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Abstract: Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), also known as 

COVID-19, is currently prevalent worldwide and poses a significant threat to human health. 

Individuals with cancer may have an elevated risk for SARS-CoV-2 infections and adverse outcomes. 

Therefore, it is necessary to explore the internal relationship between these two diseases. In this study, 

transcriptome analyses were performed to detect mutual pathways and molecular biomarkers in three 

types of common cancers of the breast, liver, colon, and COVID-19. Such analyses could offer a 

valuable understanding of the association between COVID-19 and cancer patients. In an analysis of 

RNA sequencing datasets for three types of cancers and COVID-19, we identified a sum of 38 common 

differentially expressed genes (DEGs). A variety of combinational statistical approaches and 

bioinformatics techniques were utilized to generate the protein-protein interaction (PPI) network. 

Subsequently, hub genes and critical modules were found using this network. In addition, a functional 

analysis was conducted using ontologies keywords, and pathway analysis was also performed. Some 

common associations between cancer and the risk and prognosis of COVID-19 were discovered. The 

datasets also revealed transcriptional factors-gene interplay, protein-drug interaction, and a DEGs-

miRNAs coregulatory network with common DEGs. The potential medications discovered in this 

investigation could be useful in treating cancer and COVID-19. 
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1. Introduction  

On March 11, 2020, the World Health Organization (WHO) proclaimed the novel coronavirus 

outbreak, popularly known as SARS-CoV-2, a global pandemic [1]. As indicated by WHO 

(https://covid19.who.int/), the SARS-CoV-2 mortality rate is around 1.36%, with around 440,807,756 

confirmed cases, including 5,978,096 deaths by March 2022 [2]. Studies have indicated that cancer 

patients have a greater vulnerability to SARS-CoV-2 infection caused by chemotherapy or 

immunotherapy [3]. In a large population sample study of more than 20,000 cancer patients, it was 

found that there was a significant increase in the SARS-CoV-2 infection among cancer patients [3]. 

According to recent studies, Individuals with cancer exhibited a greater likelihood of developing 

serious complications (such as intensive care unit hospitalization, invasive ventilation, or death) as 

opposed to those who did not have cancer (39 vs. 8%, p = 0·0003) [4]. With the advancement of 

medical science and tumor treatment methods in recent decades, the survival rate of cancer patients 

has continuously increased, and cancer is now considered a chronic disease rather than a terminal 

disease [5]. However, immunocompromised patients are at high risk as SARS-CoV-2 continues to 

mutate. Therefore, to better overcome these two diseases in the future, it is urgent to explore and clarify 

the internal molecular mechanism between them. 

In this study, we selected breast cancer, liver cancer, and colon cancer, to explore the molecular 

mechanism between these three cancers and COVID-19. We chose breast cancer, liver cancer and 

colon cancer for analysis mainly for the following three reasons: 1) According to February 2022, the 

National Cancer Center of China announced the incidence of cancer in China in 2016 [6]. The current 

top five cancers are lung cancer, colon cancer, gastric cancer, liver cancer, and breast cancer. Therefore, 

there are a certain representative. 2) With the progress of surgical operations and the continuous 

development of comprehensive diagnosis and treatment of tumors, the overall prognosis of these three 

cancers (breast cancer liver cancer and colon cancer) is good at present. In our clinical work, we have 

found that many patients have been cured or have stable survival with tumor after undergoing surgery, 

radiotherapy and chemotherapy, immunotherapy and other treatments. However, gastric cancer 

patients have poor prognosis and low long-term survival rate. In our opinion, cancer will no longer be 

an incurable disease in the future, but will evolve into chronic diseases such as hypertension and 

diabetes. Therefore, we may have a greater chance of encountering these three types of cancer patients 

with COVID-19 in the long-term clinical practice. 3) The reason why we did not include lung cancer 

is that SARS-CoV-2 virus mainly affects lung, and the two diseases are in the same target organ. In 

our opinion, they need to be analyzed separately. We first identified the differentially expressed genes 

(DEGs) for the three distinct malignancies and the SARS-CoV-2 virus to discover the DEGs shared by 

all four disorders. This research is focused on the common DEGs, which serve as the core experimental 

genes. Additional investigations and analyses were carried out on the basis of these common DEGs 

and included a pathway analysis and an enrichment analysis to truly comprehend the biological 

mechanisms behind genome-based expression investigations. The extraction of hub genes from 

common DEGs was a critical step in the prediction of viable medicines. In addition, a network of 

protein-protein interactions (PPIs) was constructed using common DEGs to collect hub genes for 

further study. In this research, transcription modulators were identified predicated on the common 

DEGs. Last but not least, possible medications were proposed. The detailed procedure of our study is 

shown in Figure 1. 
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Figure 1. Flowchart for research into bioinformatics data from The Gene Expression 

Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. 

2. Materials and methods 

2.1. Datasets employed in this study 

The transcriptome data of three common cancers of the breast, colon, and liver were acquired 

from The Cancer Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/). These include 1222 

breast specimens (1109 cancer specimens, 113 normal tissue specimens), 546 colon specimens (502 

cancer specimens, 44 normal tissue specimens), and 424 liver specimens (374 cancer specimens, 50 

normal tissue specimens). The SARS-CoV-2 infection data were obtained from The Gene Expression 

Omnibus (GEO) database (ID: GSE147507) of the National Center for Biotechnology Information 

(NCBI) (https://www.ncbi.nlm.nih.gov/geo/) [7]. 

2.2. Determination of DEGs and common DEGs among COVID-19 and three different types of cancer 

A statistically significant difference between distinct test settings at the transcriptional level was 

used as the criterion for determining genes that are differently expressed. Long-expression levels for 

DEGs were discovered utilizing the "limma" program with the Benjamini-Hochberg correction to 

adjust the false discovery rate. “DESEq2” of the R programming language (v 4.0.2) was also used to 

identify DEGs under a variety of testing settings. A p-value < 0.05 and |logFC| ≥1.0 was considered to 

be statistically significant. The common DEGs from four datasets were obtained by utilizing an online 

Venn analysis program known as Jvenn [8]. 

2.3. Analyses of gene ontology (GO) and pathway enrichment 

A gene set enrichment analysis is a substantial analytical endeavor that aims to categorize basic 

https://www.ncbi.nlm.nih.gov/geo/
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biological knowledge, including cellular mechanisms of chromosomal sites related to several 

interconnected disorders [9]. Enrichr (https://maayanlab.cloud/Enrichr/) was utilized to conduct gene 

ontology, functional enrichment (cellular components (CC), biological processes (BP), and molecular 

functions (MF)), and pathway enrichment investigations. Enrichr is a web-based program for enriching 

gene sets [10] that is employed to study the biological processes and signaling paths underlying 

common DEGs. A total of four repositories were investigated for this research: the Kyoto Encyclopedia 

of Genes and Genomes (KEGG), BioCarta, Reactome and WikiPathways. These highlighted the 

genesis of the route categorization, which was used to identify the pathways shared by breast cancer, 

colon cancer, liver cancer, and COVID-19. Notably, the KEGG pathway is well recognized for its 

ability to comprehend metabolic processes while also demonstrating the significant value of genomic 

research. The standard criterion for measuring the top-listed pathways was a p-value < 0.05. 

2.4. PPI network analysis and hub gene extraction 

We then investigated the interactive relationships between proteins utilizing STRING (Search 

Tool for the Retrieval of Interacting Genes/Proteins), a web-based program that can be retrieved at 

https://string-db.org/. The use of STRING to study the PPI network of DEGs may aid in examining 

the associations across various genes. The STRING repository was utilized to create the PPI network 

of proteins generated from common DEGs in order to depict physical and functional relationships 

across three distinct cancer types and SARS-CoV-2. Hereafter, Cytoscape (v.3.7.1) was used to 

visualize and conduct subsequent investigations on the PPI network once it was loaded into the 

program. Cytoscape, a publicly accessible network visualization tool, is a versatile system in which 

multiple datasets are integrated to optimize for diverse interactions including PPIs, genetic connections, 

protein-DNA interplay, and so on. The PPI network is composed of edges, nodes, and interconnections 

between them. In this context, the nodes that are the most entangled are referred to be the hub genes. 

Cytohubba (https://apps.cytoscape.org/apps/cytohubba), a revolutionary Cytoscape plugin, is a tool for 

ranking and isolating central, potential, or targeted components of a biological network depending on 

a variety of network characteristics. Cytohubba is a collection of 11 techniques for evaluating networks 

from a variety of perspectives. Maximal Clique Centrality (MCC) is considered the most effective 

method [11]. The PPI network's top ten hub genes were discovered using the MCC approach, which 

was applied to the network. According to Cytohubba’s near proximity ranking characteristics, the 

shortest accessible pathways linking hub genes were also identified. 

2.5. Determination of transcriptional factors and miRNAs engaging with shared DEGs 

Transcriptional factors (TFs) are proteins capable of binding to a specific gene and regulating the 

rate at which genetic information is transcribed. As a result, it is necessary to provide molecular 

understandings. The NetworkAnalyst (http://www.networkanalyst.ca) platform was utilized to 

discover topologically credible TFs from the JASPAR database (http://jaspar.genereg.net) that have a 

tendency to bind to common DEGs. NetworkAnalyst is a robust web-based resource for meta-analysis 

of gene expression profiles and the discovery of biological processes, functions, and interpretations of 

those findings [12]. JASPAR is a freely accessible repository of TFs from six taxonomic categories 

that may be used to identify TFs in numerous species [13]. MiRNAs that target gene interactions were 

also incorporated in the research to identify miRNAs that have the potential to bind to gene transcripts 
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and so negatively impact protein production. MiRTarBase and TarBase are two of the most important 

repositories for evaluating the experimental validity of miRNA-target gene interplay [14]. MiRNAs 

from miRTarBase and TarBase that interplay with common DEGs were retrieved from the interactions 

between miRNAs and genes utilizing NetworkAnalyst, with a particular emphasis on topological 

analysis. In Cytoscape, interaction networks between transcription factors and genes and between 

microRNAs and genes were shown. This program assists researchers in filtering top miRNAs 

exhibiting elevated levels of expression and identifying biological roles and characteristics that may 

be used to develop a reliable biological hypothesis. 

2.6. Assessment of applicant drugs 

The most significant impact of this research is predicting protein-drug interaction (PDI) or 

identifying drug molecules. Utilizing Drug Signatures Database (DSigDB) via Enrichr, a drug 

molecule was discovered on the basis of the DEGs of SARS-CoV-2 and three distinct subtypes of 

cancer. DSigDB is a worldwide library for identifying targeted pharmacological compounds that are 

associated with DEGs [15]. Enrichr’s “Diseases/Drugs” feature provides easy access to this database, 

which comprises 22,527 gene sets. 

2.7. Data availability 

The datasets analyzed during the present study are available from The Cancer Genome Atlas 

(TCGA) database (https://portal.gdc.cancer.gov/) and The Gene Expression Omnibus (GEO) database 

of the National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/geo/). 

3. Results 

3.1. Identification of DEGs and common DEGs in three common cancers and COVID-19 

Table 1. A representation of the datasets used in this investigation, including their 

characteristics and quantitative measurements. 

Disease name Data sources Total DEGs count 
Up-modulated 

DEGs count 

Down-modulated 

DEGs count 

COVID-19 GEO 1781 391 1390 

Breast cancer TCGA 5012 1997 3015 

Colon cancer TCGA 3542 1374 2168 

Liver cancer TCGA 2372 979 1393 

In this research, 1,781 genes were found to have a differential expression for COVID-19, where 

391 were up-modulated and 1390 were down-modulated. From the assessment of TCGA data, 5012 

DEGs (1997 up-modulated and 3015 down-modulated) were discovered in the breast cancer dataset, 

3542 DEGs (1374 up-modulated and 2168 down-modulated) in the colon cancer data, and 2372 DEGs 

(979 up-modulated and 1393 down-modulated) in the liver cancer data. All of the significant DEGs 

were identified based on a p-value < 0.05 and |logFC| ≥ 1. Table 1 provides a summary of the 

information included within the datasets. Following the execution of the cross-comparison evaluation 
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on Jvenn, 38 common DEGs were discovered from breast cancer, colon cancer, liver cancer, and 

COVID-19 datasets. Further analysis of these common genes was performed. All showed that all three 

cancers are linked to COVID-19 since they share one or more common genes. Figure 2 depicts the 

cumulative comparison study of the four datasets, as well as the extraction of the common DEGs.  

 

Figure 2. The intersection of the four databases finally leading to 38 common DEGs.Green: 

Breast cancer; Blue: Colon cancer; Pink: liver cancer; Yellow: COVID-19. 

3.2. Analyses of GO and KEGG enrichment  

Enrichr was used to conduct GO and KEGG enrichment analyses of the common DEGs in order 

to determine their biological value and the enriched pathways behind them. The GO analysis was 

determined within three categories (BP, CC and MF). As a source for annotating data, the GO 

database was used. Table 2 summarizes the top ten terms in the BP, MF, and CC categories. The bar 

graph in Figure 3 demonstrates the complete ontological analysis in a linear manner for each of the 

different categories. 
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Figure 3. The bar graphs depicting the ontological assessment of common DEGs between 

COVID-19 and three distinct forms of cancer produced by the Enrichr web-based 

application for (A) biological processes, (B) molecular function and (C) cellular 

component. Note: Top 10 terms of each category are listed 
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Table 2. COVID-19 and three distinct cancers were examined ontologically for common DEGs. 

Category GO ID Term P-value Genes 

GO 

biological 

process 

GO: 0048251 elastic fiber assembly  9.77 × 10-5 MFAP4; TNXB 

GO: 0000302 
response to reactive 

oxygen species  
0.000191 APOD; FOS; MMP9 

GO: 0006006 
glucose metabolic 

process 
0.000221 

APOD; PCK1; 

PPARGC1A 

GO: 0001501 
skeletal system 

development  
0.000225 

COL2A1;COL1A2;IHH; 

PITX1 

GO: 0051917 
regulation of 

fibrinolysis  
0.000271 F12; HRG 

GO: 0030194 
positive regulation of 

blood coagulation  
0.00047 F12; HRG 

GO: 0071385 
cellular response to 

glucocorticoid stimulus  
0.000528 ZFP36; PCK1 

GO: 0043062 
extracellular structure 

organization 
0.000732 

MMP11; COL2A1; 

COL1A2; MMP9 

GO: 0045229 
external encapsulating 

structure organization 
0.000745 

MMP11; COL2A1; 

COL1A2; MMP9 

GO: 0042738 
exogenous drug 

catabolic process  
0.000793 CYP2B6; CYP3A4 

GO cellular 

component 

GO: 0062023 
collagen-containing 

extracellular matrix  
2.94 × 10-8 

MFAP4; ECM1; TNXB; 

COL2A1; COL1A2; 

F12; HRG; MMP9; 

ANGPTL1 

GO: 0071953 elastic fiber 0.009465 MFAP4 

GO: 0031232 

extrinsic component of 

external side of plasma 

membrane  

0.015102 TF 

GO: 1990712 
HFE-transferrin 

receptor complex 
0.015102 TF 

GO: 0005788 
endoplasmic reticulum 

lumen  
0.016724 TF; COL2A1; COL1A2 

GO: 0001527 microfibril 0.020708 MFAP4 

GO: 0031528 microvillus membrane  0.020708 CDHR2 

GO: 0070013 
intracellular organelle 

lumen  
0.021331 

MMP11; TF; COL2A1; 

COL1A2; MMP9 

GO: 0034774 
secretory granule 

lumen  
0.021924 ECM1; TF; HRG 

GO: 0044214 
spanning component of 

plasma membrane 
0.024427 CDHR2 

Continued on next page 
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Category GO ID Term P-value Genes 

GO 

molecular 

function 

GO: 0101021 
estrogen 2-hydroxylase 

activity  
3.5 × 10-5 CYP2B6; CYP3A4 

GO: 0048407 
platelet-derived growth 

factor binding  
0.000191 COL1A2; COL2A1 

GO: 0046914 
transition metal ion 

binding 
0.001461 

RGN; CYP3A4; PCK1; 

HRG; MMP9 

GO: 0008395 
steroid hydroxylase 

activity 
0.002126 CYP2B6; CYP3A4 

GO: 0005506 iron ion binding  0.004727 TF; CYP3A4 

GO: 0061629 

RNA polymerase II-

specific DNA-binding 

transcription factor 

binding 

0.005576 
FOS; PITX1; 

PPARGC1A 

GO: 0043565 
sequence-specific 

DNA binding  
0.010403 

CSRNP1; TBX15; FOS; 

PITX1; PPARGC1A 

GO: 0004222 
metalloendopeptidase 

activity 
0.010609 MMP11; MMP9 

GO: 0042289 
MHCclass II protein 

binding 
0.011347 COL2A1 

GO: 0020037 heme binding 0.012942 CYP2B6; HRG 

*Note: Top 10 terms of each category are listed. 

It was discovered via a pathway analysis that the organism has a reaction with its inherent 

alterations. In order to identify the most significantly altered pathways of the common DEGs in breast 

cancer, colon cancer, liver cancer, and COVID-19, four universal databases were used, including 

Reactome, WikiPathways, KEGG and Biocarta. Table 3 contains a summary of the most important 

pathways discovered via the analysis of the specified datasets. Furthermore, the pathway enrichment 

study is depicted in the bar charts in Figure 4. 

3.3. Hub protein and submodule classification 

We examined the PPI network constructed from STRING and displayed it in Cytoscape in order 

to predict the interactions and adhesion routes of frequent DEGs. Figure 5 depicts the PPI network of 

common DEGs, which comprises 101 edges and 38 nodes. In a PPI network, the nodes with the most 

interconnections are interpreted to be hub genes. The topmost 10 DEGs were determined to be the 

most significant genes based on the PPI network analysis performed in Cytoscape utilizing the 

Cytohubba plugin. These hub genes comprised MMP9, FOS, COL1A2, COL2A1, DKK3, IHH, 

CYP3A4, PPARGC1A, MMP11 and APOD. The identified hub genes could be possible biomarkers 

for illnesses under investigation, and they may potentially lead to the development of novel treatment 

techniques. With this potential in mind, a submodule network was constructed using the Cytohubba 

plugin to gain a greater comprehension of the close interaction and vicinity of the hub genes. Figure 6 

depicts the extended network of hub-gene connections resulting from the PPI network. 
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Table 3. Analysis of common DEGs between COVID-19 and three distinct subtypes of 

cancer based on pathway enrichment analysis. 

category Term P-value Genes 

WikiPathways  

Constitutive Androstane Receptor 

Pathway WP2875 
3.02 × 10-5 CYP2B6; CYP3A4; PPARGC1A 

Pregnane X receptor pathway 

WP2876 
3.32 × 10-5 CYP2B6; CYP3A4; PPARGC1A 

Spinal Cord Injury WP2431 7.28 × 10-5 ZFP36; COL2A1; FOS; MMP9 

Liver X receptor pathway WP2874 0.000157 CYP2B6; CYP3A4 

Endochondral Ossification with 

Skeletal Dysplasias WP4808 
0.000243 COL2A1; IHH; MMP9 

Endochondral Ossification WP474 0.000243 COL2A1; IHH; MMP9 

Irinotecan pathway WP229 0.000271 BCHE; CYP3A4 

Farnesoid X receptor pathway 

WP2879 
0.000589 CYP3A4; PPARGC1A 

Galanin receptor pathway WP4970 0.000722 FOS; PPARGC1A 

miRNA targets in ECM and 

membrane receptors WP2911 
0.000793 TNXB; COL1A2 

BioCarta 

TSP-1 Induced Apoptosis in 

Microvascular Endothelial Cell 

Homo sapiens h tsp1Pathway 

0.013226 FOS 

Inhibition of Matrix 

Metalloproteinases Homo sapiens h 

reckPathway 

0.015102 MMP9 

Pertussis toxin-insensitive CCR5 

Signaling in Macrophage Homo 

sapiens h Ccr5Pathway 

0.016974 FOS 

Role of PPAR-gamma Coactivators 

in Obesity and Thermogenesis Homo 

sapiens h ppargPathway 

0.016974 PPARGC1A 

IL 3 signaling pathway Homo 

sapiens h il3Pathway 
0.022569 FOS 

Calcium Signaling by HBx of 

Hepatitis B virus Homo sapiens h 

HBxPathway 

0.028134 FOS 

Repression of Pain Sensation by the 

Transcriptional Regulator DREAM 

Homo sapiens h dreampathway 

0.028134 FOS 

Bone Remodeling Homo sapiens h 

ranklPathway 

0.029982 FOS 

Cadmium induces DNA synthesis 

and proliferation in macrophages 

Homo sapiens h cdMacPathway 

0.029982 FOS 

Nerve growth factor pathway (NGF) 

Homo sapiens h ngfPathway 

0.031826 FOS 

   Continued on next page 
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category Term P-value Genes 

Reactome 

Extracellular matrix organization 

Homo sapiens R-HSA-1474244 
1.44 × 10-5 

MMP11;MFAP4;TNXB;COL2A1; 

COL1A2; MMP9 

Assembly of collagen fibrils and 

other multimeric structures Homo 

sapiens R-HSA-2022090 

0.000147 COL2A1; COL1A2; MMP9 

Collagen formation Homo sapiens 

R-HSA-1474290 
0.000561 COL2A1; COL1A2; MMP9 

Xenobiotics Homo sapiens R-HSA-

211981 
0.000654 CYP2B6; CYP3A4 

Platelet degranulation Homo sapiens 

R-HSA-114608 
0.001038 ECM1; TF; HRG 

Response to elevated platelet 

cytosolic Ca2+ Homo sapiens R-

HSA-76005 

0.001187 ECM1; TF; HRG 

Activation of Matrix 

Metalloproteinases Homo sapiens R-

HSA-1592389 

0.001682 MMP11; MMP9 

Collagen degradation Homo sapiens 

R-HSA-1442490 
0.002492 MMP11; MMP9 

Cytochrome P450 - arranged by 

substrate type Homo sapiens R-

HSA-211897 

0.006187 CYP2B6; CYP3A4 

Biological oxidations Homo sapiens 

R-HSA-211859 
0.006336 CYP2B6; GLYATL1; CYP3A4 

KEGG 

ECM-receptor interaction 0.000621 TNXB; COL2A1; COL1A2 

Relaxin signaling pathway 0.001875 COL1A2; FOS; MMP9 

PI3K-Akt signaling pathway 0.004431 TNXB;COL2A1;COL1A2; PCK1 

Focal adhesion 0.006513 TNXB; COL2A1; COL1A2 

Proteoglycans in cancer 0.006876 COL1A2; IHH; MMP9 

Retinol metabolism 0.0074 CYP2B6; CYP3A4 

Adipocytokine signaling pathway 0.007611 PCK1; PPARGC1A 

Lipid and atherosclerosis 0.007835 CYP2B6; FOS; MMP9 

Metabolism of xenobiotics by 

cytochrome P450 

0.00917 CYP2B6; CYP3A4 

Leishmaniasis 0.009403 FCGR3A; FOS 

*Note: Top 10 terms of each category are listed. 
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Figure 4. The bar graphs depicting pathway enrichment study of common DEGs between 

COVID-19 and three distinct forms of cancer produced by the Enrichr web-based 

application for (A) WikiPathways, (B) BioCarta, (C) Reactome and (D) KEGG. Note: Top 

10 terms of each category are listed. 
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Figure 5. PPI network of common DEGs among breast cancer, colon cancer, liver cancer 

and COVID-19. In the figure, the circle nodes represent DEGs and edges represent the 

interactions between nodes. The PPI network has 38 nodes and 101 edges. The PPI network 

was generated using String. 

 

Figure 6. Identification of the PPI network's hub genes utilizing the Cytoscape’s Cytohubba 

function. Obtaining hub genes was accomplished using the most updated MCC technique of the 

Cytohubba tool. The 10 leading hub genes, as well as their interconnections with other molecules, 

are represented by the red nodes. The network is made up of 34 nodes and 99 edges in total. 
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3.4. Identification of modulatory signatures 

 

Figure 7. The NetworkAnalyst was utilized to generate the coherent modulatory 

interaction network of DEG-TFs. The square nodes represent transcription factors, while 

the circle nodes represent gene symbols that interface with transcription factors. 

 

Figure 8. DEG–miRNA regulation interaction network. The square nodes in represent 

miRNAs, whereas the circular nodes represent gene symbols that interface with miRNAs. 
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A network-based technique was used to decipher the modulatory TFs and miRNAs in order to 

discover significant modifications occurring at the transcription level and to gain knowledge of the 

regulatory molecules of hub genes or common DEGs. Figure 7 depicts the interplay of TFs and 

regulators with the common DEGs. Furthermore, Figure 8 depicts the interconnections of miRNA 

regulators with the common DEGs. Following the investigation of the TFs-gene and miRNAs-gene 

interactions networks, it was discovered that 72 TFs and 67 post-transcription (miRNAs) modulatory 

signatures interact with more than one common DEG. This simply suggests that there is a significant 

degree of crosstalk between them. 

3.5. Candidate drug identification 

We then evaluated PDI in order to comprehend the structural characteristics that are indicated for 

the sensitivity of receptors. In the case of common DEGs as prospective therapeutic targets in cancer 

and COVID-19, Enrichr was used to identify ten candidate medicinal compounds that were on the 

basis of transcriptomic profiles from the DSigDB. The ten leading chemical substances were 

determined based on their p-values, and they were then extracted. These possible medications have 

been proposed as therapies for the common DEGs seen in cancer and COVID-19. Table 4 contains the 

drugs that are successful for these common DEGs that have been identified in the DSigDB database. 

Table 4. Summary of proposed COVID-19 drugs. 

Name P-value Molecular Formula 

CHEMBL475540TTD 

00006054 
1.06 × 10-7 C17H17NO6S 

lycorine MCF7 UP 2.54 × 10-7 C16H17NO4 

astemizole MCF7 UP 1.63 × 10-6 C28H31FN4O 

tamoxifen MCF7 UP 1.73 × 10-6 C26H29NO 

azacitidine PC3 UP 2.79 × 10-6 C8H12N4O5 

azacyclonol MCF7 UP 3.70 × 10-6 C18H21NO 

cycloheximide PC3 UP 4.00 × 10-6 C15H23NO4 

vanoxerine PC3 UP 5.52 × 10-6 C28H32F2N2O 

mefloquine MCF7 UP 7.68 × 10-6 C17H16F6N2O 

LY-294002 MCF7 UP 7.98 × 10-6 C19H17NO3 

4. Discussion 

The 2019 global pandemic of SARS-CoV-2 has become an emergency of major international 

concern. Growing evidence suggests that cancer patients have a greater vulnerability to this disease. 

In addition to having a greater susceptibility to this infection, cancer patients have a higher likelihood 

of advancing to a severe stage of SARS-CoV-2 than the general population[16,17]. Cancer is 

recognized as a pandemic, with over 18,000,000 individuals being diagnosed each year throughout the 

globe. The most comprehensive analysis from China includes data from 13,077 COVID-19 patients, 

among which 232 were found to develop cancer [18]. As a result, there will be more and more cancer 

patients developing SARS-CoV-2 infections in the years and decades to come. An increasing number 

of viruses and bacteria have been associated with human cancers [19]. To date, seven classes of viruses 
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(Human papilloma virus (HPV), Hepatitis B virus (HBV), Hepatitis C virus (HCV), Kaposi's sarcoma 

associated herpesvirus (KSHV), Human T lymphotropic virus (HTLV), Merkel cell polyomavirus 

(MCpyV), Epstein Barr virus (EBV) have been identified to have oncogenic potential [20]. The 

oncoproteins of human tumor viruses regularly interact with the cellular epigenetic machinery. Such 

interactions alter the epigenome of the host cell and reprogram its gene expression pattern [21]. 

Helicobacter pylori is a bacterium known to be associated with gastroduodenal diseases such as 

chronic active gastritis, peptic ulcers, and gastric malignancies. Gene expression profiling in human 

gastric mucosa infected with Helicobacter pylori shows that host genes are dysregulated after 

Helicobacter pylori infection [22]. Some reports have studied the relationship between SARS-CoV-1 

virus with the incidence of cancer. This virus which shares a lot of similarities with the SARS-CoV-2 

virus has been reported to interfere with various signaling pathways associated with carcinogenic 

transformation of cells [23]. The genomic alterations of six SARS-CoV-2 receptor-related regulators 

(transmembrane serine protease 2 (TMPRSS2), angiotensinogen (AGT), angiotensin-converting 

enzyme 1 (ACE1), solute carrier family 6 member 19 (SLC6A19), angiotensin-converting enzyme 2 

(ACE2), and angiotensin II receptor type 2 (AGTR2)) and their clinical relevance across a broad 

spectrum of solid tumors were evaluated across 33 cancers [24]. Furthermore, four major similar 

signaling pathway, have been identified at the intersection of COVID-19 and cancer; namely, cytokine, 

type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling [25]. In 

biomedical and system biology studies, expression profiling leveraging high throughput sequencing 

datasets is utilized to find biological marker candidates for various disorders [26]. In recent times, the 

capacity to analyze gene fusion, mutations/single nucleotide polymorphisms (SNPs), 

posttranscriptional alterations, and gene expression variations in diverse sets of therapies has been 

enhanced by RNA sequencing, a next-generation sequencing approach [27]. In this research, the 

transcriptome of three prevalent malignancies, as well as COVID-19, found that 38 common DEGs 

had comparable expression profiles. GO, and pathway enrichment studies on the basis of p-values 

were used to assess the biological significance of these common DEGs in order to comprehend the 

pathophysiology of four disorders. The GO analysis mainly included a biological process (BP, 

molecular activity), a cell component (CC, gene regulation function), and a molecular function (MF, 

molecular level activity). The common DEGs were mainly enriched in “elastic fiber assembly” (BP), 

“collagen-containing extracellular matrix” (CC), and “estrogen 2-hydroxylase activity” (MF). 

Furthermore, the analytical findings from KEGG enrichment illustrated the predominant involvement 

of common DEGs in the “ECM-receptor interaction”, “relaxin signaling pathway”, and “PI3K-Akt 

signaling pathway”. Exploring these critical pathways could aid in the advancement of our knowledge 

of COVID-19 and the genesis of cancer. By using a network-based method, this research investigated 

the gene expression profiles in four RNA sequencing datasets of three common cancer types and 

COVID-19 patients. By analyzing patients the common phenotypic changes of cancer and COVID-19 

patients, we hope to explore potential causative factors, and provide a theoretical basis for further study 

of these two diseases. 

It is believed that a scarcity of specific medications is one of the primary causes of the continuing 

COVID-19 pandemic. We discovered the molecular targets that could be viable biological markers of 

cancer patients with SARS-CoV-2. A PPI network was constructed with the help of the DEG genes in 

order to truly comprehend the biological features of proteins and to explore therapeutic targets. In this 

study, 10 hub genes (MMP9, FOS, COL1A2, COL2A1, DKK3, IHH, CYP3A4, PPARGC1A, MMP11  

and APOD) were examined, most of which were confirmed to be linked to the onset and progression 
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of tumors in previous studies. Matrix metalloproteinases (MMPs) are endopeptidases with zinc (Zn2þ) 

as a cofactor that are found inside the cell and are bound by a biological membrane. MMP9 and 

MMP11 are two different forms of matrix metalloproteinases [28]. MMP-9 overexpression has been 

linked to a variety of malignancies, including breast, liver, and colon cancers [29–32]. 

Metallopeptidase activity affects respiratory disorders, including pulmonary fibrosis, acute lung 

injury, and acute respiratory distress syndrome (ARDS). MMP9 was previously found to be a 

significant biological marker of respiratory failure and SARS-CoV-2 infection in a prior 

investigation [33]. The FOS gene, which is found on chromosome 14q21–31 in humans, is 

responsible for encoding the nuclear oncoprotein c-Fos, the c-Fos protein binds to the c-Jun protein 

to generate a heterodimer (AP-1) that is capable of activating transcriptional activity. This is strongly 

linked to the proliferation and differentiation of cells, both of which contribute substantially to tumor 

transformation and reversal [34–36]. In the ECM-receptor pathway, the collagen type I alpha 2 chain 

(COL1A2) performs a vital function and has been directly linked to the occurrence of diverse human 

malignancies [37]. DKK3 is a gene that inhibits tumor growth and its expression level has been shown 

to decrease in many kinds of cancers. DKK3 is a member of the DKK family (DKK1, DKK2, DKK3 

and DKK4). It encodes for produced glycoproteins that are evolutionarily preserved and are made up of 

two unique cysteine-rich sites and act as an inhibitor of the oncogenic Wnt signaling pathway [38].The 

activation of the canonical Wnt/-catenin pathway in ARDS patients, particularly those with SARS-

CoV-2, has been demonstrated to be linked to inflammatory and a cytokine storm, according to recent 

research [39,40]. However, whether the Wnt signaling pathway upregulation is the underlying 

molecular mechanism of cancer in patients with severe SARS-CoV-2 requires further investigation. 

Patients with lung adenocarcinoma and squamous cell carcinoma who had positive IHH expression 

had considerably shorter survival duration as opposed to those who had negative IHH expression, 

indicating that IHH is a prognostic factor for unsatisfactory prognosis [41]. CYP3A4, a member of the 

cytochrome P450 enzyme, is responsible for the metabolism of a wide range of anticancer drugs. 

Cancer patients with SARS-CoV-2 often require combination therapy, which can potentially lead to 

DDIs that result in an increased risk of side effects/toxicity or reduced effectiveness [42].Recently, 

Zulkar Naind et al. confirmed that PPARGC1A is a core protein implicated in SARS-CoV-2 infection 

as well as the risk factors associated with the disease [43].The study has shown that gene expression 

changes after infection with the SARS-CoV-2 [44]. Therefore, the hub genes that have been found may 

be used as prospective biological markers or, if the biological knowledge gained from SARS-CoV-2 

is verified, as a new pharmacological target. 

Moreover, TFs modulate the transcriptional ratio, whereas miRNA is a critical participant in RNA 

knockdown and gene expression control at the post-transcriptional level. As a result, both are necessary 

for understanding the progression mechanism of the illness. This research discovered links between 

the DEGs that were studied and their corresponding TFs and modulatory miRNAs. Several TFs were 

discovered, including STAT3, NFKB1, FOXC1, HINFP and JUN. There is evidence that these TFs are 

associated with viral-induced acute respiratory illnesses or the genesis and progression of malignancies 

[45–48]. Furthermore, several miRNAs play a role in breast cancer, (e.g. hsa-mir-335-5p, hsa-mir-139-

5p, hsa-mir-25-3p, hsa-miR-32-3p) [49,50], liver cancer (e.g.hsa-mir-139-5p, hsa-mir-25-3p) 

[51,52] ,and colon cancer (e.g. hsa-mir-1301-3p, hsa-mir-29b-3p, hsa-mir-25-3p, hsa-mir-129-5p, hsa-

miR-1277-5p) [53–57].There are several miRNAs involved in coronaviruses infection; for example, 

miRNAs were highly expressed in MERS-CoV-infected cells and may play important roles in disease 

development [58]. hsa-miR-139-5p can act as a risk factor for severe COVID-19 [59]. However, the 
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role of miRNA in tumor patients with SARS-CoV-2 infection requires further research. 

As per the latest report from WHO, no appropriate therapies or medicines for preventing and 

treating COVID-19 have been established and approved to date [2]. However, for years, several 

institutions, government agencies, research institutes, and pharmaceuticals have conducted clinical and 

preclinical studies to determine whether current medication moieties are effective in treating the 

disease on the basis of their prior experience with viral infections. In in vitro cell cultures, Wang et al. 

demonstrated that two medicines, remdesivir and chloroquine, were successful in managing SARS-

CoV-2 infection [60]. Additionally, a clinical experiment revealed that the antibiotics azithromycin and 

hydroxychloroquine had a substantial impact on SARS-CoV-2 by interfering with its genome 

replication [61,62]. In this study, we identified several potential drugs to treat SARS-CoV-2 infection, 

such as lycorine and astemizole. Lycorine is a natural alkaloid that has been derived from the lycoris 

plant and has been shown to have a number of biological effects, such as antitumor, anti-viral, and 

anti-malaria activities [63,64]. Similarly, studies have shown that quartzine can reduce acute lung 

injury [65]. New research shows that astemizole may suppress the invasion of SARS-CoV-2 spike 

pseudoviruses by binding to the ACE2 receptor [66]. Therefore, these drugs are potential candidates 

for anti-coronavirus therapy. 

5. Conclusions 

In this study, the common differential genes of three different cancer types and COVID-19 

patients were obtained through bioinformatics techniques. Additionally, the top 10 target genes were 

obtained through a PPI analysis of common differential genes. These target genes may be biomarkers 

for cancer or SARS-CoV-2 infection, which translates to potential drug targets. The association 

between these target genes and TFs and miRNAs was also studied to better understand their role in the 

occurrence and development of disease. Meanwhile, several targeted drugs with potential clinical value 

were identified for treating SARS-CoV-2 infection in patients with common types of cancer. Finally, 

our study uses public databases and bioinformatics analysis to find common genotype changes in 

cancer and COVID-19, but whether these genotype changes are potential causative factors of the two 

diseases, these potential gene targets and drugs can be further used in the clinic needs to be verified 

through experimental studies such as cells and animal models. This is the biggest deficiency in our 

research, and it is also the focus of our follow-up further research. 
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