
be in the terminal subinterval of  𝐼 with length Λ. Then, we have a telescoping sum and simplifications 
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𝑉ሺ𝑡ሻ െ 𝑒ି௡௠்𝑉ሺ𝑡 െ 𝑛𝑇ሻ ൌ ෍ 𝑒ି௝௠்ሺ𝑉ሺ𝑡 െ 𝑗𝑇ሻ െ
௡ିଵ

௝ୀ଴
𝑒ି௠்𝑉ሺ𝑡 െ ሺ𝑗 ൅ 1ሻ𝑇ሻሻ 

ൌ ෍ 𝑒ି௝௠்
௡ିଵ

௝ୀ଴
ሺሺ1 െ 𝑒ି௠்ሻ𝑣∗ ൅ 𝜀ሺ𝑡 െ 𝑗𝑇ሻሻ 

ൌ ሺ1 െ 𝑒ି௡௠்ሻ𝑣∗ ൅ ෍ 𝑒ି௝௠்
௡ିଵ

௝ୀ଴
𝜀ሺ𝑡 െ 𝑗𝑇ሻ 

|𝑉ሺ𝑡ሻ െ 𝑣∗| ൑ 𝑒ି௡௠்𝑣∗ ൅ 𝐶𝜖 ෍ 𝑒ି௝௠்
௡ିଵ

௝ୀ଴
൏ 𝜖 ൅

𝐶𝜖
1 െ 𝑒ି௠் ൌ ሺ1 ൅

𝐶
1 െ 𝑒ି௠்ሻ𝜖 

Next suppose that 𝑚 ൌ 0, 𝜖 ൐ 0 and Λ ൐ 0 have been given, and let 𝐼 be an interval of length Λ on which 
|𝑤∗ െ 𝑊ሺ𝑡ሻ| ൏ 𝜖  and |𝑊ᇱሺ𝑡ሻ| ൏ 𝜖 . The first form of (3.1b) is 𝑊ᇱሺ𝑡ሻ ൌ 𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻ ൌ 𝐹ሺ𝑡ሻ , so 
|𝐹ሺ𝑡ሻ| ൏ 𝜖, as well. By (3.2), we have 

𝑊ሺ𝑡ሻ ൌ 𝑝 න 𝑉
௧

௧ି்
ሺ1 െ 𝑊ሻ ൌ 𝑝 න 𝑉

௧

௧ି்
ሺ1 െ 𝑤∗ ൅ 𝑤∗ െ 𝑊ሻ ൌ 𝑝ሺ1 െ 𝑤∗ሻ න 𝑉

௧

௧ି்
൅ 𝑝 න 𝐴

௧

௧ି்
 

ௐሺ௧ሻ

௣ሺଵି𝑤∗ሻ
െ ׬ 𝑉

௧
௧ି் ൌ

׬ ஺ሺ௧ሻ
೟

೟ష೅

ଵି𝑤∗ ;  
𝑤∗

௣ሺଵି𝑤∗ሻ
െ ׬ 𝑉

௧
௧ି் ൌ

׬ ஺ሺ௧ሻ೟
೟ష೅

ଵି𝑤∗ െ
ௐሺ௧ሻି𝑤∗

௣ሺଵି𝑤∗ሻ
 

By the first form of (3.3d), 𝑣∗𝑇 ൌ
𝑤∗

௣ሺଵି𝑤∗ሻ
 so, using the last equation, 

|𝑣∗𝑇 െ න 𝑉
𝑡

𝑡െ𝑇
| ൌ อ

׬ 𝐴ሺ𝑡ሻ𝑡

𝑡െ𝑇

1 െ 𝑤∗ െ
𝑊ሺ𝑡ሻ െ 𝑤∗

𝑝ሺ1 െ 𝑤∗ሻ
อ ൏ ሺ

𝑣𝑆𝑇

1 െ 𝑤∗ ൅
1

𝑝ሺ1 െ 𝑤∗ሻ
ሻ𝜖 

Now, suppose further that 𝑙 ൌ 0. By Lemma 3.10ii, 𝑉ᇱሺ𝑡ሻ ൌ 𝑐𝐴ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ, so that |𝑉ᇱሺ𝑡ሻ| ൏ ሺ𝑐𝑣𝑆 ൅ 𝑏ሻ𝜖. 
Therefore, for any 𝑡 െ 𝑇, 𝑡 ∈ 𝐼 , if 𝑥 ∈ ሾ𝑡 െ 𝑇, 𝑡ሿ, then |𝑉ሺ𝑡ሻ െ 𝑉ሺ𝑥ሻ| ൏ ሺ𝑐𝑣𝑆 ൅ 𝑏ሻ𝑇𝜖 . Integrating over 
ሾ𝑡 െ 𝑇, 𝑡ሿ and then using the last inequality just above, we have 

 |𝑇𝑉ሺ𝑡ሻ െ ׬ 𝑉| ൑ ׬ |𝑉ሺ𝑡ሻ െ 𝑉ሺ𝑥ሻ|𝑑𝑥 ൏
௧

௧ି்
௧

௧ି்
ሺ𝑐𝑣𝑆 ൅ 𝑏ሻ𝑇ଶ𝜖 

Then, by this inequality and the one just above, 

|𝑉ሺ𝑡ሻ െ 𝑣∗| ൏ ሺሺ𝑐𝑣𝑆 ൅ 𝑏ሻ𝑇 ൅
𝑣𝑆

1 െ 𝑤∗ ൅
1

𝑞ሺ1 െ 𝑤∗ሻ
ሻ𝜖 

Finally, suppose that 𝑚 ൌ 0 but 𝑙 ൐ 0, and 𝐼 is as above. By Lemma 3.10ii, 

ሺ𝑉ሺ𝑡ሻ െ 𝑣∗ሻᇱ ൌ 𝑉ᇱሺ𝑡ሻ ൌ ൬𝑐 െ
𝑙

𝑣∗൰ 𝐴ሺ𝑡ሻ ൅
𝑙

𝑣∗ 𝐵ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ 

𝐵ሺ𝑡ሻ ൌ 𝑊ሺ𝑡ሻ൫𝑣∗ െ 𝑉ሺ𝑡ሻ൯ ൌ 𝑤∗൫𝑣∗ െ 𝑉ሺ𝑡ሻ൯ ൅ ሺ𝑊ሺ𝑡ሻ െ 𝑤∗ሻሺ𝑣∗ െ 𝑉ሺ𝑡ሻሻ 

ൌ 𝑤∗൫𝑣∗ െ 𝑉ሺ𝑡ሻ൯ ൅ 𝜁ሺ𝑡ሻ 

where |𝜁ሺ𝑡ሻ| ൏ 𝑣ௌ𝜖, so 

ሺ𝑉ሺ𝑡ሻ െ 𝑣∗ሻᇱ ൌ
𝑙𝑤∗

𝑣∗ ൫𝑣∗ െ 𝑉ሺ𝑡ሻ൯ ൅
𝑙

𝑣∗ 𝜁ሺ𝑡ሻ ൅ ൬𝑐 െ
𝑙

𝑣∗൰ 𝐴ሺ𝑡ሻ െ 𝑏𝐹ሺ𝑡ሻ 

ሺ𝑉ሺ𝑡ሻ െ 𝑣∗ሻᇱ ൌ െ
𝑙𝑤∗

𝑣∗ ሺ𝑉ሺ𝑡ሻ െ 𝑣∗ሻ ൅ 𝜀ሺ𝑡ሻ 
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where |𝜀ሺ𝑡ሻ| ൏ 𝐶𝜖  for some 𝐶 ൐ 0. Now, we could have picked 𝐼  such that |𝑤∗ െ 𝑊ሺ𝑡ሻ| ൏
௟௪∗

𝑣∗𝐶
𝜖  and 

|𝑊ᇱሺ𝑡ሻ| ൏ ௟௪∗

𝑣∗𝐶
𝜖 on 𝐼, and would have deduced the last equation above except with |𝜀ሺ𝑡ሻ| ൏ 𝑙𝑤∗

𝑣∗ 𝜖. We now 

could apply Lemma 3.13 if we knew that |𝑉ሺ𝑢଴ሻ െ 𝑣∗| was sufficiently small, where 𝑢଴  was the left 
endpoint of 𝐼. But by Corollary 3.12i, for any 𝜖 ൐ 0, 𝑉ሺ𝑡ሻ cannot remain at least 𝜖 distant from 𝑣∗ on 𝐼 if 
𝐼 is long enough. Therefore, taking 𝐼 twice that long allows us to assume that |𝑉ሺ𝑡଴ሻ െ 𝑣∗| is small enough. 
Corollary 3.15: If 𝑐 ൅ 𝑙𝑞 ൐ 𝑎, 𝑐 ൒ 𝑎, and 𝑊 converges, then ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ → ሺ𝑣∗, 𝑤∗ሻ. 
Proof: By Corollary 3.12ii, if 𝑊 converges, then 𝑊ሺ𝑡ሻ → 𝑤∗. Then, by Lemma 3.5 𝑊ᇱሺ𝑡ሻ → 0. This 
allows us to find for any 𝜖 ൐ 0 an interval 𝐼 ൌ ሾ𝑢଴, ∞ሻ on which both |𝑤∗ െ 𝑊ሺ𝑡ሻ| ൏ 𝜖 and |𝑊ᇱሺ𝑡ሻ| ൏
𝜖. Using the reasoning in the proof of the theorem, we conclude that |𝑉ሺ𝑡ሻ െ 𝑣∗| ൏ 𝜖 on ሾ𝑡଴, ∞ሻ for 
some 𝑡଴ ൒ 𝑢଴. 
Corollary 3.16: If 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 , 𝑐 ൒ 𝑎 , and ሺ𝑣∗, 𝑤∗ሻ  is locally asymptotically stable, then either 
ሺ𝑉ሺ𝑡ሻ, 𝑊ሺ𝑡ሻሻ → ሺ𝑣∗, 𝑤∗ሻ or the distance between successive values of 𝑡 for which 𝑊ሺ𝑡ሻ ൌ 𝑤∗ is bounded. 

Because of this corollary, although it wouldn’t guarantee convergence, it would be nice to know if 
ሺ𝑣∗, 𝑤∗ሻ  were locally asymptotically stable when 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 . In Section 5, we shall provide some 
conditions under which that is the case. We have not been able to prove results analogous to Theorem 3.14, 
respectively Corollary 3.15, whose hypothesis is that 𝑣∗ െ 𝑉 doesn’t change sign over arbitrarily long 
intervals, respectively converges. 

4. Cycles and the undelayed system 

One of the questions in the study of analogous systems of differential equations without delay is the 
existence of cyclic solutions. A priori, we know of no reason why there could not be cyclic solutions, of 
any period, to (3.1a) and (3.1b). The existence of such solutions suggests other solution trajectories which 
spiral into a cycle, or spin away from one. It would be interesting to know if ours was one of those. 

For ሺ𝑉, 𝑊ሻ to be a cyclic solution of period 𝑇 it would be necessary, but far from sufficient, that 
𝑉ሺെ𝑇ሻ ൌ 𝑉ሺ0ሻ and 𝑊ሺെ𝑇ሻ ൌ 𝑊ሺ0ሻ. Our solution couldn’t be one because 𝑉ሺെ𝑇ሻ ൌ 0 ് 𝑣଴ ൌ 𝑉ሺ0ሻ 
(even though 𝑊ሺെ𝑇ሻ ൌ 𝑊ሺ0ሻ ൌ 0ሻ, but it could spiral toward or away from one. 

It is possible, however, to specify a delay-differential system, derived from a differential system 
having cyclic solutions of a period 𝑇, which has those same solutions. Simply take initial conditions to be 
such a cycle with any starting point. Then add functions of the form 𝑓ሺ𝑡ሻ െ 𝑓ሺ𝑡 െ 𝑇ሻ to the right-hand 
side of the differential system, where 𝑓 depends only on the solutions.  

The extreme case of 𝑇 ൌ 0 provides an “undelayed system” of differential equations, 

𝑉ᇱሺ𝑡ሻ ൌ 𝑐𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ 

𝑊ᇱሺ𝑡ሻ ൌ ሺ1 െ 𝑒ି௠்ሻ𝐸ሺ𝑡ሻ െ 𝑚𝑊ሺ𝑡ሻ 

obtained from Eqs (3.1) by removing 𝐹ሺ𝑡ሻ from the right-hand side (not removing only 𝐸ሺ𝑡 െ 𝑇ሻ). 
One commonly employed method for ruling out the possibility of cycles in two-dimensional phase 

space is the Bendixson-Dulac criterion. The simplest form of it would eliminate cycles of any period if, 

where 𝑉ᇱand 𝑊ᇱare as in the equations above, 
డ௏ᇲ

డ௏
൅ డௐᇲ

డௐ
  does not take both signs on Σ°. In fact, 
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𝜕𝑉ᇱ

𝜕𝑉
൅

𝜕𝑊ᇱ

𝜕𝑊
ൌ

𝜕
𝜕𝑉

ሺ𝑐𝑉ሺ1 െ 𝑊ሻ െ 𝑎𝑉 ൅ 𝑙𝑊ሻ ൅
𝜕

𝜕𝑊
ሺ𝑝ሺ1 െ 𝑒ି௠்ሻ𝑉ሺ1 െ 𝑊ሻ െ 𝑚𝑊ሻ 

ൌ 𝑐ሺ1 െ 𝑊ሻ െ 𝑎 െ 𝑝ሺ1 െ 𝑒െ𝑚𝑇ሻ𝑉 െ 𝑚 

Therefore, there are no cycles if 𝑐 ൑ 𝑎. If 𝑐 ൅ 𝑙𝑞 ൑ 𝑎 as well, we know that all solutions converge to 
zero, but we still don’t know much about outcome if 𝑐 ൏ 𝑎 ൏ 𝑐 ൅ 𝑙𝑞, except for this result, which rules 
out only a very specific type of cycle. 

5. Local considerations 

In this section, we shall look at the stability of the fixed points ሺ0, 0ሻ and, when 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 and 𝑐 ൒
𝑎, ሺ𝑣∗, 𝑤∗ሻ. This translates to determining the characteristic function, 𝐺, of the system linearized around 
its fixed points and finding conditions which guarantee that either some or none of its zeros have positive 
real parts. If all zeros of 𝐺 have negative real part, then the fixed point will be locally asymptotically stable. 
We use the second form of (3.1a) for 𝑉ᇱ and the last form of (3.1b) for 𝑊ᇱ. 

𝑉ᇱሺ𝑡ሻ ൌ 𝑐𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑎𝑉ሺ𝑡ሻ ൅ 𝑙𝑊ሺ𝑡ሻ െ 𝑏𝑒ି௠்ሺ𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻሻ 

𝑊ᇱሺ𝑡ሻ ൌ 𝑚ሺ𝑞𝑉ሺ𝑡ሻ൫1 െ 𝑊ሺ𝑡ሻ൯ െ 𝑊ሺ𝑡ሻሻ ൅ 𝑒ି௠்ሺ𝐸ሺ𝑡ሻ െ 𝐸ሺ𝑡 െ 𝑇ሻሻ 

Observe that 
డ

డ௏
ሺ𝑐𝑉ሺ1 െ 𝑊ሻ െ 𝑎𝑉 ൅ 𝑙𝑊ሻ ൌ 𝑐ሺ1 െ 𝑊ሻ െ 𝑎;  

డ

డௐ
ሺ𝑐𝑉ሺ1 െ 𝑊ሻ െ 𝑎𝑉 ൅ 𝑙𝑊ሻ ൌ 𝑙 െ 𝑐𝑉 

డ

డ௏
ሺ𝑞𝑉ሺ1 െ 𝑊ሻ െ 𝑊ሻ ൌ 𝑞ሺ1 െ 𝑊ሻ;  

డ

డௐ
ሺ𝑞𝑉ሺ1 െ 𝑊ሻ െ 𝑊ሻ ൌ െሺ1 ൅ 𝑞𝑉ሻ 

డ

డ௏
𝐸 ൌ

డ

డ௏
𝑝𝑉ሺ1 െ 𝑊ሻ ൌ 𝑝ሺ1 െ 𝑊ሻ;  

డ

డௐ
𝐸 ൌ െ𝑝𝑉 

Linearizing around ሺ0, 0ሻ but leaving out the last terms and subtracting 𝜆𝐈, we get the matrix 

𝐀 ൌ ൬
𝑐 െ 𝑎 െ 𝜆 𝑙

𝑚𝑞 െ𝑚 െ 𝜆൰ 

|𝐀| ൌ ሺ𝑐 െ 𝑎 െ 𝜆ሻሺെ𝑚 െ 𝜆ሻ െ 𝑚𝑙𝑞 ൌ 𝜆ଶ ൅ ൫𝑚 െ ሺ𝑐 െ 𝑎ሻ൯𝜆 െ 𝑚ሺ𝑐 ൅ 𝑙𝑞 െ 𝑎ሻ 

This determinant is the characteristic function for the undelayed system (𝑇 ൌ 0ሻ and clearly, if 𝑎 ൏
𝑐 ൅ 𝑙𝑞, it has a positive root, making ሺ0, 0ሻ unstable for any delay-differential system whose undelayed 
system is this one. Otherwise, by Theorem 3.11i, all trajectories converge to ሺ0, 0ሻ. 

Next, assuming there is a positive fixed point and linearizing around ሺ𝑣∗, 𝑤∗ሻ but leaving out the last 
terms and subtracting 𝜆𝐈, we get the matrix 

𝐀 ൌ ൬
𝑐ሺ1 െ 𝑤∗ሻ െ 𝑎 െ 𝜆 𝑙 െ 𝑐𝑣∗

𝑚𝑞ሺ1 െ 𝑤∗ሻ െሺ1 ൅ 𝑞𝑣∗ሻ െ 𝜆
൰ ൌ ൮

െ𝑙
𝑤∗

𝑣∗ െ 𝜆 𝑙 െ 𝑐𝑣∗

𝑚
𝑤∗

𝑣∗

െ𝑚
1 െ 𝑤∗ െ 𝜆

൲ 

where the second equality follows from the first form of (3.3a), (3.3b), and the second form of (3.3d). 
Again, 𝐀 is the matrix of the linearization of the undelayed system. Therefore, 
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|𝐀| ൌ ൬𝑙
𝑤∗

𝑣∗ ൅ 𝜆൰ ቀ
𝑚

1 െ 𝑤∗ ൅ 𝜆ቁ െ 𝑚
𝑤∗

𝑣∗ ሺ𝑙 െ 𝑐𝑣∗ሻ 

ൌ 𝜆ଶ ൅ ൬
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗ ൰ 𝜆 ൅ 𝑚𝑙
𝑤∗

𝑣∗ሺ1 െ 𝑤∗ሻ
െ 𝑚

𝑤∗

𝑣∗ ሺ𝑙 െ 𝑐𝑣∗ሻ 

Looking on the right and using equations (3.3d) and second form of (3.3c), 

𝑚𝑙
𝑤∗

𝑣∗ሺ1 െ 𝑤∗ሻ
െ 𝑚

𝑤∗

𝑣∗ ሺ𝑙 െ 𝑐𝑣∗ሻ ൌ 𝑚𝑙
𝑤∗

𝑣∗ ൬
1

1 െ 𝑤∗ െ 1൰ ൅ 𝑐𝑚𝑤∗ ൌ 𝑚𝑙𝑞𝑤∗ ൅ 𝑐𝑚𝑤∗ 

ൌ ሺ𝑐 ൅ 𝑙𝑞ሻ𝑚𝑤∗ ൌ 𝑚ሺ𝑐 ൅ 𝑙𝑞 െ 𝑎ሻ ൌ 𝑚𝑎𝑞𝑣∗ 

|𝐀| ൌ 𝜆ଶ ൅ ൬
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗ ൰ 𝜆 ൅ 𝑚𝑎𝑞𝑣∗ 

We need to add to 𝐀 the matrix corresponding to the last terms of the defining equations above. We have 

observed above that డ

డ௏
𝐸 ൌ 𝑝ሺ1 െ 𝑊ሻ and 

డ

డௐ
𝐸 ൌ െ𝑝𝑉, so this matrix is 𝑝𝑒ି௠்ሺ1 െ 𝑒ିఒ்ሻ𝐁, where 

𝐁 ൌ ቀെ𝑏ሺ1 െ 𝑤∗ሻ 𝑏𝑣∗

1 െ 𝑤∗ െ𝑣∗ቁ 

Then, 𝐺ሺ𝜆ሻ ൌ ห𝐀 ൅ 𝑝𝑒ି௠்ሺ1 െ 𝑒ିఒ்ሻ𝐁ห. To calculate 𝐺ሺ𝜆ሻ, we use the multilinearity on rows of the 
determinant, noting that |𝐁| ൌ 0 

𝐺ሺ𝜆ሻ ൌ |𝐀| ൅ 𝑝𝑒ି௠்ሺ1 െ 𝑒ିఒ்ሻሺെ อ𝑙
𝑤∗

𝑣∗ ൅ 𝜆 𝑐𝑣∗ െ 𝑙

1 െ 𝑤∗ െ𝑣∗
อ െ 𝑏 อ

1 െ 𝑤∗ െ𝑣∗

𝑚
𝑤∗

𝑣∗

െ𝑚
1 െ 𝑤∗ െ 𝜆

อሻ 

െ อ𝑙
𝑤∗

𝑣∗ ൅ 𝜆 𝑐𝑣∗ െ 𝑙

1 െ 𝑤∗ െ𝑣∗
อ െ 𝑏 อ

1 െ 𝑤∗ െ𝑣∗

𝑚
𝑤∗

𝑣∗

െ𝑚
1 െ 𝑤∗ െ 𝜆

อ ൌ อ
1 െ 𝑤∗ െ𝑣∗

𝑙
𝑤∗

𝑣∗ ൅ 𝜆 𝑐𝑣∗ െ 𝑙
อ ൅ อ

1 െ 𝑤∗ െ𝑣∗

െ𝑚𝑏
𝑤∗

𝑣∗

𝑚𝑏
1 െ 𝑤∗ ൅ 𝑏𝜆

อ 

ൌ ቤ
1 െ 𝑤∗ െ𝑣∗

ሺ𝑙 െ 𝑚𝑏ሻ ௪∗

௩∗ ൅ 𝜆 𝑐𝑣∗ െ 𝑙 ൅
௠௕

ଵି௪∗ ൅ 𝑏𝜆ቤ ൌ 𝜆 ቚ1 െ 𝑤∗ െ𝑣∗

1 𝑏
ቚ ൅ 

อ
1 െ 𝑤∗ െ𝑣∗

ሺ𝑙 െ 𝑚𝑏ሻ
𝑤∗

𝑣∗ 𝑐𝑣∗ െ 𝑙 ൅
𝑚𝑏

1 െ 𝑤∗
อ 

ൌ ሺ𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑣∗ሻ𝜆 ൅ ሺ1 െ 𝑤∗ሻሺ𝑐𝑣∗ െ 𝑙ሻ ൅ 𝑚𝑏 ൅ ሺ𝑙 െ 𝑚𝑏ሻ𝑤∗ 

ൌ ሺ𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑣∗ሻ𝜆 ൅ 𝑚𝑏ሺ1 െ 𝑤∗ሻ ൅ ሺ𝑐𝑣∗ െ 𝑙ሻሺ1 െ 𝑤∗ሻ ൅ 𝑙𝑤∗ 

Note that the constant term is strictly positive as, either 𝑙 ൐ 0 or ሺsecond form of (3.3a)) 𝑐𝑣∗ െ 𝑙 ൌ
௪∗

௩∗ ሺ𝑐 െ 𝑎ሻ ൐ 0. Using the second form of (3.3a) again, (3.3b), and the first form of (3.3d), we manipulate 

the far right-hand side to get 

ሺ𝑐𝑣∗ െ 𝑙ሻሺ1 െ 𝑤∗ሻ ൌ
𝑐 െ 𝑎

𝑞ሺ1 െ 𝑤∗ሻ
ሺ1 െ 𝑤∗ሻ ൌ

𝑐 ൅ 𝑙𝑞 െ 𝑎
𝑞

െ 𝑙 ൌ
𝑎ሺ𝑐 ൅ 𝑙𝑞 െ 𝑎ሻ

𝑞𝑎
െ 𝑙 ൌ 𝑎𝑣∗ െ 𝑙 
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𝐺ሺ𝜆ሻ ൌ 𝜆ଶ ൅ ൬
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗ ൰ 𝜆 ൅ 𝑚𝑎𝑞𝑣∗ 

൅ 𝑝𝑒ି௠்ሺ1 െ 𝑒ିఒ்ሻሺሺ𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑣∗ሻ𝜆 ൅ 𝑚𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑎𝑣∗ െ 𝑙ሺ1 െ 𝑤∗ሻሻ 

To make our characteristic function look less unwieldy, let 

𝛼 ൌ 𝑝𝑒ି௠்ሺ𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑣∗ሻ ൐ 0 

𝛽 ൌ
𝑚𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑎𝑣∗ െ 𝑙ሺ1 െ 𝑤∗ሻ

𝑏ሺ1 െ 𝑤∗ሻ ൅ 𝑣∗ ൐ 0 

𝛿 ൌ
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗  

and note that 𝛿 ൌ 0 if and only if 𝑚 ൌ 𝑙 ൌ 0. We now rewrite the characteristic function as 

 𝐺ሺ𝜆ሻ ൌ 𝜆ଶ ൅ 𝛿𝜆 ൅ 𝑚𝑎𝑞𝑣∗ ൅ 𝛼ሺ1 െ 𝑒ିఒ்ሻሺ𝜆 ൅ 𝛽ሻ    (5.1) 

ൌ 𝜆ଶ ൅ ሺ𝛿 ൅ 𝛼ሻ𝜆 ൅ ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ െ 𝛼𝑒ିఒ்ሺ𝜆 ൅ 𝛽ሻ  

Initially, we deal with 𝐺 in an ad hoc fashion. First, consider 𝐺 restricted to ሾ0, ∞ሻ. The first form 
of (5.1) demonstrates that 𝐺 is positive on ሺ0, ∞ሻ, and 𝐺ሺ0ሻ ൌ 𝑚𝑎𝑞𝑣∗, so 𝐺ሺ0ሻ ൌ 0 if and only if 𝑚 ൌ 0. 
In that caseሺ𝑣∗, 𝑤∗ሻ is unstable, so we shall assume from now on that 𝑚 ൐ 0. It’s clear that 𝐺൫𝜆̅൯ ൌ 𝐺ሺ𝜆ሻതതതതതത, 
so we may restrict our search for other roots to those with positive imaginary parts. Suppose that 𝜆 is a 
zero of 𝐺, where 𝜆 ൌ 𝑥 ൅ 𝑖𝑦, 𝑥 ൒ 0 and 𝑦 ൐ 0. The following equations represent the real part of 𝐺ሺ𝜆ሻ ൌ
0 and the imaginary part divided by 𝑦. 

𝑥ଶ െ 𝑦ଶ ൅ 𝛿𝑥 ൅ 𝑚𝑎𝑞𝑣∗ ൅ 𝛼ሺ𝑥 ൅ 𝛽ሻሺ1 െ 𝑒ି௫் cos 𝑦𝑇 െ
௬

௫ାఉ
𝑒ି௫்  sin 𝑦𝑇ሻ ൌ 0         (5.2a)  

2𝑥 ൅ 𝛿 ൅ 𝛼ሺ1 െ 𝑒ି௫் cos 𝑦𝑇 ൅ ௫ାఉ

௬
𝑒ି௫்  sin 𝑦𝑇ሻ ൌ 0    (5.2b) 

Only parts ii and iv of the following proposition are directly useful for ruling out zeros of 𝐺 which 
have positive real parts. 
Proposition 5.1: Suppose that 𝐺ሺ𝜆ሻ ൌ 0 , where 𝜆 ൌ 𝑥 ൅ 𝑖𝑦 , 𝑥 ൒ 0  and 𝑦 ൐ 0 . Let 𝑓ሺ𝑤∗ሻ ൌ

ଷగ

ሺଷగିଵሻሺଵି௪∗ሻ
൅

ଷగ

ሺଷగିଵሻమሺଵି௪∗ሻమ ൅
௪∗

ሺଵି௪∗ሻయ. Then 

(i) 𝑥ሺ2𝑦𝑇 െ 1ሻ ൏ 𝛽  
(ii) 𝛿 ൏ 𝛽 ൏ 𝑎;  𝑚 ൏ 𝑐ሺ1 െ 𝑤∗ሻଶ ൏ 𝛼ሺ1 െ 𝑤∗ሻ 

(iii) 
ଷగ

ଶ
൏ 𝑦𝑇;    𝑥 ൏ ఉ

ଷగିଵ
൏ ௔

ଷగିଵ
   

(iv) 𝑇 ൐
ଷగ

ଶఈሺଵା௙ሺ௪∗ሻሻ
 

Proof: (i) Since 𝑚 ൐ 0, 𝛿 ൐ 0 so, for (5.2b) to be true, the last term on its left-hand side must be negative. 
Therefore, 

1 െ 𝑒ି௫் ሺcos 𝑦𝑇 െ
௫ାఉ

௬
 sin 𝑦𝑇ሻ ൏ 0; 𝑒௫் ൏ cos 𝑦𝑇 െ

௫ାఉ

௬
 sin 𝑦𝑇 

It is a straightforward exercise in elementary calculus to show that for 𝐶 ∈ ℝ, the function 
cos 𝑧 ൅ 𝐶 sin 𝑧 is maximized when 𝑧 ൌ tanିଵ 𝐶 and that the maximum is √1 ൅ 𝐶ଶ. Therefore, it must 
be the case that 
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1 ൅ 𝑥𝑇 ൑ 𝑒௫் ൏ ඨ1 ൅ ሺ
𝑥 ൅ 𝛽

𝑦
ሻଶ 

𝑥𝑇 ൏ ඨ1 ൅ ൬
𝑥 ൅ 𝛽

𝑦
൰

ଶ

െ 1 ൌ

𝑥 ൅ 𝛽
𝑦

ඨ1 ൅ ൬
𝑥 ൅ 𝛽

𝑦 ൰
ଶ

൅ 1

൏
𝑥 ൅ 𝛽

2𝑦
 

2𝑥𝑦𝑇 ൏ 𝑥 ൅ 𝛽; 𝑥ሺ2𝑦𝑇 െ 1ሻ ൏ 𝛽 

(ii) Again, because the last term on the left-hand side of (5.2b) is negative, sin 𝑦𝑇 ൏ 0. Therefore, 
|cos 𝑦𝑇| ൏ 1  and 𝑦𝑇 ൐ 𝜋 . To save space, let 𝜁 ൌ 𝛼ሺ1 െ 𝑒ିఒ்ሻ  and 𝜉 ൌ 𝛿 ൅ 𝜁 . Observe, since 1 െ
𝑒ିఒ் ൌ 1 െ 𝑒ି௫் cos 𝑦𝑇 ൅ 𝑖𝑒ି௫்  sin 𝑦𝑇, that 𝜁 and, therefore, 𝜉 have positive real and negative imaginary 
parts. Rewrite 𝐺 as a quadratic function of 𝜆 and apply the quadratic formula to get 

 𝐺ሺ𝜆ሻ ൌ 𝜆ଶ ൅ 𝜉𝜆 ൅ ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝜁𝛽ሻ;  2𝜆 ൌ െ𝜉 ൅ ඥ𝜉ଶ െ 4ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝜁𝛽ሻ ൌ െ𝜉 ൅ 𝜎 

where 𝜎 is the correct one of the two possible choices for the square root. Since 𝜆 has nonnegative real 
part and positive imaginary part, 0 ൏ Re𝜉 ൑ Re𝜎 and Im𝜉 ൏  Im𝜎. Since the real part of 𝜁 is positive, 
Re𝜎ଶ ൌ Reሺ𝜉ଶ െ 4ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝜁𝛽ሻሻ ൏ Re𝜉ଶ. Therefore, 

ሺIm𝜉ሻଶ ൌ ሺRe𝜉ሻଶ െ Re𝜉ଶ ൏ ሺRe𝜎ሻଶ െ Re𝜎ଶ ൌ ሺIm𝜎ሻଶ;  |Im𝜉| ൏ |Im𝜎| 

Now, should Im𝜎 ൏ 0 , along with Im𝜉 ൏ 0  and Im𝜎 ൐ Im𝜉 , then |Im𝜎| ൏ |Im𝜉| , contradicting the 
inequality immediately above. Therefore, Im𝜎 ൐ 0 and so Im𝜎 ൐ െIm𝜉, yielding 

െIm𝜉ଶ ൌ 2ሺRe𝜉ሻሺെIm𝜉ሻ ൏ 2ሺRe𝜎ሻሺIm𝜎ሻ ൌ Im𝜎ଶ ൌ Im𝜉ଶ െ 4𝛽Im𝜁 

2𝛽Im𝜁 ൏ Im𝜉ଶ ൌ 2ሺRe𝜉ሻሺIm𝜉ሻ ൌ 2ሺRe𝜉ሻሺIm𝜁ሻ 

𝛽 ൐ Re𝜉 ൌ 𝛿 ൅ Re𝜁 ൌ
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗ ൅ 𝛼ሺ1 െ 𝑒ି௫் cos 𝑦𝑇ሻ ൐ 𝑚 

However, from its definition above, 𝛽 ൑ ௠௕ሺଵି௪∗ሻା௔௩∗

௕ሺଵି௪∗ሻା௩∗ , a weighted average of 𝑎 and 𝑚 with strictly 

positive weights. Therefore, 𝑎 ൐ 𝛽 ൐ 𝛿 and, by the first form of (3.3a),  

𝑐ሺ1 െ 𝑤∗ሻ െ
𝑚

1 െ 𝑤∗ ൌ 𝑎 െ
𝑙𝑤∗

𝑣∗ െ
𝑚

1 െ 𝑤∗ ൌ 𝑎 െ 𝛿 ൐ 0 

and by the definitions of 𝑐 and 𝛼, 𝛼 ൐ 𝑐ሺ1 െ 𝑤∗ሻ. 

(iii) Now, suppose that 
ଷగ

ଶ
൒ 𝑦𝑇, so that cos 𝑦𝑇 ൑ 0. Since Re𝜁 ൌ 𝛼ሺ1 െ 𝑒ି௫் cos 𝑦𝑇ሻ, it follows 

that 𝛼 ൑ Re𝜁. Therefore, by the first form of (3.3a), 

𝛽 ൐ 𝛿 ൅ Re𝜁 ൒ 𝛿 ൅ 𝛼 ൐
𝑚

1 െ 𝑤∗ ൅ 𝑙
𝑤∗

𝑣∗ ൅ 𝑐ሺ1 െ 𝑤∗ሻ ൌ
𝑚

1 െ 𝑤∗ ൅ 𝑎 

which contradicts part ii. Consequently, cos 𝑦𝑇 ൐ 0, 
ଷగ

ଶ
൏ 𝑦𝑇 and, by part i, 𝑥 ൏

ఉ

ଷగିଵ
. 

(iv) Returning to (5.2a) once more, with the added information that cos 𝑦𝑇 ൐ 0, we find 



11212 

Mathematical Biosciences and Engineering                 Volume 19, Issue 11, 11195–11216. 

0 ൏ 𝑥ଶ െ 𝑦ଶ ൅ 𝛿𝑥 ൅ 𝑚𝑎𝑞𝑣∗ ൅ 𝛼ሺ𝑥 ൅ 𝑦 ൅ 𝛽ሻ 

𝑦ଶ െ 𝛼𝑦 െ ൫𝑥ଶ ൅ ሺ𝛿 ൅ 𝛼ሻ𝑥 ൅ ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ൯ ൏ 0 

𝑦ଶ െ 𝛼𝑦 െ 𝛼ଶ𝑔ሺ𝑥ሻ ൏ 0 where  𝑔ሺ𝑥ሻ ൌ ሺ
௫

ఈ
ሻଶ ൅ ቀ1 ൅

ఋ

ఈ
ቁ

௫

ఈ
൅

ఉ

ఈ
൅

௠

ఈ
∙

௔

ఈ
∙ 𝑞𝑣∗ 

𝑦 ൏
𝛼ሺ1 ൅ ඥ1 ൅ 4𝑔ሺ𝑥ሻሻ

2
൏

𝛼ሺ1 ൅ 1 ൅ 2𝑔ሺ𝑥ሻሻ
2

ൌ 𝛼ሺ1 ൅ 𝑔ሺ𝑥ሻሻ 

By the second inequality of part ii and the fact that 𝑐 ൒ 𝑎, 

𝑎
𝛼

൏
𝑎

𝑐ሺ1 െ 𝑤∗ሻ
൑

1
1 െ 𝑤∗ 

By the second inequality of part iii, the first inequality of part ii, and (3.3b), 

௫

ఈ
൏

ଵ

ଷగିଵ
∙

௔

ఈ
; 

ఋ

ఈ
൏

௔

ఈ
;  

ఉ

ఈ
൏

௔

ఈ
;  

௠

ఈ
൏

௔

ఈ
;  𝑞𝑣∗ ൌ

௪∗

ଵି௪∗ 

𝑔ሺ𝑥ሻ ൏
3𝜋

ሺ3𝜋 െ 1ሻሺ1 െ 𝑤∗ሻ
൅

3𝜋
ሺ3𝜋 െ 1ሻଶሺ1 െ 𝑤∗ሻଶ ൅

𝑤∗

ሺ1 െ 𝑤∗ሻଷ ൌ 𝑓ሺ𝑤∗ሻ

ൎ
1.118

1 െ 𝑤∗ ൅
. 132

ሺ1 െ 𝑤∗ሻଶ ൅
𝑤∗

ሺ1 െ 𝑤∗ሻଷ 

Finally, by the first inequality of part iii and what we have just done, 

𝑇 ൌ
𝑦𝑇
𝑦

൐

3𝜋
2

𝛼ሺ1 ൅ 𝑔ሺ𝑥ሻሻ
൐

3𝜋
2𝛼ሺ1 ൅ 𝑓ሺ𝑤∗ሻሻ

 

In [1], there are results which pertain to characteristic functions of the form 𝑃ሺ𝜆ሻ െ 𝑄ሺ𝜆ሻ𝑒ିఒ் where 
𝑃 and 𝑄 are real polynomials, 𝑃 has degree 2, its coefficient of 𝜆 is positive, and its constant term is 
nonnegative, as is the case for our characteristic function but, unfortunately, only when 𝑄 is a monomial 
of degree 2 or less. In [21], a more sophisticated method to rule out roots of transcendental polynomials 
having positive real parts is explored, including a proof of a generalization of the following result from 
polynomials to many analytic functions. 
Theorem: Suppose 𝑃 and 𝑄 are polynomials with real coefficients, without common pure imaginary root, 
and that ሺ𝑃 െ 𝑄ሻሺ0ሻ ് 0. If 𝑓ሺ𝑦ሻ ൌ |𝑃ሺ𝑖𝑦ሻ|ଶ െ |𝑄ሺ𝑖𝑦ሻ|ଶ has no positive roots and the roots of the real 
polynomial 𝑃 െ 𝑄 all have negative real parts, then for any 𝑇 ൐ 0, all the zeros of 𝑃ሺ𝑧ሻ െ 𝑄ሺ𝑧ሻ𝑒ି்௭ have 
negative real parts as well. Conversely, if 𝑃 െ 𝑄  has a root with nonnegative real part, then 𝑃ሺ𝑧ሻ െ
𝑄ሺ𝑧ሻ𝑒ି்௭ has zeros with nonnegative real part for any 𝑇 ൐ 0. 

We apply this theorem to our situation. Let 𝑃ሺ𝑧ሻ ൌ 𝑧ଶ ൅ 𝛿𝑧 ൅ 𝑚𝑎𝑞𝑣∗ ൅ 𝛼ሺ𝑧 ൅ 𝛽ሻ  and 𝑄ሺ𝑧ሻ ൌ
𝛼ሺ𝑧 ൅ 𝛽ሻ, so that 𝐺ሺ𝜆ሻ ൌ 𝑃ሺ𝜆ሻ െ 𝑄ሺ𝜆ሻ𝑒ିఒ். Then the root of 𝑄 is real and ሺ𝑃 െ 𝑄ሻሺ0ሻ ൌ 𝑚𝑎𝑞𝑣∗ ് 0. 
In addition, since 𝛿 ൐ 0 is the coefficient of 𝑧 in 𝑃 െ 𝑄, both roots of that polynomial have negative real 
parts. Therefore, we are left to deal with the 𝑓 of the theorem. 

𝑃ሺ𝑖𝑦ሻ ൌ െ𝑦ଶ ൅ 𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽 ൅ 𝑖ሺ𝛿 ൅ 𝛼ሻ𝑦;  𝑄ሺ𝑖𝑦ሻ ൌ 𝛼ሺ𝛽 ൅ 𝑖𝑦ሻ 

|𝑃ሺ𝑖𝑦ሻ|ଶ ൌ 𝑦ସ ൅ ሺ𝑚𝑎𝑞𝑣∗ሻଶ ൅ 𝛼ଶ𝛽ଶ െ 2𝑦ଶሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ ൅ 2𝛼𝛽𝑚𝑎𝑞𝑣∗ ൅ 𝑦ଶሺ𝛿ଶ ൅ 𝛼ଶ ൅ 2𝛼𝛿ሻ 

|𝑄ሺ𝑖𝑦ሻ|ଶ ൌ 𝛼ଶሺ𝛽ଶ ൅ 𝑦ଶሻ 
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|𝑃ሺ𝑖𝑦ሻ|ଶ െ |𝑄ሺ𝑖𝑦ሻ|ଶ ൌ 𝑦ସ ൅ ൫𝛿ሺ𝛿 ൅ 2𝛼ሻ െ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ൯𝑦ଶ ൅ ሺ𝑚𝑎𝑞𝑣∗ሻଶ ൅ 2𝛼𝛽𝑚𝑎𝑞𝑣∗ 

The positive real roots of this quartic are the square roots of the positive roots of 

𝐹ሺ𝑦ሻ ൌ 𝑦ଶ ൅ ൫𝛿ሺ𝛿 ൅ 2𝛼ሻ െ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ൯𝑦 ൅ ሺ𝑚𝑎𝑞𝑣∗ሻଶ ൅ 2𝛼𝛽𝑚𝑎𝑞𝑣∗ 

We need to find conditions under which 𝐹 has no positive roots, i.e., either that 

𝛿ሺ𝛿 ൅ 2𝛼ሻ ൒ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ 

or that 𝛿ሺ𝛿 ൅ 2𝛼ሻ ൏ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ and 

ሺ𝛿ሺ𝛿 ൅ 2𝛼ሻ െ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻሻଶ െ 4𝑚𝑎𝑞𝑣∗ሺ𝑚𝑎𝑞𝑣∗ ൅ 2𝛼𝛽ሻ ൏ 0 

𝛿ଶሺ𝛿 ൅ 2𝛼ሻଶ െ 4𝛿ሺ𝛿 ൅ 2𝛼ሻሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ ൅ 4ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻଶ    
     െ4𝑚𝑎𝑞𝑣∗ሺ𝑚𝑎𝑞𝑣∗ ൅ 2𝛼𝛽ሻ ൏ 0 

𝛿ଶሺ𝛿 ൅ 2𝛼ሻଶ െ 4𝛿ሺ𝛿 ൅ 2𝛼ሻሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ ൅ 4𝛼ଶ𝛽ଶ ൏ 0 

𝛿ሺ𝛿 ൅ 2𝛼ሻ െ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ െ 2ሺ𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽ሻ ൅
4𝛼ଶ𝛽ଶ

𝛿ሺ𝛿 ൅ 2𝛼ሻ
൏ 0 

Therefore, by the last inequality above, it is sufficient that 

𝑚𝑎𝑞𝑣∗ ൅ 𝛼𝛽 ൒ ଶఈమఉమ

ఋሺఋାଶఈሻ
;  1 ൅ ௠௔௤௩∗

ఈఉ
൒ ଶఈఉ

ఋሺఋାଶఈሻ
 

𝛿ሺ𝛿 ൅ 2𝛼ሻ ൒ ଶఈఉ

ଵା
೘ೌ೜ೡ∗

ഀഁ

;   𝛿ଶ ൅ 2𝛼𝛿 െ ଶఈఉ

ଵା
೘ೌ೜ೡ∗

ഀഁ

൒ 0 

This will be true if and only if 𝛿 exceeds the positive root of the quadratic on the right-hand side. For 

the moment, let 𝐴 ൌ
ఉ

ଵା೘ೌ೜ೡ∗

ഀഁ

. Then, the positive root of the quadratic is 𝛼 ቆට1 ൅ 2
஺

ఈ
െ 1ቇ. Rationalizing 

the numerator, we have 

ඨ1 ൅ 2
𝐴
𝛼

െ 1 ൌ
2

𝐴
𝛼

1 ൅ ට1 ൅ 2
𝐴
𝛼

൏
𝐴
𝛼

 

Consequently, it suffices that 𝛿 ൒ 𝐴. This represents a modest improvement over Proposition 5.1ii. 
It is interesting that stability depends, in part, on the relative magnitudes of 𝑚 and 𝑎, the strengths of 
clearance of infected cells versus clearance of virus, both of which are defensive features of the host. 

6. Discussion 

The model of viremia proposed here is a relatively simple one, with a two-dimensional system 
describing viral and infected cell quantities over time, and a single discrete delay representing the time 
from cell infection until lysis. The parameters of the system include the size of virus inoculum 𝜈଴, rate of 
penetration of virus into cells 𝑝, rate of viral leakage from infected cells prior to lysis 𝑙, magnitude of the 
time lag until lysis 𝑇, number of virions expelled at lysis 𝑏, clearance rate of infected cells 𝑚, and two 
clearance rates of virions ℎ and 𝑘. 
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The long-term behavior of the solution which exhibits dependence on parameter values other than 
𝜈଴, is investigated with some success. The extinction of virus and infected cells, represented by ሺ0, 0ሻ in 
phase space is always a fixed point of the system and, when it is the only one, extinction is, indeed, ensured. 
The only other possible situation, occurring when viral production “outweighs” destruction, specifically 
when 𝑝ሺ𝑏𝑒ି௠் െ 1ሻ ൅ 𝑙𝑞 ൐ ℎ ൅ 𝑘 , is the presence of a second, positive, fixed point ሺ𝑣∗, 𝑤∗ሻ whose 
coordinates are fairly simple functions of the parameter values. In this case, our knowledge of the outcome 
is less precise. As long as a similar parameter inequality, 𝑝ሺ𝑏𝑒ି௠் െ 1ሻ ൒ ℎ ൅ 𝑘, which is independent 
of leakage, is also satisfied, we can demonstrate persistence of virus and infected cells above a positive 
threshold, but we have been able to prove convergence to ሺ𝑣∗, 𝑤∗ሻ only in special circumstances. However, 
we can show that ሺ0, 0ሻ is unstable in the case of persistence, and also find conditions on parameter values 
which imply that the signs of the real parts of all the zeros of the characteristic function linearized at 
ሺ𝑣∗, 𝑤∗ሻ are negative. Interestingly, one such condition is 𝑚 ൒ 𝑝 ൅ 𝑘, pitting the effectiveness of infected 
cell removal versus virus removal. To obtain these results, we first employ an ad hoc approach, and then 
try, alternatively, a very nice theorem, with the latter yielding a somewhat stronger result. 

There are some reasons for looking at this rather simple model despite the fact that it affords a less 
rich description of the biological process than many of the others and, even so, the results obtained are 
suboptimal. The methods of proof are not standard and may have applications elsewhere. In particular, 
the “integrally bounded” notion of Definition 3.3 has allowed us to show that the density of virus, 
respectively, that of infected cells either converges to or oscillates through 𝑣∗, respectively, 𝑤∗ when the 
density of virus or infected cells remains bounded above zero. Precisely because of its simplicity, 
expressions and equations are generally less numerous, shorter, and less opaque than for other models. 
The inequalities in the last paragraph suggest how greatly persistence might be affected if one could, by 
treatment or vaccine, modify particular parameter values of the system. 

A number of questions have been left undecided. Is there a counterpart to Corollary 3.15 telling us 
that if 𝑉 converges, then 𝑊 does as well? Is there a relation between the “periods” of 𝑊 െ 𝑤∗ and 𝑉 െ 𝑣∗ 
when either has arbitrarily large zeros? Can we do better with regard to stability analysis? What happens 
when 𝑐 ൅ 𝑙𝑞 ൐ 𝑎 ൐ 𝑐? 
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